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Pixel-based and object-based image analysis approaches for classifying broad land cover classes over agricul-
tural landscapes are compared using three supervised machine learning algorithms: decision tree (DT), ran-
dom forest (RF), and the support vector machine (SVM). Overall classification accuracies between pixel-
based and object-based classifications were not statistically significant (p>0.05) when the same machine
learning algorithms were applied. Using object-based image analysis, there was a statistically significant dif-
ference in classification accuracy between maps produced using the DT algorithm compared to maps pro-
duced using either RF (p=0.0116) or SVM algorithms (p=0.0067). Using pixel-based image analysis,
there was no statistically significant difference (p>0.05) between results produced using different classifica-
tion algorithms. Classifications based on RF and SVM algorithms provided a more visually adequate depiction
of wetland, riparian, and crop land cover types when compared to DT based classifications, using either
object-based or pixel-based image analysis. In this study, pixel-based classifications utilized fewer variables
(15 vs. 300), achieved similar classification accuracies, and required less time to produce than object-based
classifications. Object-based classifications produced a visually appealing generalized appearance of land
cover classes. Based exclusively on overall accuracy reports, there was no advantage to preferring one
image analysis approach over another for the purposes of mapping broad land cover types in agricultural en-
vironments using medium spatial resolution earth observation imagery.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

The classification of land use and land cover (LULC) from remote-
ly sensed imagery can be divided into two general image analysis ap-
proaches: i) classifications based on pixels, and ii) classifications
based on objects. While pixel-based analysis has long been themain-
stay approach for classifying remotely sensed imagery, object-based
image analysis has become increasingly commonplace over the last
decade (Blaschke, 2010). Whether pixels or objects are used as un-
derlying units for the purposes of classifying remotely derived imag-
ery, the information contained within - and among - these units
(e.g., spectral, textural, etc.) can be subjected to a variety of classifi-
cation algorithms. Previous comparative studies have been con-
ducted that examine the relative performance of different
classification algorithms using pixel-based, and/or object-based
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image analysis. A brief summary of selected comparisons is provided
below.

1.1. Algorithm comparisons using pixel-based or object-based
classifications

Using pixel-based based image analysis on Landsat Thematic Map-
per (TM) data, Huang et al. (2002) compared thematicmapping accura-
cies produced using four different classification algorithms: support
vector machines (SVMs), decision trees (DTs), a neural network classi-
fier, and the maximum likelihood classifier (MLC). Their results sug-
gested that the accuracy of SVM-based classifications generally
outperformed the other three classification algorithms. Pal (2005) com-
pared the accuracies of two supervised classification algorithms using
Landsat Enhanced Thematic Mapper (ETM+) data: SVMs and Random
Forests (RFs) (Breiman, 2001), and found that they performed equally
well. Gislason et al. (2006) compared a RF approach to a variety of
decision tree-like algorithms using pixel-based image analysis of
Landsat MSS data. They found that the selected tree-like algorithms
tested performed similarly, but that the RF algorithm outperformed
the standard implementation of Breiman et al.'s (1984) DTs;
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however, their findings also showed that the RF algorithm per-
formed slightly less well than a modified DT algorithm (boosted
1R). Carreiras et al. (2006) examined several classification algo-
rithms, which included standard DTs, quadratic discriminant analy-
sis, probability-bagging classification trees (PBCT), and k-nearest
neighbors (K-NN) using pixel-based analysis of spatially coarse
(1 km pixels) SPOT-4 VEGETATION imagery. Their results, verified
by 10-fold cross-validation, showed that the PBCT algorithm pro-
duced the best overall classification accuracy. Brenning (2009) com-
pared eleven classification algorithms using a pixel-based image
analysis, and Landsat ETM+imagery, for the detection of rock gla-
ciers. This extensive study found that penalized linear discriminant
analysis (PLDA) yielded significantly better mapping results as com-
pared to all other classifiers, including both SVMs and RFs. Using
Landsat TM and ETM+data, Otukei and Blaschke (2010) compared
the MLC, SVM, and DT algorithms in a pixel-based approach, and
found DTs performed better than MLC and SVM. In an earlier study,
Laliberte et al. (2006) used an object-based approach on Quickbird
imagery to compare K-NN with DT algorithms. Their study found
that DTs produced better overall classification accuracies than the
K-NN algorithm, but that the former was more difficult to implement
as compared to the latter.

1.2. Algorithm comparisons between pixel-based and object-based
classifications

Relatively recent comparisons between the results of pixel-based and
object-based image analysis have also been conducted. For example, Yan
et al. (2006) compared pixel-based image analysis usingMLC and object-
based image analysis usingK-NNonTerraAdvanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) imagery. In their study, the
authors claimed that the overall accuracy of the object-based K-NN clas-
sification drastically outperformed the pixel-based MLC classification
(83.25% and 46.48%, respectively). Yu et al. (2006) used high spatial res-
olution digital airborne imagery and compared a pixel-based classifica-
tion based on MLC with an object-based classification using K-NN,
using a DT as a mechanism for feature selection in both cases. Their
study showed that the 1-NN object-based classification outperformed
the pixel-basedMLC classification by 17%, although calculation of the av-
erage classification accuracy of each of the 48 vegetation classes listed
was only 51% for the object-based K-NN classification, and 61.8% for the
pixel-based classification using MLC. Platt and Rapoza (2008) compared
K-NN and MLC for both pixel-based and object-based classifications,
with and without the addition of expert-based knowledge, using multi-
spectral IKONOS imagery. Their results revealed that the object-based
NN classification using expert knowledge had the best overall classifica-
tion (78%), while the best pixel-based classification using MLC (without
expert knowledge) achieved an overall accuracy of 64%. Castillejo-
González et al. (2009) compared pixel-based and object-based classifica-
tions in agricultural environments usingmultispectral Quickbird imagery
and a variety of classification algorithms. The best pixel-based classifica-
tion used non-pan-sharpened imagery and the MLC algorithm, while
the best purely object-based classification used pan-sharpened imagery
and MLC, with both approaches achieving high overall accuracies of
89.6% and 93.69%, respectively. Their study also revealed that the two
best results, using non-pan-sharpened imagery and MLC, showed a
small difference in classification accuracy between pixel-based and
object-based image analysis (89.60% and 90.66%, respectively); however,
the difference between these same approaches grew considerably when
using pan-sharpened imagery (82.55% and 93.69%, respectively). Myint
et al. (2011) used Quickbird imagery to classify urban land cover. They
compared results from a MLC pixel-based classification with an object-
based classifier using K-NN and a series of fuzzy membership functions.
The object-based classification (90.4%) outperformed the pixel-based
classification (67.6%) in overall accuracy for their original image; howev-
er, in their test image, the differences between the object-based and
pixel-based approacheswas reduced to less than 10% (95.2 and 87.8%, re-
spectively). Finally, in a recent study, Dingle Robertson and King (2011)
compared pixel-based and object-based image analysis for classifying
broad agricultural land cover types for two time periods (1995 and
2005) using Landsat-5 TM imagery. They compared land covermaps pro-
duced usingMLC (pixel-based) and K-NN (object-based) algorithms and
found that the difference in overall accuracy between these classification
approaches was not statistically significant. Despite these findings, an in-
tensive visual analysis of their post-classification analysis revealed that
the object-based classification using K-NN depicted areas of change
more accurately than the pixel-based classification using MLC.

In general, the above comparisons between pixel-based and
object-based classifications reveal that the latter typically outperform
the former when comparing overall classification accuracy using a va-
riety of remotely sensed imagery in settings ranging from agricultural
to urban land cover classes. However, unlike the studies examining
either pixel-based or object-based classifications in isolation, many
comparison studies often rely on relatively simple classification algo-
rithms (e.g., K-NN) for the object-based classification, and probabilis-
tic based algorithms (e.g., MLC) for the pixel-based classification, the
latter of which is less suited to datasets that are non-normally distrib-
uted, or that contain categorical data (Franklin & Wulder, 2002). The
present study aims to bridge the gap between these previous compar-
isons by examining both pixel-based and object-based classification
approaches, with a selection of relatively modern and robust super-
vised machine learning algorithms: decision trees (DTs), random for-
ests (RFs), and support vector machines (SVMs). We conduct a visual
and statistical assessment of the classification outputs using medium
spatial resolution (10 m) multi-spectral imagery from the SPOT-5
HRG sensor. For the purposes of this study, six broad land cover clas-
ses were mapped in a riparian area undergoing intensive agricultural
development in western Canada. We assessed each image analysis
approach, and each of the selected machine learning algorithms, for
their ability to accurately portray these selected land cover types.
Recommendations are made in the context of operational mapping
of agricultural landscapes for the purposes of general land cover map-
ping and monitoring in agricultural environments using medium spa-
tial resolution earth observation imagery.

2. Study area

The study area is located along the South Saskatchewan River ap-
proximately 90 km east of the provincial borders of Alberta and Sas-
katchewan (Fig. 1). Approximately 80 sq. km, the study area is a
subset of a much larger drainage basin selected for a long-term study
of land cover change and land use practices typical of the southern
half of the western Prairie Provinces of Canada. Similar large drainage
areas have been previously selected by others to assess potential im-
pacts caused by development on aquatic ecosystems over time (e.g.,
Squires et al., 2009), and represent an appropriate scale and unit of
measurement for conducting cumulative environmental effects assess-
ments on aquatic ecosystems (Dubé, 2003; Duinker & Greig, 2006;
Noble, 2008; Seitz et al., 2011). Indeed, over the past century, environ-
mental impacts in the region due to agricultural development has
replaced much of the native vegetation and has filled an estimated
40% of small wetland areas (Huel, 2000), facilitating the gradual intro-
duction of crops and improved pasture lands that dominate much of
the prairies today. The selected study area is typical of agricultural activ-
ity conducted near riparian and wetland environments in the region.
Such environments have been linked to a range of species and environ-
mental processes, the flow of nutrients between terrestrial and aquatic
ecosystems, and are the focus of bestmanagement practices for protect-
ing water quality in agricultural environments (Cooper et al., 1995;
Gordon et al., 2008; Gregory et al., 1991; Naiman & Décamps, 1997;
Thompson & Hansen, 2001; US EPA, 2005). Climate in the Prairie Eco-
zone is characterized by long and cold winters, with summers being



Fig. 1. Study area situated over the South Saskatchewan River (Saskatchewan, Canada). Inset shows SPOT-5 10 m HRG false color image of study area (R = NIR, G = Red, B =
Green).
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relatively short, but often very warm. The region receives little precipi-
tation and is relatively dry as a result, with semi-arid regions existing in
the southern portions of the province (e.g., The Great Sand Hills).

3. Methods

3.1. Data sets and processing

3.1.1. Ancillary datasets
Several tiles of the Canadian Digital Elevation Data (CDED) digital

elevation model (DEM) were downloaded from the GeoBase online
spatial data portal (www.geobase.ca). At latitudes of less than 68°
N, the CDED DEM has a horizontal post spacing of approximately
23 m (North–south)×16–11 m (East–west). After projection into Al-
bers Equal Area Conic and nearest-neighbor resampling, the CDED
DEM was converted to square 16×16 m pixels. An Albers-Equal
Area Conic was selected as the final projection for all data used in
this study due to known area and shape preserving characteristics
of this projection, and because using a standard Universal Transverse
Mercator projection would have spanned multiple zones, introducing
potential projection-related errors in the final map output. Together
with elevation above sea level, slope and aspect, topographic features
(e.g., ridge, channel, plane) (Pike, 2000) were calculated from the
CDED DEM and included as variables in the classification process.

http://www.geobase.ca


Table 1
Image layers used in pixel-based classifications.

Spectral bands Vegetation index Landscape variables Texture measurea

Green NDVI Elevation Green
Red Slope (degrees) Red
NIR Aspect (degrees) NIR
SWIR Topgraphic classb SWIR

NDVI
DEM

a – “Angular second moment” texture calculated for the listed image layers.
b – Topographic classes: Plain, Ridge, Channel (Pike, 2000).
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Other ancillary datasets (e.g., road networks, geodetic monuments,
administrative boundaries, etc.) were downloaded from the
GeoSask online spatial data portal (www.geosask.ca), and used as
reference layers for geometric and orthographic corrections of satel-
lite imagery.

3.1.2. Remotely sensed imagery
Panchromatic (2.5 m) and multispectral (10 m) imagery from the

Système Pour l'Observation de la Terre (SPOT-5) satellite was
obtained from the Alberta Terrestrial Imaging Corporation (www.
imagingcenter.ca). The SPOT-5 imagery was collected on August 28,
2005. High resolution digital color aerial orthoimagery (60 cm pixels)
obtained in the same year as the SPOT-5 imagery was downloaded
from the Saskatchewan Geospatial Imagery Collaborative (www.
flysask.ca) online data portal. The panchromatic imagery was orthor-
ectified using a rational polynomial coefficient model of the SPOT-5
sensor and the CDED DEMmosaic, in conjunction with ground control
points obtained from ancillary layers (road network and geodetic
monuments). Image-to-map registration yielded a root-mean-
square error (RMSE) of 0.3 pixels using a 1st order polynomial trans-
formation. The multispectral imagery was then registered to the pan-
chromatic imagery, achieving an RMSE of less than 0.5 pixels using a
1st order polynomial transformation. A visual assessment confirmed
that all image sources were aligned with ancillary data layers of
higher spatially accuracy (e.g., road network, quarter section plots,
etc.). The multispectral SPOT-5 scene was examined for a suitably
representative study area, and a 630×553 pixel subset (348,390
pixels) of the full SPOT-5 scene was then selected for analysis (Fig. 1).

Radiometric processing was applied to the SPOT-5 multispectral
imagery, and the Normalized Difference Vegetation Index (NDVI)
layer was computed and included in the analysis (Song et al., 2001).
Calibrated digital numbers (DNs) were first converted to top-of-
atmosphere reflectance following procedures outlined by Chander
et al. (2009) with updated sensor calibration coefficients for both
SPOT-5 HRG sensors provided by the Centre National d'Études Spa-
tiales (CNES, 2009), and updated exoatmospheric solar irradiance co-
efficients using the Thuiller spectrum (Thuillier et al., 2003) provided
by G. Chander (personal communication, Sept. 2010). Absolute atmo-
spheric correction of the imagery was not performed due to the lack
of simultaneously acquired ground based spectral data or appropriate
meteorological data available in the study area. Instead, a relative cor-
rection using the Dark-Object Subtraction (DOS) method was used to
Table 2
Parameter values used in multi-resolution segmentation (MRS) algorithm.

Image segmentation parametersa

Scale Color/shape Smoothness/
compactness

# of objects Median area of
objects (sq. m)

5 0.9/0.1 0.5/0.5 6583 9401
15 0.9/0.1 0.5/0.5 937 69243
30 0.9/0.1 0.5/0.5 273 241434

a Image layers used: NDVI, DEM, and slope (weighted equally).
alleviate atmospheric scattering effects (Chavez, 1988). The second
angular moment texture measure, from computed co-occurrence ma-
trices, was calculated for each of the SPOT-5 multispectral bands and
NDVI layer. Texture measures have been found to increase overall
classification accuracies using SPOT imagery (Franklin & Peddle
1990), and have been shown to improve the quality of the image seg-
mentation process (Ryherd & Woodcock, 1996).

The four bands of SPOT-5 multispectral imagery were placed in a
single data set along with the calculated NDVI layer, texture mea-
sures, DEM, and related landscape variables. This combined data set,
or “image stack”, consisted of 15 individual layers, or predictor vari-
ables (Table 1). Pixel-based variables were selected from this stack
based on previous experience in classifying land cover types in our
study area. The object-based classification used several layers from
the pixel-based image stack as input to the image segmentation pro-
cess, and as input layers for the calculation of “object features” (see
Section 3.1.3 for details).

3.1.3. Image segmentation and object feature selection
Image segmentation represents a fundamental first step in object-

based image analysis, as the image objects (sensu stricto “image seg-
ments”) resulting from this process form the basis of an object-based
image classification (Castilla & Hay, 2008). In this study, image seg-
mentation was performed using the multi-resolution segmentation
(MRS) algorithm found in the 64-bit version of eCognition Developer
8 (Trimble, 2010a). The MRS algorithm uses a “bottom-up” image
segmentation approach that begins with pixel sized objects which
are iteratively grown through pair-wise merging of neighboring ob-
jects based on several user-defined parameters (scale, color/shape,
smoothness/compactness) that are weighted together to define a ho-
mogeneity criterion; together, these parameters define a “stopping
threshold” of within-object homogeneity based on underlying input
layers, and thus define the size and shape of resulting image objects
(Baatz & Schäpe, 2000; Benz et al., 2004; Trimble, 2010b).

Of the parameters used by the MRS algorithm, the selection of an
appropriate value for the “scale” parameter is considered the most
important, as this value controls the relative size of the image objects,
which has a direct effect on the classification accuracy of the final
map (Kim et al., 2008; Myint et al., 2011; Smith, 2010). In general,
smaller values for the scale parameter produce relatively smaller
image objects, while larger values produce correspondingly larger ob-
jects. An examination of the available literature reveals that a quanti-
tative, semi-automated approach for the selection of optimum values
for image segmentation parameters using genetic algorithms exists
(e.g., Bhanu et al., 1995), but that such semi-automated methods
are not yet fully implemented in mainstream image segmentation
software (e.g., Definiens' eCognition; but, see Costa et al., 2008;
Drăgut et al., 2010). In this study, the selection of appropriate input
layers and values for individual parameters used by the MRS algo-
rithm was guided by previous experience and by using an iterative
“trial-and-error” approach often employed by others conducting
object-based image analysis (Dingle Robertson & King, 2011; Yan
et al., 2006; Mathieu et al., 2007; Myint et al., 2011; Yu et al., 2006).
The values for image segmentation parameters used in this study
are found in Table 2.

The image segmentation process was considered complete once
image objects were produced that visually corresponded to meaning-
ful real-world objects of interest. Image objects produced using the
smallest scale parameter (Fig. 2B) were sufficiently small enough to
delineate fine scale features of interest within the study area such
as narrow channels of riparian vegetation, or fringes of wetland veg-
etation located around pools of water. The two additional, coarser
image segmentation scales (Fig. 2C and D) were included in the
object-based classification to depict larger objects of interest (e.g.,
crop fields). The use of image object information derived from multi-
ple image segmentation scales has been shown elsewhere to produce

http://www.geosask.ca
http://www.imagingcenter.ca
http://www.imagingcenter.ca
http://www.flysask.ca
http://www.flysask.ca


Fig. 2. Comparison of image segmentation levels used in object-based classification: A) SPOT-5 10 m HRG false color image of study area (R—NIR, G—Red, B—Green); B) Image seg-
mentation (MRS scale 5); C) Image segmentation (MRS scale 15); D) Image segmentation (MRS scale 30).

Table 3
Object features used in object-based classifications (adapted from Trimble, 2010a).

Object features a

Object layer features Description

Mean Mean value of an image object
Standard deviation Standard deviation of image object
Mean difference
to neighbors

The difference between mean values of an image
object and neighboring image objects.

Mean difference to scene The difference between the mean input layer value of
an image object and the mean input layer value of the
scene

Mean difference to
super-objects

The difference between the mean input layer value of
an image object and the mean input layer value of its
superobject. Distance of 1.

Std. dev. difference
to super-object

The difference of the std. dev. input layer value of an
image object and the std. dev. input layer value of its
super-object. Distance of 1.

Object texture features Description

Mean of sub-objects Standard deviation of the different input layer mean
values of the sub-objects. Distance of 1.

Avrg. mean diff to
neighbors of sub-objects

The contrast inside an image object expressed by the
average mean difference of all its sub-objects for a
specific input layer. Distance of 1.

a Object features listed were calculated for each of the 15 image layers listed in
Table 1.
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better overall classification accuracies (Smith, 2010), and better clas-
sification accuracies for individual land cover classes (Myint et al.,
2011). Image objects produced at the finest image segmentation
scale served as the underlying building blocks, or “image segments”
(Castilla & Hay, 2008), used for the object-based classification, al-
though information obtained from image objects produced at all
three image segmentation scales (Figs. 2B–D) was utilized in the
object-based classifications.

Following the image segmentation process, variables were select-
ed for use in the object-based classification. The object-based image
analysis software used in this study refers to such variables as “object
features” (Trimble, 2010a), which is a term adopted throughout the
rest of the text when referring to variables used by object-based clas-
sifications. Object features allow for contextual relationships between
image objects to be incorporated into the object-based image analy-
sis. For example, relationships between several smaller sub-objects
(e.g., groups of individual crops) contained within a single image ob-
ject (e.g., crop field) produced using a larger image segmentation
scale, can be used for discriminating between land cover types
(Myint et al., 2011). In such cases, the information being considered
represents an “object texture feature” (see Table 3). Several types of
object features are available within the Definiens eCognition software
and are described elsewhere (Trimble, 2010a).

image of Fig.�2
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Selecting object features for use in object-based image analysis
can be a subjective process based on past experience and user knowl-
edge (e.g., Laliberte et al., 2007), or one driven by a feature selection
algorithm prior to final classification (e.g., Yu et al., 2006; Van Coillie
et al., 2007). In this study, we relied on our past experience with con-
ducting object-based classifications in the study area to guide our se-
lection of object features (Table 3).

The total number of object-features considered in a multi-scale
object-based classification can be considerable since information is cal-
culated per image object, and can be calculated at each segmentation
scale for each of the input layers. In this study, information based on
all 15 input layers (Table 1), 3 image segmentation scales (Table 2),
and 8 object features (Table 3) were used in the object-based classifica-
tion. The total number of object features considered (360) in the
object-based image analyses was reduced to 300 as the calculation of
values for certain object features required that certain conditions are
met. For example, in this study, “object texture features” (Table 3)
were selected that calculate values for an individual image object
based on their underlying sub-objects, which are created at lower
image segmentation scales. However, image objects produced at the
finest image segmentation scale represent the finest level of detail,
and therefore cannot be used to calculate sub-object information.

The total number of object features available to the object-based
classifications greatly outnumbers the number of variables used in
pixel-based classifications (300 versus 15, respectively). The ability
to utilize and link information from image objects delineated at mul-
tiple scales inherent in the underlying imagery is often presented as
one of the advantages of object-based image analysis (Blaschke,
2010). As such, multiple image segmentation scales were used for
object-based classifications, which is an approach that has been
adopted in several other recent studies comparing pixel-based and
object-based classifications (e.g., Yan et al., 2006; Myint et al., 2011;
Whiteside et al., 2011). While utilizing disparate numbers of potential
predictor variables may hamper a strict comparison between image
analysis approaches, it nonetheless represents a more typical com-
parison, as object-based classifications often utilize multiple image
segmentation scales even if a single object-feature type is utilized
(e.g., mean layer value; see Table 3).

3.1.4. Sampling data, accuracy assessment, and map comparison
In this study, high spatial resolution aerial orthophotos and pan-

chromatic satellite imagery were used to collect ground reference
data, as contemporaneous field-based samples were not available
within the selected study area. A stratified random sampling ap-
proach was utilized in order to adequately sample land cover classes
of interest (e.g., narrow channels of riparian vegetation) that were
relatively underrepresented within the study area. An initial land
cover map produced using an unsupervised ISODATA clustering algo-
rithm was created to provide an initial stratification of the study area.
Four multispectral bands from the SPOT-5 imagery were used to pro-
duce the initial stratified classification using 20 spectral classes. Six
broad land cover classes were selected for the purposes of this com-
parison study: crop land, mixed grasslands, exposed rock/soil, ripari-
an and wetland vegetation, and water (cloud and shadow were not
present in the study area). The 20 spectral classes produced by the
ISODATA algorithm were grouped into the six selected land cover
types. Spectral classes remaining from the ISODATA classification
that did not clearly fit into the selected six land cover types were clas-
sified as “no data” and excluded from further analysis. The general-
ized ISODATA classification was then converted into a polygon
based map and imported into a GIS for further analysis.

Using image objects produced at the finest segmentation scale
(Table 2), and the polygon-based ISODATA classification, a stratified
random sample of image objects within the six land cover types
was performed. A total of 690 image objects were selected (115 per
land cover type). Image objects produced using the MRS algorithm
– even using small image segmentation scale values – can vary in
size considerably (see Table 2), and may contain more than a single
land cover type. As such, image objects were visually examined
using a combination of SPOT-5 panchromatic and multispectral
data, along with color aerial orthoimagery, to assess the homogeneity
of the land cover types present within individual image objects. Those
image objects that contained more than one of the six broad land
cover types were rejected, leaving 679 samples in total. These sam-
ples were then split into training and testing set using proportional
stratified random sampling, which allowed for both sets of data to re-
tain the overall class distributions of the six selected land cover types
present in the original data set. Approximately two-thirds of the sam-
ples (437) were used to train the machine learning algorithms, re-
serving approximately one-third (242) as a “hold-out” test set used
exclusively for accuracy assessment and statistical comparisons be-
tween classifications. To clarify further, the test set was not used to
train or tune parameters associated with the machine learning algo-
rithms examined in this study. Model building and tuning of individ-
ual parameters used by the machine learning algorithms was
accomplished through repeated k-fold cross-validation based on the
training data set only (see Section 3.2).

In order to obtain training and testing samples for the pixel-
based classification that were commensurate with training and
testing image objects, a single point within each of the selected
image objects was randomly selected. As each of the image objects
used for training and testing were visually screened for land cover
homogeneity, any point within the image object would correspond
to the underlying land cover type already identified for the image
object. This procedure ensured that both the object-based and
pixel-based classifications used training and testing data gathered
from the same locations.

Two measures for assessing the accuracy of thematic maps clas-
sified from remotely sensed imagery are commonly reported: i)
overall accuracy and ii) the Kappa coefficient of inter-rater agree-
ment (Congalton, 1991; Congalton & Green, 1998). Overall accura-
cy has the advantage of being directly interpretable as the
proportion of pixels classified corresponds to probabilities related
to a given thematic map's reported commission and omission accu-
racy (Stehman, 1997), while the Kappa coefficient has been used to
assess statistical difference between classifications (Congalton,
1991). Studies often assess the performance of multiple classifica-
tion algorithms utilizing the same testing and training samples
(Foody, 2004). In such cases, the assumption that each classifica-
tion was independently assessed is violated (Cohen, 1960) – i.e.,
that the number of the samples being compared are independent
– and therefore, a statistical comparison using Kappa coefficient
values is unwarranted (Foody, 2004). In such circumstances, it
has been recommended that either a Monte Carlo permutation
test of related κ coefficient values (McKenzie et al., 1996), or McNe-
mar's test for paired-sample nominal scale data (Agresti, 2002; Zar,
2009), be used to assess whether statistically significant differences
between classifications exists (Foody, 2004). The latter approach
has been used by others to statistically compare object-based and
pixel-based classifications (e.g., Dingle Robertson & King, 2011;
Yan et al., 2006; Whiteside et al., 2011), and is therefore adopted
here for comparability.

For each classification, a confusion matrix is presented, along with
its overall accuracy (i.e., the percentage of correctly classified land
cover types), and user's and producer's accuracy (Congalton &
Green, 1998). As recommended by others, overall accuracy measures
are reported using exact 95% confidence intervals (Morissette &
Khorram, 1998; Foody, 2009). The McNemar test was used to assess
the following goals of comparison: 1) whether a statistically signifi-
cant difference exists between pixel-based and object-based classifi-
cations that utilize the same machine learning algorithm; and, 2)
whether a statistically significant difference exists between different
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machine learning algorithms when using either pixel-based or
object-based image analysis. The McNemar test was run without
Yates' correction for continuity for small sample sizes, as this correc-
tion is generally not recommended (Foody, 2004; Zar, 2009). Both the
individual accuracy assessments and statistical comparisons are
based on the “hold out” test set.

3.2. Tuning of machine learning algorithm parameters

Model building, tuning, and accuracy assessments of were per-
formed using version 2.12 of the 64-bit version of R, a multi-
platform, open-source language and software for statistical comput-
ing (R Development Core Team, 2010). Several add-on packages
were used within R for creating each of the machine learning algo-
rithms used in this study: decision tree (DT), random forest (RF),
and the support vector machine (SVM). Classifications based on DT
models used the Recursive PARTitioning or “rpart” package
(Therneau & Ripley, 2010), which is largely based on the classification
and regression tree (CART) algorithm originally developed by
Breiman et al. (1984). The classifications built with the RF algorithm
used the “randomForest” package (Liaw & Wiener, 2002), which is
based on the original RF algorithm and software code developed by
Breiman and Cutler (Breiman, 2001; Breiman & Cutler, 2007). Classi-
fications using models based on the SVM algorithm (Cortes & Vapnik,
1995; Vapnik, 1998) used the “kernlab” package (Karatzoglou et al.,
2004).

All classification models were developed using the “caret” package
within R (Kuhn, 2008), which allowed for a single consistent environ-
ment for training each of the machine learning algorithms and tuning
their associated parameters. A repeated k-fold cross-validation
resampling technique was used to create and optimize classification
models for both pixel-based and object-based classifications using
all three machine learning algorithms. Resampling by k-fold cross-
validation begins by partitioning a sample into k subsamples of
roughly equal size, with k-1 subsamples used as a training set, and a
single subsample left out as a test set. Using this approach, a classifi-
cation model using each of the three machine learning algorithms is
built using the training set and assessed against the single leftover
test set. This process is repeated k times (“folds”), whereby each of
the k subsamples serves a turn as a test set, ensuring that all subsam-
ples are used as part of the training and testing sets. Results for each
fold are then combined to select the model with the highest average
accuracy. Similar cross-validation techniques have been used by
others to compare the performance of multiple classifiers using
earth observation imagery (e.g., Friedl & Brodley, 1997; Huang et al.,
2002; Brenning, 2009, 2010).

Several adjustable “tuning parameters” used by each of the ma-
chine learning algorithms to optimize classification performance
were examined using 10-fold cross validation, which is the number
of folds recommended when comparing the performance of machine
learning algorithms (Kohavi, 1995). “Optimal” values for tuning pa-
rameters were selected using three repetitions of a 10-fold cross-
validation based on the original training data set, with the original
test removed completely from the cross-validation process (i.e., the
original test set was not used for training or tuning any of the classi-
fication models). Tuning parameters were considered optimized
based on classification models that achieved the highest overall clas-
sification during the cross validation process. Specific details on tun-
ing parameters used by the three machine learning algorithms
examined in this study are listed in the following sections.

3.2.1. Decision Tree based models
For DT based classifications, several values were examined for the

“maximum depth” tuning parameter, which controls the maximum
depth of any single node in the tree. When using the “caret” package,
an initial DT model is fit to all of the training data to obtain the
maximum depth of any node; this value is then used to obtain an
upper bound on values considered during subsequent model building
using cross validation (Kuhn, 2011). In general, using a larger maxi-
mum depth value will allow for a relatively complex tree to be built,
with a potential increase in overall classification accuracy, whereas
lower maximum depth values tend to build less complex trees, with
potentially lower overall classification accuracies. By increasing the
number of branching nodes (i.e., decision rules), the DT algorithm is
capable of grouping a larger number of distinct observations present
within a dataset. By default, the “rpart” package uses 10-fold cross
validation of the training data to internally obtain classification
error rates (Therneau & Ripley, 2010). When using “rpart” the appro-
priate sized tree is obtained using the “1 SE rule” established by
Breiman et al. (1984), whereby the smallest-sized tree whose cross
validation error is within 1 standard error of the minimum cross val-
idation error is selected. The tree is then pruned using the “cost com-
plexity” (cp) value that corresponds to the size of tree found using the
“1 SE rule”. The cp parameter controls the condition at which non-
informative splits are pruned from the tree (Therneau & Ripley,
2010). Using the “caret” package, the default cp value (0.01) used
by the “rpart” package was maintained, and only the maximum
depth parameter was tuned for DT based classifications.

3.2.2. Random Forest based models
For random forest (RF) based classifications, the default number of

trees (500) was selected since values larger than the default are
known to have little influence on the overall classification accuracy
(Breiman & Cutler, 2007). The other adjustable RF tuning parameter,
the mtry parameter, controls the number of variables randomly con-
sidered at each split in the tree building process, and is believed to
have a “somewhat sensitive” influence on the performance of the RF
algorithm (Breiman & Cutler, 2007). For categorical classifications
based on the RF algorithm, the default value for the mtry parameter
is

ffiffiffi

p
p

, where p equals the number of predictor variables within a data-
set (Liaw & Wiener, 2002).

3.2.3. Support Vector Machine based models
Classifications based on the support vector machine (SVM) algo-

rithm used the radial basis function (RBF) kernel. Other kernels
were not considered in this study. The parameters used by the SVM
algorithm have been shown to influence overall classification accura-
cy (Burges, 1998). The two model tuning parameters for SVM models
using the RBF kernel in the “kernlab” package are “cost” (C) and
“sigma” (σ). Increasing the former leads to larger penalties for predic-
tion errors, which may produce an over-fitted model (Alpaydin,
2004); whereas increasing the latter parameter affects the shape of
the separating hyperplane (Huang et al., 2002), which may also influ-
ence overall classification accuracy. An analytical method for directly
estimating σ from the training data has been implemented in the ker-
nlab package using the “sigest” function (Karatzoglou et al., 2004).
The “caret” package estimates an appropriate value for the σ param-
eter using the sigest function by default; therefore, only the C param-
eter was tuned when running the SVM algorithm with the RBF kernel
(Kuhn, 2011).

4. Results

4.1. Tuning of machine learning algorithm parameters

For DT-based classifications, values ranging from 1 to 8 were ex-
amined for the “maximum depth” tuning parameter. Based on the
highest overall classification accuracy (i.e., the percentage of correctly
classified samples) achieved by pixel-based and object-based models
(85.4% and 83.3%, respectively) a maximum depth value of 8 was se-
lected for both pixel-based and object-based classifications models.
Several values for the mtry tuning parameter (2–4, 6–8, 10–12, 14)
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were examined for the pixel-based RF classification. For the pixel-
based RF classification, the highest classification accuracy value
(91.1%) was obtained with an mtry value of 7. A total of 10 mtry pa-
rameter values (2, 35, 68, 101, 134, 167, 200, 233, 266, and 300)
were examined for the object-based RF classifications. Based on the
highest classification accuracy obtained (93.1%), an mtry value of 68
was selected for the object-based RF classification. For the pixel-
based and object-based classifications using the SVM algorithm, a
total of 10 values for the C parameter (0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,
and 128) were examined. The value for the σ parameter was held
constant at 0.0928 for pixel-based classifications, and at 0.00361 for
object-based classifications. Pixel-based and object-based classifica-
tions using the SVM algorithm (overall accuracy of 89.8% and 91.4%,
respectively) were obtained using C parameter values of 8 and 1, re-
spectively. Models with optimized tuning parameter values were
used to produce the subsequent image classifications, associated ac-
curacy assessments, and map comparisons.
Fig. 3. Comparison of pixel-based classifications: A) SPOT-5 10 m HRG false color image of stud
based classification; D) Support vector machine based classification.
4.2. Visual examination of thematic maps

Pixel-based and object-based image classifications using the three
examined machine learning algorithms are depicted in Figs. 3 and 4,
respectively. Post classification clean up (e.g., pixel-based filtering,
GIS-based adjustment of classes, etc.) of the final thematic maps
was not performed. A visual overview of the pixel-based classifica-
tions is presented first, followed by object-based classifications, and
a comparison of outputs produced using both image analysis ap-
proaches and all three machine learning algorithms.

4.2.1. Pixel-based classifications
For the pixel-based classifications (Fig. 3), the major visual differ-

ence interpreted between thematic maps produced by the three dif-
ferent algorithms was the amount of wetland or riparian land cover
depicted in the southern quarter of the study area. For tree-based
classifications (Fig. 3B and C), the south-western corner of the study
y area (R—NIR, G—Red, B—Green); B) Decision tree based classification; C) Random forest

image of Fig.�3


Fig. 4. Comparison of object-based classifications: A) SPOT-5 10 m HRG false color image of study area (R—NIR, G—Red, B—Green);); B) Decision tree based classification; C) Random
forest based classification; D) Support vector machine based classification.
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area depicts riparian vegetation, whereas the map produced by the
SVM algorithm (Fig. 3D) depicts this area as dominated by mixed
grasslands dotted primarily with wetlands. A visual inspection of
this area using available high spatial resolution imagery and color
orthoimagery revealed that this area is predominantly covered in
vegetation typical of a mixed grasslands land cover type, although
small stream channels can be seen filled with vegetation, indicating
the presence of a riparian land cover class. Small areas of wetland
vegetation are also present in the high resolution imagery. Two pre-
dominant patches of exposed rock/soil, shown as blue-white patches
on the left portion of Fig. 3A, are best classified by the SVM algorithm,
while both the RF and DT algorithms depict these areas with patches
of crop land. In general, while all three pixel-based classifications pro-
duced a similarly speckled “salt-and-pepper” appearance, the DT and
RF based classifications showed noticeably less of this speckle in the
depiction of large crop land areas (e.g., see north-eastern corner of
Fig. 3C). Overall, the pixel-based classification using the SVM algo-
rithm (Fig. 3D) appears to contain less speckle compared to the DT
and RF classifications. The classification based on the SVM algorithm
appears to show fewer errors of commission in the classification of
mixed grassland vegetation along the north-western area, especially
along channels containing riparian vegetation on the north side of
the river.

4.2.2. Object-based classifications
As with the pixel-based classification, the major visual difference

interpreted between thematic maps produced using object-based
image analysis (Fig. 4), is in the relative amount of wetland, riparian
and mixed grassland land cover depicted in the southern half of the
study area. For tree-based classifications (Fig. 4B and C), the southern
half of the study area depicts larger patches of riparian vegetation,
whereas the SVM algorithm (Fig. 4D) depicts this area as predominant-
ly mixed grassland. The thematic maps based on DT and SVM algo-
rithms (Fig. 4B and C) show several noticeable errors of commission,
namely the misclassification of riparian land cover as wetland within
the main river channel. All three object-based classifications

image of Fig.�4
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misclassify small areas of riparian and exposed/rock soil land cover
located along the riverbank as mixed grasslands. The two object-
based classifications using the RF and SVM algorithm show little in-
dication of commission error when classifying crop land alongside
riparian channels on the northern slope of the river channel,
whereas several patches of misclassified crop land are present in
this area of the object-based DT classification map. Wetland vege-
tation present in the northern part of the study area appears well
defined by all three object-based classification algorithms, al-
though several errors of commission are noticeable in large inun-
dated fields.

4.2.3. Visual comparison of pixel-based and object-based classifications
In general, all land cover maps show a reasonably accurate visual

depiction of the broad land cover types of interest in this area.
When the same machine learning algorithm is compared, both
pixel-based and object-based classifications showed similar patterns.
For example, the predominance of mixed grassland areas in the
southern portion of the study area was noticeably higher in pixel-
based and object-based classifications that utilized the SVM algo-
rithm when compared to classifications based on tree-based algo-
rithms. Wetland and riparian areas were generally well defined,
although different algorithms and image analysis approaches differed
slightly in their specific depictions of these land cover types. Wetland
areas appeared to be best represented by the SVM based classifica-
tions, particularly when using the object-based approach, which ac-
curately portrayed vegetation encircling areas of open water,
although this quality is present when using tree-based classifications
to varying degrees. Likewise, the depiction of riparian vegetation was
relatively consistent across approaches and algorithms, with pixel-
based classifications producing the most visually accurate depictions
along steep ridges and narrow channels. Crop land was best depicted
by object-based classifications due to the generalized appearance,
however the less speckled appearance of croplands using pixel-
based RF and DT based classifications were also considered adequate.
Pixel-based classifications based on RF and SVM algorithms produced
more visually accurate depictions of sand bars (exposed rock/soil
land cover type) in riparian areas than any of the object-based
classifications.

4.3. Accuracy assessment and statistical comparisons

An accuracy assessment was performed for each classification pro-
duced in this study to evaluate how well predictions based on the op-
timized models, generated using repeated k-fold cross validation,
compared against the “hold-out” test data. Table 4 contains detailed
confusion matrices of classification accuracies based on the test data.

Overall, both pixel-based and object-based classifications per-
formed similarly with respect to overall classification accuracy. In
general, all land cover types achieved over 80% user's accuracy, with
the exception of wetland land cover types, which scored below 80%
when using pixel-based image analysis, or object-based image analy-
sis using the DT algorithm. Producer's accuracy for several land cover
types was relatively consistent for both pixel-based and object-based
classifications, but specific differences between machine learning al-
gorithms were apparent. For example, producer's accuracy for the
crop land cover type was consistently over 80% for both pixel-based
and object-based classifications, except when using the SVM classifi-
er, where it decreased to 75% for both image analysis approaches. All
pixel-based classifications achieved a producer's accuracy of 77.27%
for wetland land cover types, while object-based classifications
using the RF and SVM algorithm achieved over 95% for this class.
Pixel-based classifications that utilized the DT algorithm had the low-
est overall classification accuracy (87.6%), followed by SVM (89.26%),
and RF (89.67%) classifications (Fig. 5). The same general trend was
observed for object-based classifications, with the DT algorithm
obtaining the lowest overall classification accuracy (88.84%), fol-
lowed by RF (93.39%) and SVM (94.21%) algorithms. Exact 95% confi-
dence limits, calculated on the results obtained with the “hold-out”
test data set, reveal a wide variability and overlap in overall accuracy
reported between pixel-based and object-based classifications. Based
on these results, the lowest performing classification model (pixel-
based DT) potentially scored within the range of the best performing
RF and SVM classifications (Fig. 5).

Based on a comparison between predictions made with optimized
classification models built using repeated k-fold cross-validation (see
Section 4.1) and the “hold-out” test data, the McNemar test indicated
that the observed difference between pixel-based and object-based
classifications was not statistically significant (p>0.05) when the
same machine learning algorithm was used (e.g., DT classification
model using pixel-based or object-based image analysis). With pixel-
based image analysis, the observed difference in classification accuracy
between all threemachine learning algorithmswas not statistically sig-
nificant (p>0.05). For object-based classifications, a statistically signif-
icant difference (p=0.05) in classification accuracy between models
using DT and RF algorithms (p=0.01162), and DT and SVM algorithms
(p=0.006714)was observed. The difference in overall classification ac-
curacy between object-based classifications utilizing the RF and SVMal-
gorithms was not statistically significant (p>0.05).

5. Discussion

In general, classifications produced using either pixel-based or
object-based image analysis created similar and visually acceptable
depictions of the broad land cover classes present within the study
area. As expected, compared to the pixel-based classifications, the
object-based classifications offered a more generalized visual appear-
ance and more contiguous depiction of land cover, which perhaps
better represents how land cover interpreters and analysts actually
perceive the landscape (Stuckens et al., 2000). In some cases, the gen-
eralized depiction of land cover classes produced by object-based
image analysis may account for an apparent preference for object-
based classifications over slightly better performing pixel-based clas-
sifications (e.g., Dorren et al., 2003). Nevertheless, additional proces-
sing of pixel-based imagery, either prior to or after classification, can
also produce similar generalized representations of land cover, so
such differences may in fact be largely trivial, at least when consider-
ing the use of medium spatial resolution imagery (10–30 m pixels).

When comparing overall classification accuracy (percentage of
classes correctly predicted), there is an apparently consistent, but
small (1–4%), improvement when using object-based image analysis
over pixel-based image analysis (see Table 4 and Fig. 5). However,
the large variability depicted by the exact 95% confidence intervals
suggests that the sample size of the “hold-out” test data set (242)
was too small for assessing such differences; therefore, any apparent
trend reported here should be considered tentative. Deciding on a
sampling effort that is economically feasible and logistically possible,
with one that allows for statistically rigorous comparisons is a major
consideration in operational settings where resources are often limit-
ed (Congalton, 1991). A sample size that is too large can waste valu-
able resources that provide unnecessary precision, whereas a
sampling effort that is too small may not be capable of resolving
any statistically meaningful differences when comparing classifica-
tion accuracies (Foody, 2009).

Despite the low sample size of the test set and associated wider
confidence limits, the McNemar test revealed that, when utilizing
the same machine learning algorithm, the observed difference be-
tween pixel-based and object-based classification accuracy was not
significant at the 5% level. The findings in this study suggest that, on
the basis of achieving better overall classification accuracy for the ap-
plication described in this study, there is no statistical basis for prefer-
ring pixel-based to object-based image analysis, when utilizing the



Table 4
Confusion matrices and associated classifier accuracies based on test data. A = crop land, B = mixed grasslands, C = exposed rock/soil, D = riparian, E = water, F = wetland; Oa = overall classification accuracy, Pa = producer's accuracy,
Ua = user's accuracy, CI = confidence interval.

Pixel-based, decision tree Object-based, decision tree

A B C D E F Total Ua A B C D E F Total Ua

A 27 3 0 0 0 2 32 84.38% A 26 0 1 0 0 0 27 96.30%
B 1 60 1 5 0 3 70 85.71% B 1 63 1 1 1 3 70 90.00%
C 1 0 13 0 0 0 14 92.86% C 1 0 12 0 1 1 15 80.00%
D 3 4 0 72 0 0 79 91.14% D 3 4 0 80 1 2 90 88.89%
E 0 1 0 1 23 0 25 92.00% E 0 0 0 0 18 0 18 100.00%
F 0 1 0 4 0 17 22 77.27% F 1 2 0 1 2 16 22 72.73%
Total 32 69 14 82 23 22 242 Total 32 69 14 82 23 22 242
Pa 84.38% 86.96% 92.86% 87.80% 100.00% 77.27% Pa 81.25% 91.30% 85.71% 97.56% 78.26% 72.73%

Oa: 87.60% Oa: 88.84%
Lower 95% CI: 82.78% Lower 95% CI: 84.18%
Upper 95% CI: 91.48% Upper 95% CI: 92.52%

Pixel-based, random forest Object-based, random forest
A B C D E F Total Ua A B C D E F Total Ua

A 27 2 0 0 0 0 29 93.10% A 27 1 0 0 1 0 29 93.10%
B 1 61 1 0 0 3 66 92.42% B 0 65 1 0 0 1 67 97.01%
C 1 1 13 0 0 0 15 86.67% C 1 0 13 0 0 0 14 92.86%
D 3 3 0 80 0 2 88 90.91% D 3 3 0 82 0 0 88 93.18%
E 0 0 0 0 19 0 19 100.00% E 0 0 0 0 18 0 18 100.00%
F 0 2 0 2 4 17 25 68.00% F 1 0 0 0 4 21 26 80.77%
Total 32 69 14 82 23 22 242 Total 32 69 14 82 23 22 242
Pa 84.38% 88.41% 92.86% 97.56% 82.61% 77.27% Pa 84.38% 94.20% 92.86% 100.00% 78.26% 95.45%

Oa: 89.67% Oa: 93.39%
Lower 95% CI: 85.13% Lower 95% CI: 89.49%
Upper 95% CI: 93.20% Upper 95% CI: 96.17%

Pixel-based, support vector machine Object-based, support vector machine
A B C D E F Total Ua A B C D E F Total Ua

A 24 2 1 1 0 1 29 82.76% A 24 0 1 0 0 0 25 96.00%
B 4 63 2 0 1 1 71 88.73% B 3 68 1 0 0 0 72 94.44%
C 1 1 11 0 0 0 13 84.62% C 1 0 11 0 0 0 12 91.67%
D 2 1 0 81 0 3 87 93.10% D 3 1 0 82 0 0 86 95.35%
E 0 0 0 0 20 0 20 100.00% E 0 0 0 0 21 0 21 100.00%
F 1 2 0 0 2 17 22 77.27% F 1 0 1 0 2 22 26 84.62%
Total 32 69 14 82 23 22 242 Total 32 69 14 82 23 22 242
Pa 75.00% 91.30% 78.57% 98.78% 86.96% 77.27% Pa 75.00% 98.55% 78.57% 100.00% 91.30% 100.00%

Oa: 89.26% Oa: 94.21%
Lower 95% CI: 84.66% Lower 95% CI: 90.40%
Upper 95% CI: 92.86% Upper 95% CI: 96.80%
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Fig. 5. Comparison of overall classification accuracy (percent correct) of pixel-based and object-based classifications using three supervised machine learning algorithms: Decision
Tree (DT), Random Forest (RF), and Support Vector Machine (SVM). Results based on “hold-out” test set. Exact 95% confidence intervals plotted.
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same machine learning algorithm. In addition, when using pixel-
based image analysis, there was no statistically significant difference
observed at the 5% level of significance between classification accura-
cies achieved by any of the machine learning algorithms. These find-
ings are largely corroborated by the large overlap in confidence
intervals depicted in Fig. 5. Nonetheless, when using object-based
image analysis, statistically significant differences (pb0.05) were ob-
served for classification accuracies achieved by SVM and RF algo-
rithms when compared to DT-based classifications. Unfortunately, the
McNemar test as implemented here cannot be used for one-sided hy-
pothesis testing (Foody, 2004), and the wide degree of overlap in the
95% confidence intervals for overall accuracy (Fig. 5) suggests that de-
finitively asserting which classification algorithm or image analysis ap-
proach is capable of producing higher classification accuracies would be
problematic based on the "hold-out" test set used in this study.

Other studies have indicated that both RF and SVM algorithms can
achieve similar overall classification accuracies, which are typically
greater than those obtained using DT based algorithms. For example,
Pal (2005) found that both SVM and RF algorithms produced similar
classification accuracies. Gislason et al. (2006) reported that RF
based models achieved higher classification accuracies than those
produced by standard DT (i.e., DTs that did not utilize bagged or
boosting algorithms). These results differed from those reported by
Otukei and Blaschke (2010) who found that DTs generally performed
better than classifications produced using SVM. As with this study,
the previous examples were based on medium- and relatively
coarse-spatial resolution imagery (Landsat MSS, TM, ETM+) and
used similar broad land cover classes; however, these comparisons
relied on comparing overall classification accuracy values (i.e., the
percentage of correctly classified samples) rather than using statisti-
cal comparison as employed here and elsewhere (e.g., Foody 2009).

When comparing overall accuracies between object-based and
pixel-based classifications of Landsat-5 TM imagery, Dingle
Robertson and King (2011) found no statistical difference between
approaches. However, two studies (Yan et al., 2006; Whiteside
et al., 2011) found that differences in overall classification accuracies
produced using object-based image analysis were statistically signifi-
cant (p=0.001, and p=0.01, respectively) than pixel-based image
analysis, with both studies using medium spatial resolution EO imag-
ery (ASTER and SPOT-5 HRG, respectively). Contrary to the side-by-
side comparison conducted in this study, these previous studies com-
pared different classifiers (e.g., MLC and K-NN) and image analysis
methods, making direct comparisons difficult. Furthermore, as illus-
trated in this study, examination of confidence intervals around the
overall classification accuracy assessments can reveal significant
overlap in overall accuracies between image analysis approaches,
confounding the interpretation of two-sided tests of significance
such as McNemar's test (Foody, 2009), which have also been used
in previous comparisons (e.g., Dingle Robertson & King, 2011; Yan
et al., 2006; Whiteside et al., 2011). Potential remedies include col-
lecting a larger “hold-out” test sample to assess whether the large
overlap in confidence intervals would remain, along with an appro-
priate means of testing a one-sided hypothesis for such a comparison.
Unfortunately, the collection and use of an adequately sized “hold-
out” test set might be prohibitive to assemble for logistical or financial
reasons, and would represent an “inefficient use of data”, as these
data are, by definition, not utilized by the classifier (Kohavi, 1995).
Implementing a repeated k-fold cross-validation, as illustrated in
this study, with a larger dataset may provide statistically rigorous re-
sults without “wasting” data, while at the same time allowing for
one-sided hypothesis testing to be performed (e.g., Kuhn, 2008).

From a practical production standpoint, the setup and execution of
object-based classifications were more labor intensive as compared to
their pixel-based counterparts. Much of the difference in execution
time encountered was due to a lack of commercially available software
for image analysis that implemented the machine learning algorithms
examined in this study. This lack of a streamlined production environ-
ment multiplied the number of software packages needed and the
amount of data transfers required. In addition, many of the present
comparisons between pixel-based and object-based classifications of
EO imagery in the available literature to date appear to rely on commer-
cially available software solutions that provide relatively outdated
and/or less advanced classification methods. The present study, along
with others (e.g., Brenning, 2009, 2010), fill this void by providing a
methodological basis for conducting statistically rigorous comparisons
between classification outputs generated from EO imagery using freely
available open-source software (e.g., R Development Core Team, 2010).

Regardless of which software packages are used, differences in ex-
ecution time between pixel-based and object-based image analysis
still remain. For example, the time spent selecting object-based vari-
ables (i.e., “object features”) is roughly similar to that involved in
selecting variables for a pixel-based classification; however, the addi-
tional time needed to select appropriate parameters for the underly-
ing image segmentation is not trivial, especially if the tasks include
mapping large overlapping scenes of imagery in an operational set-
ting. Future development and adoption of more quantitative ap-
proaches for selecting optimal image segmentation parameters (e.g.,
Costa et al., 2008; Drăgut et al., 2010) will hopefully reduce the
time required for this important step, while at the same time produc-
ing superior results to the qualitative trial-and-error methods that are
typically practiced now. In addition, faced with potentially hundreds
of object features from which to select, the use of more advanced fea-
ture selection algorithms in object-based image analysis is gaining in-
creasing attention (e.g., Yu et al., 2006; Chan & Paelinckx, 2008).
Considered together, object-based image analysis will likely remain
more labor intensive compared to pixel-based image analysis, which
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is a factor that should be evaluated carefully when conducting image
analysis of EO imagery in an operational environment.

While classification accuracy is an important attribute to consider,
in circumstances where there are few overall statistical differences
between image analysis approaches, other preferences may take pre-
cedence. For example, the node-based decision logic diagrams of DT
based models may prove to be more preferable to users than achiev-
ing potentially higher overall classification accuracies using the RF al-
gorithm. While statistically significant differences in overall
classification accuracy were not observed in this study between
pixel-based and object-based image analysis when utilizing the
same machine learning algorithm, there may be other compelling
reasons for selecting one image analysis approach over another. For
example, object-based image analysis may prove to be more appro-
priate in situations that rely on the logic of updating and backdating
image objects within a versatile GIS environment (e.g., Linke et al.,
2009; Linke & McDermid, 2011). As previously mentioned, end
users may prefer the generalized appearance of object-based classifi-
cation maps as compared to pixel-based classification maps, even
when pixel-based accuracy assessments are shown to be superior
(Dorren et al., 2003). Such examples illustrate that the selection of
an image analysis approach, or selection of an individual classification
algorithm, may not always be driven by overall classification
accuracy.

6. Conclusions

Classification of EO imagery using pixel-based and object-based
image analysis was performed using three machine learning algo-
rithms. No statistical difference between object-based and pixel-based
classifications was found when the same machine learning algorithms
were compared. When conducting object-based image analysis, RF or
SVM algorithms produced classification accuracies that were statistical-
ly different compared to DT based algorithms. No statistical significant
between pixel-based classifications were found. Based on visual assess-
ments and interpretation of land cover distribution, all classifications
were capable of depicting the broad land cover types selected for this
study with similar, and acceptable, classification accuracies. More visu-
ally adequate overall depictions of riparian, wetland, and crop land
cover typeswere attributed to RF and SVMbased classifications, where-
as DT based classifications contained noticeably more omission and
commission errors in these classes. Object-based classifications were
comparatively more time consuming to produce than their pixel-
based counterparts. Based solely on overall classification accuracy,
there appeared to be no advantage in selecting a particular image anal-
ysis approach.
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