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Dry tropical forests are experiencing some of the highest rates of change among the globe's forests. In
sub-Saharan Africa, gross (loss, gain) and net changes in dry tropical forest areas are difficult to quantify at
sub-national scales because of high spatio-temporal variability in land cover conditions due to vegetation phenol-
ogy and land use practices. In this project, we developed new, field-validated remote sensing characterizations of
dry season surface components to separate forest from non-forest land cover, and assessed forest changes from
the 1990s–2010s in a Tanzanian Miombo Woodland landscape. Using a linear spectral mixture analysis (LSMA)
approach with Landsat 5–8 data, we examined the hypothesis that higher proportions of substrate and non-
photosynthetic vegetation (NPV) at non-forest regions distinguished them from forest cover against seasonally
variable land cover conditions. Subsequently we evaluated the efficacy of multi-temporal classification and
single-date image thresholding for identifying forest from non-forest cover. We found significantly greater
proportions of substrate and NPV over non-forest compared to forest areas that enabled identification of forest
cover across dry season images. Single-date, forest/non-forest maps based on an LSMA-derived metric attained
overall accuracies of 81.0–85.3%, which approached multi-temporal unsupervised classifications (86.5% for
forest/non-forest maps). Applying the LSMA-derived metric to study forest changes, our study region
experienced a net 15.0% loss of 1995 forest area, and a 7.0% overall reduction in the total forest-occupied land
cover from 1995–2011. Areas of gross forest gain were substantial, totaling 13.6% of the 1995 forest area. We
found differing patterns in gross forest losses and gains among sub-regions and through time in our Tabora
study area, which provide bases for testable hypotheses in future research on regional and localized drivers
affecting forest cover. Our finding that non-green surface components distinguished forest from non-forest via
an LSMA approach may be widely applicable to studying forest conversions in Miombo Woodlands and other
dry tropical forests. This approach may also be useful for evaluating how land cover conditions change in
response to potential land use or climate driving variables, or the impact of land changes for carbon balance
and other ecosystem processes.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Forest losses, gains and agricultural land changes in seasonally dry
tropical ecosystems are among the least well quantified and understood
land cover changes globally (Lambin, Geist, & Lepers, 2003; Lepers et al.,
2005). These ecosystems, including tropical deciduous forests and sa-
vannas, occupy about 14% of Earth's terrestrial area (18.6 × 106 km2)
and comprise 15% of global vegetation carbon stocks (137.5 Pg) at the
third-highest biomass carbon (C) density (200 g C m−2 (Aber &
Melillo, 2001)). They have among the largest reserves of the globe's ar-
able land that is not yet cultivated (Lambin & Meyfroidt, 2011). Among
ent of Earth Environmental and
e, RI 02912, USA.
).
nations with the highest deforestation rates, significant proportions of
their forest losses come from dry tropical forests, which have few
areas under legal protected status (FAO, 2010; Green et al., 2013). Satel-
lite remote sensing assessments of forest conversions (deforestation, for-
est regrowthor afforestation) in the dry tropics have been limited by the
high temporal and spatial variability in land cover conditions, which
stem from complex regional vegetation ecology, land use practices
and disturbance regimes. Currently, poor knowledge of land cover var-
iability across land cover types, which includes characterization of land
cover components such as green vegetation or substrate (i.e. soil) at
landscape scales, hinders differentiation of forest and non-forest areas
and evaluation of forest change in a “wall-to-wall” fashion (Bodart
et al., 2013; Grainger, 2008).

This study develops a model to quantitatively characterize and dif-
ferentiate dry tropical forest cover from non-forest areas using analyses
of Landsat satellite data, and assesses forest conversions in theMiombo
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Woodlands of western Tanzania. The Miombo Woodlands span
2.8 million km2 across sub-Saharan Africa, and contain the largest
contiguous dry tropical forests globally (Campbell, Frost, & N. B.,
1996). Many Miombo regions are home to small land-holding agricul-
tural communities with high population growth rates and increasing
land change pressures. Since the 1990s, cultivation of resource-
intensive cash crops such as tobacco, and natural resource demands of
urbanization such as fuel wood are contributing to high rates of forest
changes (Geist, Chang, Etges, & Abdallah, 2009; Kutsch et al., 2011;
Yanda, 2010). Recent studies have shown that large net loss of Miombo
woodland has been almost 40% in eastern Tanzania since 1975. This rate
of loss has far exceeded that of Africa's humid tropical forests (5.1% of
1975 area) (Green et al., 2013). In western Tanzania, rates of woodland
habitat loss to agriculture have been documented at 4.7% from
1984–1995 and 11.2% from 1995–2000 (Yanda, 2010). Regional and
plot-scale studies have also observed forest regrowth (Chidumayo,
2013; Prins & Kikula, 1996; Yanda, 2010). Beyond documented net
forest cover losses, little data exists on the patterns of gross forest loss
and regrowth that are resulting in the net changes.

Past assessments of regional forest change in the Miombo have
relied on supervised classification or image-interpretation approaches
with remotely sensed data (Cabral, Vasconcelos, Oom, & Sardinha,
2011; Green et al., 2013; Yanda, 2010). While locally informative,
these are difficult to repeat for regular, long-term monitoring over
large areas. These local approaches have been necessary because remote
sensing-derived land cover datasets produced at global scales often fail
to distinguish forest cover or lack calibration in dry tropical ecosystems
and particularly in the Miombo (Lepers et al., 2005; Sedano, Gong, &
Ferrao, 2005).

Forest cover in the Miombo includes areas with tree cover as low
as 30%, with many trees between 3 and 5 m tall (Chidumayo, 2013;
Eamus & Prior, 2001; Frost, 1996). An accuracy assessment of the
MODIS Global Land Cover Product (MOD12Q1) in a Miombo region
of Mozambique found that nearly all forest and agriculture training
sites were inaccurately described as Savanna or Woody Savanna
(Sedano et al., 2005). The global land cover product did not distin-
guish tree-dominated from grass-dominated areas, limiting their
usefulness for forest monitoring for purposes such as carbon ac-
counting. More recent products, such as the global forest-change
maps of Hansen et al. (2013), evaluate forest conversion only in areas
with greater than 50% canopy cover and with trees greater than 5 m
height (Hansen et al., 2013). Such definitionsmay excludemany chron-
ically disturbed and re-growing Miombo forest regions (Chidumayo,
2013; Prins & Kikula, 1996). Physically-based, regionally-calibrated
measures are needed to identify forest cover and conversions in
the Miombo using satellite data.

Satellite-based, quantitative characterizations of forest cover and
conversions in the Miombo face two challenges. First, inter-annual
variability in precipitation and fire confounds the temporal variability
of land cover components among forest and non-forest land cover
(Serneels, Linderman, & Lambin, 2007). Precipitation drives vegetation
production and 85% of annual rainfall falls in a single wet season in
Miombo regions (Fuller, 1999; Zhang, Friedl, Schaaf, Strahler, & Liu,
2005). As forests in theMiombo are comprised of 85% deciduous species
and agriculture is rain-fed, forest and non-forest areas have similar phe-
nologies (Frost, 1996). In the dry season, fires occur on 15% or more of
the landscape as part of either forest clearing, or other land-use activi-
ties such as understory burning to drive game animals or to spur growth
of forage for livestock (Frost, 1996; Williams et al., 2008). The spectral
properties of burned vegetation in satellite data are the same across
different land cover categories. Thus, in burned areas, there is limited
ability to differentiate whether the burn constitutes land conversion
(e.g. forest cleared for agriculture) or variability in land cover conditions
without conversion.

The second challenge is the high spatial variability of land cover
conditions. Field sizes in the Miombo are small (0.5–2.0 ha) and
irregularly shaped (Palm et al., 2010). Long-term shifting cultivation
and chronic ecological disturbances have created patchy forest
structures. Non-forest areas often have some degree of tree cover
(Frost, 1996) (Fig. 2b). Forest clearing is done largely by hand; the
largest trees are left standing due to limited labor and for their use
as sources of fruit, medicine or other products (Campbell et al.,
1996).

Though complex, the seasonal variability of Miombo landscape
components presents a physical basis for differentiating forest and
non-forest areas. Forest and non-forest surface components change
with different patterns during transitions betweenwet and dry seasons.
From the late wet–mid-dry season, forest areas retain green vegetation
cover and have lower albedo than non-forest areas; senescence occurs
over many weeks, and so canopy cover remains and shades underlying
areas (Frost, 1996). Meanwhile, in non-forest areas such as agriculture
or grassland regions, harvest and grazing of herbaceous forage occurs
rapidly at the start of the dry season. These processes remove green
vegetation material, leaving behind crop residues and other non-
photosynthetic vegetation (NPV) and exposing substrate. On the
ground, the physical differences in land-cover components between
forest and non-forest areas are largest in the early to mid-dry season,
though there are large variations due to the patchiness of forest cover
and distribution of cultivated fields, homesteads and low-lying grass-
land regions. Past studies of forest change using satellite imagery in
the Miombo have targeted the early to mid-dry season as an optimal
time for forest change detection using measures of greenness such as
NDVI (Prins & Kikula, 1996). However, no prior studies have attempted
to physically model a broader suite of surface components, or develop
and testmetrics to distinguish forest cover that account for the seasonal
variability of land cover conditions.

With this project, we develop and assess quantitative methods
for distinguishing forest from non-forest land cover in the
Tanzanian Miombo and apply them to study regional-scale forest
changes. We use field data, multi-temporal and single-date analyses
of 30 m Landsat data in the 2008 dry season to test how satellite ob-
servations of land cover correspond with surface components of for-
est and non-forest land cover. We examine the hypothesis, based on
ground observations, that higher senesced/non-photosynthetic veg-
etation and substrate exposure at non-forest sites will distinguish
non-forest from forest during the early–mid-dry season at scales of
Landsat observations. We compare the accuracies of a multi-date
classification and single date approaches to distinguish forest and
non-forest areas, and qualitatively relate analyses to 250 m MODIS-
scale observations. Subsequently we assess forest change patterns
from 1995–2011 at regional scales and their variability across sub-
regions with different land use pressures.

2. Methods

2.1. Study area and field data

Our study region is in central Tabora province, Tanzania (Fig. 1a).
The landscape is dominated by a complex dry Miombo woodland eco-
system with locally diverse land uses (Fig. 1b–e) (Palm et al., 2010).
Mean annual temperature is 23.9 °C and mean annual precipitation
(2000–2009) is 770 mm with 90% falling between mid-November
and early May. Agro-pastoral communities have lived in Tabora for
centuries; political changes have strongly affected land use since the
mid-19th century (Kjekshus, 1977). Since the 1990s, land change
pressures have accelerated. Major drivers of land changes include
population change (both migration and local growth), resource
demands from urbanization including timber and charcoal, economic
reforms leading to increased demand for land for cash crops such as to-
bacco, and road building (Chidumayo&Gumbo, 2013; Geist et al., 2009;
Lambin et al., 2003; Yanda, 2010). In local sub-regions (Fig. 1d), Tabora
includes the provincial capital Tabora Town (Fig. 5a), which has a
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Fig. 1. Location, photos and Landsat data of the dryMiomboWoodland landscape at Tabora, Tanzania. (a) The study location is indicated by a squarewithin central Tabora Province (small
gray-bordered region) in western Tanzania, in the northeastern extent of the MiomboWoodlands (The Nature Conservancy). Photos show (b) wet and (c) dry season conditions across
woodland and agriculture from the same viewpoint in 2012 (photosM.Mayes), illustrating confounded phenology and patchiness of the landscape. Landsat images from (d) 22 June 1990
(Landsat 5) and (e) 8 July 2013 (Landsat 8) [scale bar above (d)], colors mapped as red = short-wave infrared (~1.65 μm), green = near-infrared (~0.85 μm), and blue = short-wave
infrared (~2.2 μm) showwidespread inter-annual variability in land cover conditions and landcover changes. Dark green areas correspond to regions of dense green vegetation comprising
forest canopy, while pale red and pink areas correspondwith regions of higher substrate exposure comprising non-forest regions. Sub-districts studied for differences in local forest chang-
es are indicated in (d). White arrows (e) indicate example forest, non-forest and burn scars. A gray box in (e) indicates the region over which 2007 Quickbird data was obtained for ac-
curacy assessment.
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rapidly growing population. Since 2008, a subset of villages in
Uyui district has been involved with the Millennium Villages
Project (MVP) (Uyui-MVP, Fig. 1d), a multi-faceted rural development
program advocating increased use of mineral fertilizers and agro-
forestry to improve crop productivity and soil fertility (Palm et al.,
2010). Elsewhere, a group of villages in Urambo district organized a
local forest conservation management plan in 2001 to reduce forest
clearing by pastoralists, following reform in national land tenure codes
defined in The Village Land Act of 1999 that allowed such plans
(Understanding Land Investment Deals in Africa, 2011). There is little
baseline data available to assess impacts of these local land manage-
ment efforts and change drivers on forest cover.

In Tabora, forest land cover includes closed and open-canopy tree-
dominated areas, where trees are defined as woody plants taller than
3 m and canopy cover is greater than 30%, corresponding with Miombo
ecological and forest research (Chidumayo, 2013; Frost, 1996) (Fig. 1e).
Mature forest sites typically have not experienced clearing or fires
destructive of large trees in 40 years or more and young forests are
those that have regrown within the last 20–25 years. Non-forest land
cover has tree canopy cover less than 30% and includes agriculture,
seasonally flooding grasslands (called mbuga), village and urban cen-
ters, and open water (Fig. 1e). For agriculture, dominant crops are
maize, cassava, groundnuts and tobacco (Palm et al., 2010; Yanda,
2010). Grazing occurs throughout the landscape but particularly in
mbuga. To deal with confounding effects of fire, we designate a “Burn/
Transition” land cover type for burn scars (Fig. 1e).

We collected field data in Tabora during the dry seasons of 2012 and
2013. We conducted site surveys, informal interviews about land-use
practices, and established validation points for sites representing two
forest classes (mature forest, young forest) and two non-forest land
cover classes (agriculture and mbuga). We chose field sites considering
stratification across mature forests, regrowth (young) forests, agricul-
ture and mbuga classes, replication (at least 30 sites per class) and
accessibility. These four classes broadly represent dominant land cover
types and conditions save urban areas, which were not a focus of our
study and comprise a very small proportion of regional land cover.
Validation points were GPS points centered in areas at least 15 m from
roads or footpaths. Points were used from 189 sites: 34 mature forest
sites, 36 young (regrowth) forest sites, 85 agriculture sites and 34
mbuga sites.
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2.2. Satellite data and pre-processing

We primarily used Landsat data (30 m) to study land cover dynam-
ics, and used MODIS and Quickbird as ancillary data for pre-processing,
qualitative comparisons and accuracy assessment. We obtained 12
Landsat scenes from the USGS-EROS open archive from 1990–2013 to
assess land cover dynamics and forest change (Table 1). We obtained
MODIS 500 m surface reflectance data for pre-processing and the
MODIS 250 m Enhanced Vegetation Index (EVI) product from USGS to
characterize greenness phenology across our field sites (Table 1). A
July 2007 Quickbird image obtained from MVP was used for accuracy
assessment.

Pre-processing of Landsat-based data for studying dry season land
cover variability involved calibration to top-of-atmosphere reflectance
(pTOA) and surface reflectance (pSUR) of 5 Landsat images from
May–August 2008 (Table 1) (see Supplementary Data for a diagram of
the pre-processing workflow). To retrieve surface reflectance (pSUR)
we used dark-object subtraction (DOS) prior to calibration to pTOA
(Song, Woodcock, Seto, Lenney, & Macomber, 2001). To improve the
spectral response we used relative radiometric calibration techniques
to scale Landsat surface reflectance values to those of MODIS 500 m
data (Furby & Campbell, 2001). We scaled Landsat surface reflectance
to MODIS product band-wise, using invariant targets of low, medium
and high albedo of equal area between the images (Table 1). For the
forest change analysis, seven 1990–2013 Landsat sceneswere calibrated
to pTOA and inter-calibrated to one pSUR-corrected scene from the
seasonal land cover analysis (10 July 2008), similar to scene inter-
calibration methods used by Elmore, Mustard, Manning, and Lobell
(2000) and Sabol, Gillespie, Adams, Smith, and Tucker (2002) (Table 1
and Supplementary Data S3). Topographic correction was unnecessary
because the study area was essentially flat, save a few scattered small
hills.
2.3. Linear spectral mixture analysis of Landsat data to model dry season
land cover components and qualitative comparisons to MODIS EVI

Linear spectral mixture analysis (LSMA) characterizes satellite pixel
reflectance spectra as amultiplicative sum of spectral endmembers cor-
responding with knownmaterials, or endmembers (Adams & Gillespie,
2006) (Fig. 2a). LSMA has been used effectively to characterize land
cover variability and change globally, from North America (Elmore
et al., 2000; Roberts et al., 1998; Yang, Weisberg, & Bristow, 2012) to
the Amazon (Adams et al., 1995) to Sudan (Dawelbait & Morari,
2012). Steps in LSMA involve (1) selecting physically reasonable
spectral endmembers either from direct spectroscopic sampling or
from satellite images themselves, (2) evaluating the physical and
Table 1
Landsat andMODIS data obtained for (a) the quantification of dry season surface feature variabi
reflectance-corrected image data to which analysis images were normalized.

Analysis Satellite images(s)

Seasonal variability of Miombo
land cover components

Landsat 5
Landsat 5
Landsat 5
Landsat 5
Landsat 5
MODIS EVI (Enhanced vegetation
index, MOD13Q1)

Forest cover change, 1995–2011 Landsat 5
Landsat 5
Landsat 5
Landsat 5
Landsat 5
Landsat 5
Landsat 5
Landsat 5
mathematical reasonability of the mixture model result, and (3) using
images of endmember proportions, or fraction images, to derive land-
scape data.

A key part of successful image endmember selection with LSMA at
Landsat scales is selecting endmembers from locations where the
ground coverage of materials (components) of interest is as homoge-
neous as possible. In Miombo woodland ecosystems, the purest pixels
of different surface components occur at different times in the dry
season. For example, pure pixels of green vegetation cover occur over
un-harvested farm fields or forest tree canopies during the wet season
and through the early dry season. Pure pixels of substrate or NPV
occur during the mid or late dry season after harvest exposes larger
areas of bare soil, or senescence in forest areas results in woody
materials and senesced leaves as dominant surface components.

As such, we used a multi-temporal endmember selection strategy,
wherein we mined five Landsat 5 images, from May–August 2008, to
develop a single set of endmembers for LSMA analyses to assess season-
al land cover variability and change. We searched for the purest spectra
of three dominant surface components comprising land cover across
May–August 2008 image dates: green vegetation, non-photosynthetic
vegetation, and substrate (Fig. 2a). We chose endmembers in
3× 3 pixel areas nearfield siteswherewe observed surface components
were as homogeneous as possible relative to Landsat spatial scales
(30m).We confirmed that candidate locations for endmembers had ex-
perienced minimal land cover changes between 2008 and the time of
field data collection. We also used a “synthetic shade” endmember to
account for low albedo at sub-pixel scales from surface components
(e.g. charred leaves and woody material) or shading (Adams &
Gillespie, 2006). We evaluated LSMA models with 19 candidate multi-
temporal endmember sets to find the most reasonable solution. The
choice of our final endmembers was based on optimization using two
quantitative criteria 1) minimization of root mean square error
(RMSE) and minimum % of pixels modeled with endmember fractions
b0% or N100% across May–August 2008 Landsat images. After experi-
mental trials of unmixing with endmembers across the fives Landsat
dates, we checked spatial patterning in the root mean square image vi-
sually to identify patterns of model success or failure over known areas
of forest, fields, mbuga grasslands, urban areas, or rock outcrops. The
final endmember set included a bright vegetation spectrum from a
farm field in the 7 May 2008 image, a substrate spectrum from a har-
vested field in the 10 July 2008 image, and an NPV spectrum from
senesced woodland in the 10 July 2008 image (Fig. 2a). Although
global-scale analyses of the Landsat spectral mixing space have found
substrate and NPV spectra often difficult to distinguish (Small &
Milesi, 2013), spectral differences in the near-infrared (NIR) (Landsat
5 Band 4, 0.83 μm broadband median) and short-wave infrared
(SWIR) (Landsat 5 Band 5, 1.65 μmbroadbandmedian) were consistent
lity and (b) forest change analyses. Surface reflectance scaling dataset indicates the surface

Date Surface reflectance scaling dataset

7 May 2008 MOD09A1 (Surface reflectance) 500 m, 8-day (8 May)
24 June 2008 MOD09A1 (Surface reflectance) 500 m, 8-day (8 May)
10 July 2008 MOD09A1 (Surface reflectance) 500 m, 8-day (8 May)
11 Aug. 2008 MOD09A1 (Surface reflectance) 500 m, 8-day (8 May)
27 Aug. 2008 MOD09A1 (Surface reflectance) 500 m, 8-day (8 May)

Not applicable

22 June 1990 Landsat 5–10 July 2008 (scaled to MOD09A1)
7 July 1995 Landsat 5–10 July 2008 (scaled to MOD09A1)
26 June 1997 Landsat 5–10 July 2008 (scaled to MOD09A1)
1 July 2001 Landsat 5–10 July 2008 (scaled to MOD09A1)
13 June 2004 Landsat 5–10 July 2008 (scaled to MOD09A1)
24 June 2008 Landsat 5–10 July 2008 (scaled to MOD09A1)
3 July 2011 Landsat 5–10 July 2008 (scaled to MOD09A1)
8 July 2013 Landsat 5–10 July 2008 (scaled to MOD09A1)



Fig. 2. Spectral endmembers used for linear spectral mixture analysis (LSMA) of Landsat data. (a) The governing equation for LSMA and themulti-temporal set of endmember reflectance
spectra used to study surface components of forest and non-forest land cover. LSMAmodels pixel reflectance asmultiplicative fractions (Fem) of endmember reflectance for each satellite
band (pem,b) plus an error term (Eb), under the constraint that themultiplicative sumof all endmember fractionsmust equal 1. Endmembers include green vegetation (7May2008), non-
photosynthetic vegetation (NPV) (10 July 2008), substrate (10 July 2008) and a shade endmember of reflectance= 0 for all bands to represent sub-pixel shading and dark albedo objects
(not shown). (b) Photo of a typical agricultural field in Tabora, where surface components (labeled) are heterogeneous at the spatial resolution of Landsat (30 m) and MODIS Enhanced
Vegetation Index (EVI) data (photos M. Mayes).
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between substrate and NPV endmembers, and substrate and NPV-rich
sites in Tabora. The ratio of SWIR(1.55 μm):NIR at endmember sites,
and field validation sites with dominant substrate and NPV cover, high-
lights how the spectral differences between members, if subtle, persist
with some consistency in this landscape. Assessing means (±standard
errors), substrate-rich sites have SWIR–1NIR ratios of [1.50 (±0.08),
n = 3], much closer to the substrate endmember ratio [1.70], while
NPV-rich sites have SWIR-1:NIR ratios of [1.24 (±0.08), n = 3] which
are close to the NPV-rich endmember [1.28] (see Supplementary Data
S4.) Upon validation of the unmixing analyses, we used the same
endmember set from 2008 for LSMA analyses of seasonal land cover
variability in 2008 and forest changes from 1995–2011.

To compare Landsat analyses against MODIS land cover measures,
we downloaded MODIS EVI data at 250 m for 2000–2009 over our
study area (Table 1, Fig. 5). EVI greenness time series data and Landsat
LSMA model endmember fractions were extracted and plotted at field
site GPS points.

2.4. Comparison of multi-temporal classification versus single-date metrics
for identifying forest cover across the 2008 dry seasonwith Landsat images

We used two approaches to evaluate seasonal patterns in surface
components between forest and non-forest regions quantified by
Landsat LSMA: (1) multi-temporal, unsupervised classification of
fraction images (Fig. 3a), and (2) metrics calculated for single image
dates, derived from LSMA analyses (Fig. 3b). First, we used an unsuper-
vised Isodata classification algorithm to study fraction image variability
across the 2008 dry season Landsat images, and identify groups of
multi-temporal patterns that we could subsequently relate to land
cover types. Others have used unsupervised classification to identify
groups of multi-temporal patterns in fraction images of semi-arid eco-
system surface features, and relate them to different land cover types
or disturbances in cases where land cover dynamics are complex and
poorly characterized (Elmore, Mustard, &Manning, 2003). For our anal-
ysis we used an Isodata classifier in ENVI 5.1 (Exelis) stipulating 10–30
classes, 10 iterations, a minimum of 1000 pixels per class, and default
settings for merge pairs and class standard deviations, following earlier
uses of this method (Elmore et al., 2003). As input to the classifier, we
included endmember fraction images from all reasonable LSMA results
in a time-stacked data cube. In early experiments low-albedo burned
scars confounded all land cover groups. To deal with these effects, we
developed a burn/transition area mask for each image date using
thresholds based on the shade endmember and the Normalized Burn
Index (NBR) (vanWagtendonk, Root, & Key, 2004). NBR is a normalized
ratio of the difference between reflectance at near infrared (broad-band
center at 0.83 μm for Band 4, Landsat 5) and short-wave infrared
(broad-band center at 2.22 μm,Band 7, Landsat 5), and identifies burned
areas on the basis of their high shortwave relative to near-infrared re-
flectance. NBR-based masks were conservative and meant to eliminate
areas that confounded land cover types rather thanmap burn areas rig-
orously. We performed final unsupervised classifications with a com-
posite burn/transition area mask including the masks for dates of all
valid Landsat LSMAs. We displayed classes against Landsat pSUR and
LSMA images, and grouped raw classes into condensed super-classes
that matched land cover types.We used a median filter (3 × 3) to elim-
inate spurious pixel variations. We assessed the accuracy of forest, agri-
culture and mbuga super-classes via stratified random sampling of the
multi-temporal classification result and confusion matrix analysis (see
Supplementary Data S2 for confusion matrices) over an area covered
by a Quickbird image from July 2007 (Fig. 1e). A total of 392 points
were generated for use in accuracy assessments (see Supplementary
Data).

Second, we experimented with algorithms to identify forest from
non-forest areas using LSMA fractions from imagery taken at single
dates (Fig. 3b). Based on our hypothesis, we focused on developing a
metric usingNPV and substrate fraction images, and took a thresholding
approach to identify forest and non-forest land cover. We evaluated the
metric's performance for differentiating forest and non-forest across the
dry season using analysis of variance (ANOVA) and non-parametric
Kruskal–Wallis analyses of values extracted at pixels corresponding
with field sites (see Supplementary Data S1 in Supporting Information).
Land cover class and image date (time) were used as the independent
variables. For the ANOVA, field site data was log-transformed to satisfy
assumptions of normality.

Forest and non-forest areas were identified finally using thresholds
calculated based on multiples of standard deviations of metrics from
field site data and checked with visual validation. Final single-date
land cover maps had three classes: forest, non-forest and transition/
burned area. We used a median filter (3 × 3 pixels) to eliminate spuri-
ous pixel variations and assessed single-date forest cover estimates for
accuracy against the same set of stratified randomly sampled points
taken for the multi-temporal classification image.

2.5. Estimates of forest cover loss and gain patterns by sub-district from
1995–2013

We produced land cover maps for seven dry season Landsat scenes
from 1990–2013 using thresholding of an LSMA-basedmetric from sin-
gle image dates (Fig. 3c). To minimize spurious identification of land
conversions due to inter-annual variability, we used inter-annual
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corrections to define sustained forest loss and gain similar to Toomey
et al. (2013) (Table 2). The extra time requirement for forest gain was
selected considering results from long-term observations of Miombo
tree succession that have shown that tree recovery to minimum defini-
tions of forest cover (3 m height) takes 7–10 years (Chidumayo, 2013).
Given the data requirements of inter-annual corrections, we assessed
forest changes in two periods, from 1995–2001 and 2001–2011, with
the 1990 and 2013 Landsat images used as part of inter-annual correc-
tions but not as dates for evaluating forest change. For 1995–2001,
forest losses and gains were assessed at 1997 and 2001. For 2001–2011,
forest losses were assessed at 2004, 2008 and 2011, and gains at 2004
and 2008; gains were not assessed at 2011 because given our correction
protocol, not enough timehas passed since 2008 (only 5–6 years) to eval-
uate sustained forest gain. Gains and losses were summed and evaluated
region-wide and by sub-district. To normalize forest land conversion data
for comparison across sub-districts, we calculated two additionalmetrics.
The first, aggregate forest change, quantifies the percentage of forest area
experiencing conversion (loss or gain) relative to total forest area. It is an
Table 2
Inter-annual correction algorithms used to assess forest losses and gains. T(0) refers to the date
dates two (−2) and one (−1) date prior to the date of change assessment. Positive numbers in
Trans stands for "transition class" comprising burned areas or other regions whose forest/non-

Inter-annual corrections for forest change analyses

Time point and land cover class status

Change type T(−2) T(01)

Forest loss Forest Forest
Forest gain Non-forest burn/trans Non-forest burn/trans
“activity gauge” for forest conversion, with larger percentages indicative
of more dynamic changes (Hansen et al., 2013). The second metric is
the ratio of forest loss area to gain area (Loss:Gain), which shows the
balance of land conversion processes.

3. Results

3.1. Patterns in surface components and their seasonal variability at forest
and non-forest sites in Landsat LSMA analyses and MODIS EVI data

Forest and non-forest sites had differing proportions of surface com-
ponents that had similar patterns of seasonal variability during the 2008
dry season. LSMA models for June–August Landsat images were within
ranges of reasonable values, with greater than 95% of pixels across all
fraction images modeled between 0 and 100% (Table 3). RMS errors
varied between 0.013 and 0.019 and showed few spatial patterns. The
May LSMA model was invalid because 9.4% of the substrate and 46% of
non-photosynthetic vegetation (NPV) fraction image pixels were
at which change assessments are made. Negative numbers in parentheses indicate image
parentheses indicate conditions for image dates following the date of change assessment.
forest status is unclear.

T(0) T(+1) T(+2)

Non-forest burn/trans Non-forest burn/trans None
Forest Forest Forest



Table 3
Dry season variability of surface components comprising total Landsat pixel reflectance
from May–August 2008 in Tabora, Tanzania, assessed by linear spectral mixture analysis
(LSMA). Proportions (mean ± standard deviation) describe the average contributions of
spectral endmembers to pixel reflectance across the study area. The percentage of pixels
with spectral endmembers modeled with negative proportions (% b 0) or proportions
greater than 1 (% N 1) should equal less than 5% of all pixels analyzed in reasonable LSMA
models (Adams & Gillespie, 2006).

Date Endmember Mean (± σ) % b 0 % N 1

7 May Vegetation 0.436 (0.089) 0.133 0.004
7 May Substrate 0.174 (0.140) 9.455 0.004
7 May NPV 0.053 (0.133) 45.967 0.035
7 May Shade 0.337 (0.100) 0.344 0.000
7 May RMS 0.008 (0.003)
24 June Vegetation 0.227 (0.068) 0.315 0.000
24 June Substrate 0.210 (0.117) 3.202 0.001
24 June NPV 0.209 (0.127) 1.017 0.012
24 June Shade 0.354 (0.088) 0.016 0.000
24 June RMS 0.013 (0.003)
10 July Vegetation 0.199 (0.071) 0.590 0.000
10 July Substrate 0.250 (0.122) 2.108 0.003
10 July NPV 0.235 (0.143) 1.085 0.026
10 July Shade 0.316 (0.092) 0.035 0.000
10 July RMS 0.013 (0.003)
11 August Vegetation 0.128 (0.058) 2.871 0.000
11 August Substrate 0.283 (0.122) 1.792 0.003
11 August NPV 0.291 (0.141) 0.484 0.074
11 August Shade 0.298 (0.089) 0.030 0.000
11 August RMS 0.019 (0.004)
27 August Vegetation 0.133 (0.069) 3.583 0.000
27 August Substrate 0.276 (0.162) 4.018 0.025
27 August NPV 0.377 (0.167) 0.532 0.252
27 August Shade 0.213 (0.102) 1.342 0.000
27 August RMS 0.015 (0.005)
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Fig. 4. Linear spectral mixturemodel (LSMA) results at 189 field sites, assessed in four dry
season Landsat images (June–August 2008) with valid LSMA models. The field sites in-
clude mature forest (n = 34, verified in the field as forest sites for 40 years or more),
young forest (n = 36, verified in the field as secondary forest regrown since the mid-
1990s), agriculture (n = 85, annual crops regularly grown) and mbuga (n = 34).
(a) Green vegetation endmember fractions among land cover types from June–August
'08. (b) Substrate endmember fractions, (c) non-photosynthetic vegetation endmember
fractions, and (d) Summed substrate and NPV fractions among land cover types from
June–August '08. (e) Normalized sum of substrate and NPV fractions among field sites
from June–August '08. Note the difference in vertical axis scale.
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modeled with less than 0% endmember proportions (Table 3). In the
May image as well as others, most pixels with negative fractions
were either (1) substrate-dominated with negative NPV fractions,
(2) NPV-dominated with negative substrate fractions, or (3) high
shade pixelswith negative substrate fractions.Many pixels in categories
(1) and (3) were ultimately masked as likely burn-affected areas by
combined thresholding of the shade fraction images and Normalized
Burn Index images (Fig. 3), sowere not used to distinguish forest versus
non-forest area at single image dates. The standard deviations of
the substrate and NPV fraction images showed most of the sub-0%
proportions were not far from 0%, with most equaling less than −5%
(substrate) and−10% (NPV).

Proportions of vegetation, substrate and NPV surface components
showed consistent differences between forest and non-forest sites at
Landsat scales from June–late August (Fig. 4). Shade fractions showed
high sensitivity to burned areas across all image dates; however relative
to burned areas, patterns among non-burned forest and non-forest sites
were inconsistent. Vegetation fractions (Fig. 4a) were 0.10–0.15 greater
at forest than non-forest sites (Fig. 4a), while substrate fractions
(Fig. 4b) and NPV fractions (Fig. 4c) were 0.07–0.14 greater at non-
forest than forest sites. Between mature and young forests, mature
forests had slightly greater vegetation fractions (Fig. 4a). Among non-
forest land cover types, mubga sites showed slightly greater substrate
fractions (Fig. 4b) while agriculture sites showed greater NPV fractions
(Fig. 4c). A sum of substrate and NPV fractions (Fig. 4d) accentuated
quantitative differences between forest and non-forest land cover types.

The seasonal variability of surface components was similar across sites
at Landsat and MODIS scales. At Landsat scales, vegetation fractions de-
creased while substrate and NPV fractions generally increased across
all sites from June–August (Fig. 4a, c). Forest sites showed a slight
deviation from the general pattern in late August, where vegetation frac-
tions increased slightly while substrate fractions decreased. At MODIS
scales, EVI greenness phenologies were similar across land cover types
(Fig. 5). Forest sites showed slightly higher peak EVI during the peak of
the wet season (Jan–Feb) and non-forest sites showed slightly lower
minimum EVI near the end of the dry season (Sept–Oct). Increases in EVI
began slightly earlier for forest than non-forest sites (one to two 16-day
observations), though the pattern showed high inter-annual variability.

3.2. Identifying forest versus non-forest land cover: evaluating the
performance of multi-temporal classification of LSMA fractions versus
thresholding of LSMA analyses from single dates

Multi-temporal classification and single image date-thresholding
approaches gave comparable results for differentiating forest versus
non-forest land cover across the 350.7 thousand hectare (kha) analysis
region. For multi-temporal classification (see Methods, Section 2.4), we
used all valid Landsat LSMA fraction images sets – four in total from 24
June–27 August – as inputs for the analysis. The classifier produced 10
raw classes of pixels, which we grouped into four coherent super-
classes: forest, agriculture, mbuga and other (including urban areas,
large quarries, water). To verity classes we used overlays and visual
validation with raw Landsat and Google Earth images. The area of the
burn/transition mask derived from pre-processing (Fig. 3a) was includ-
ed as a fifth class to produce a final land covermap representing general
land cover conditions for the 2008 dry season (Fig. 6a). With separate
classes for forest, agriculture and mbuga, the classification-based map
had an overall accuracy of 82.1% (Fig. 6c), producer accuracies N80%
for forest and agriculture, and high consumer accuracy for forest
(93.4%) (Table 4). With a non-forest class combining agriculture and
mbuga, a binary, forest/non-forest land cover map achieved an overall
accuracy of 86.5% (Fig. 6c) with all producer and consumer accuracies



Fig. 5. Greenness phenology from 2006–2009 across 186 field sites (top) and averaged monthly precipitation data (bottom) from the Tabora Airport [US National Climate Data Center
Global Station (GHCND) TZ000063932]. Greenness phenology is measured with the MODIS Enhanced Vegetation Index (EVI) product (MOD13Q1), at 250 m resolution in 16-day
composited intervals. The number of field sites includes three fewer mbuga sites compared to Fig. 3 becausemultiple mbuga field sites fell within the sameMODIS 250m pixel footprint.
Five gray arrows indicate the timing of the 2008 Landsat images used to study surface components through the dry season. Precipitation and greenness phenology are closely correlated,
with the growing season beginning with the onset of the rains in October–November and ending around April–May.
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near 80% or above (Table 4). Burn/transition areas across all image dates
summed to 15.3% of the analysis area.

The thresholding approach, based on LSMA fractions from single
dates of Landsat imagery, achieved similar performance for mapping
forest versus non-forest land cover from June–August 2008. Building
on our finding that non-forest sites had larger substrate and NPV frac-
tions than forest sites (Results, 3.1), we created an index to separate
non-forest and forest cover based on the sum of substrate and NPV
fraction images (Fig. 3b). The relative difference of summed substrate
and NPV fractions stayed consistent between forest and non-forest
Fig. 6. Comparisons of multi-date unsupervised classification and single-date threshold-based a
panels (a) and (b). (a) Land cover map derived from multi-temporal, unsupervised Isodata cl
forest (mature+ young), agriculture, mbuga, other (urban, water) and the burn/transitionmas
est, agriculture andmbuga (MT-3 in Fig. 6c) was 82.1%. (b) Land covermap derived from thresh
depicting forest, non-forest and burn/transition classes with overall accuracy of 85.0% (24-Ju
accuracies of multi-temporal classifications (light gray bars, MT(3) separating agriculture and
single-date, threshold-based analyses approach the accuracy of the multi-temporal unsuperv
highest in the early dry season.
sites from June–August but the absolute values of these sums gradually
increased (Fig. 4d), complicating use of the raw summed fractions as a
threshold robust against seasonal variability. To derive an index
robust against seasonal variability,we calculatednormalized sum images
(Z-score images) for the summed substrate and NPV fractions:
(Σ[SUB + NPV]pixel − Σ[SUB + NPV]imageμ) / Σ[SUB + NPV]imageσ;
hereafter, Z(Sub + NPV) (Fig. 4e). The normalized sums of substrate
and NPV fractions showed consistent absolute values by forest
versus non-forest classes across field sites from June–August (Fig. 4e).
Analysis of variance (ANOVA) and non-parametric tests validated that
nalyses of 2008 land cover at Tabora, Tanzania. The scale bar under (a) corresponds to both
assification of a time-stacked data cube of LSMA results from June–August 208, depicting
k area. Overall accuracy of themulti-temporal, unsupervised classifications separating for-
olding of an LSMA-basedmetric (Z[Sub+NPV]) from a single image date (24 June 2008),
n in Fig. 6c). The non-forest class includes mbuga and “other” classes in (a). (c) Overall
mbuga, MT(2) combining them) and single-date assessments (dark gray bars) show that
ised classifications (light gray bars to the left). In the single-date analyses, accuracies are



Table 4
Producer and consumer accuracies formulti-temporal classification and single-date LSMA
metric-derived maps of Tabora, Tanzania land cover for 2008.
Please refer to supplementary materials for full accuracy assessments and confusion
matrices.

Land cover Accuracy Multi-temporal
class.

Single-date LSMA metric
(Z[sub + npv])

Class Metric 3-class 2-class 24
June

10
July

11
August

27
August

Forest Producer 83.0 83.0 83.0 78.9 78.5 75.3
Non-forest Producer 92.2 89.3 91.7 88.2 90.5

Agriculture Producer 83.9
Mbuga Producer 69.6

Forest Consumer 93.4 93.4 90.2 91.7 88.8 90.1
Non-Forest Consumer 79.7 79.9 76.7 75.6 73.4

Agriculture Consumer 74.1
Mbuga Consumer 53.3
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Z(Sub + NPV) significantly differentiated forest and non-forest across
field sites. Among ANOVA models, the one that best accounted for
Z(Sub + NPV) variability included only land cover as an independent
variable (r2 = 0.5838, p b 0.0001) (see Supplementary Data S1). Addi-
tive and interactive effects of land cover and time on Z(Sub + NPV)
were not significant. Non-parametric Kruskal–Wallis models found sig-
nificant land cover effects (p b 0.0001) without significant time effects
(see Supplementary Data S1). Forest sites, grouping mature and young
sites, had Z(Sub + NPV) means which were smaller and significantly
different from agriculture and mbuga site means (p b 0.05) (see
Supplementary Data S1).We calculated a single Z(Sub+NPV) threshold
to separate forest from non-forest using pooled forest site data from
June–August Landsat analyses (n = 280 for forest sites, n = 476 for
non-forest sites). Verified by visual validation, we used the following
threshold as a cutoff for forest versus non-forest area, based onmultiples
of the standard deviation of pooled mature and young forest site points
(FOREST, below) across June–August:

Forest : Z SubþNPVð Þpixel ≤ FOREST μ Z SubþNPVð Þ½ � þ 1:5

� FOREST σ Z Subþ NPVð Þ½ �:

Non‐Forest : Z Subþ NPVð ÞpixelNFOREST μ Z SubþNPVð Þ½ � þ 1:5
� FOREST σ Z Subþ NPVð Þ½ �

where

FOREST μ Z Subþ NPVð Þ½ � þ 1:5 � FOREST σ Z SubþNPVð Þ½ � ¼ ‐0:068:

Values below the threshold, having low proportions of substrate and
NPV relative to the image mean, were considered forest and values
above this threshold non-forest.

For the June–August 2008 Landsat images we applied Z(Sub+NPV)
thresholds, combined with each date's individual transition/burn maps
(Fig. 3c, methods) to produce land cover maps of forest, non-forest
and burn/transition areas (e.g. 24 June 2008, Fig. 6b). Map accuracies
assessed via confusion matrices (see Supplementary Data S2) were
highest for the June analysis (85.3%) and declined to 81.4% in late
August (Fig. 6c). Across the total Landsat analysis area, from June–
August burn/transition areas increased from 1.9–12.8% of the analysis
area. From 24 June–10 July maps, which had the highest accuracies,
there was a −4.7% change in the forest area estimate, a +3.2% change
in non-forest area estimate and +0.77% change in burn area estimate
(relative to 24 June areas). For the forest class, consumer accuracies
were greater across all dates (Table 4). For non-forest, producer accura-
cies were higher across all dates (Table 4).
3.3. Tabora forest cover changes from 1995–2011

We found large gross areas of forest loss and gain across our study
region. Single-date LSMA and inter-annual corrections identified a
physical signature of land conversions between forest and non-forest:
sustained increases in normalized proportions of substrate and
NPV components indicated conversion from forest–non-forest, and a
sustained decrease indicated conversion from non-forest–forest
(Fig. 7). Overall, forest cover decreased from 163.5 kha (46.6% of the
land cover) in 1995– 139.0 kha (39.6%) in 2011 (Table 5, Fig. 8). This
change is a net 15.0% loss of 1995 forest area, and a 7.0% overall reduc-
tion in the total forest-occupied land cover. For 1995–2001, gross forest
losses were 22.5 kha at an annualized rate of−3.75 kha and gains were
9.0 kha at an annual rate of 1.45 kha yr−1 (Table 5). For 2001–2011,
gross forest losses were 29.2 kha at a rate of −2.92 kha yr−1 and
gains were 13.3 kha at a rate of 1.33 kha yr−1 (Table 5). Between
decades, rates of gross forest loss decreased while rates of gross forest
gain were similar for the total study area, with many variations by
sub-district (Table 5). The total area of gross forest gain was substantial,
totaling 13.6% of the 1995 forest area and 43.1% of the gross forest loss
area. Aggregate forest change, the proportion of total forest area
experiencing change in either direction (loss or gain), was 19.2% for
1995–2001 and increased to 27.4% for 2001–2011 for the whole 350
kha study area, while the ratio of forest loss to gain areas was 2.51
during 1995–2001 and 2.20 during 2001–2011.

To normalize forest land conversion data for comparison across
sub-districts, we calculated two additional metrics. The first, aggregate
forest change, quantifies the percentage of forest area experiencing
conversion (loss or gain) relative to total forest area. It is an “activity
gauge” for forest conversion, with larger percentages indicative of
more dynamic changes (Hansen et al., 2013). For our entire study
area, aggregate forest change was 19.2% for 1995–2001 and increased
to 27.4% for 2001–2011. The second metric is the ratio of forest loss
area to gain area (Loss:Gain), which shows the balance of land conver-
sion processes. Loss: Gain was 2.51 during 1995–2001 and 2.20 during
2001–2011 for the total study area.

Among sub-districts, patterns of forest loss and gain dynamics
showed distinct variations (Table 5, Fig. 8). Sikonge had the largest
absolute areas of forest conversion, but also the largest land and forest
area so that percentage of forest area affected by conversions was
moderate. The forest loss:gain ratio dropped from 3.4–2.6 indicating
a decrease in forest losses relative to gains from 1995–2001 to
2001–2011. In Tabora, forest losses nearly doubled from 4630 ha–
8900 ha and gains also increased substantially (Fig. 8, Table 5). Given
that Tabora had the smallest initial forest area, aggregate changes af-
fected a much larger percentage of sub-district forest in 2001–2011
(19.4%) compared to the prior decade. The Uyui-MVP sub-district
area, by contrast, had slightly lower rates of forest loss and slightly
higher rates of forest gain than non-MVP areas, such that the region
had lower Loss:Gain in 1995–2001 (1.4) and 2001–2011 (1.6) than
the overall landscape. Urambo showed the largest shift in forest change
trajectory: gains increased by anorder ofmagnitude from174 haduring
1995–2001 to 2050 ha during 2001–2011, resulting in a dramatic drop
in forest Loss:Gain from 19.4–1.4 and a reduction in percent forest area
loss from 10.2%–3.0%.

4. Discussion

4.1. Lower proportions of substrate and NPV components differentiate
forest from non-forest land cover throughout the dry season, while the
temporal variability of components is similar across land cover types

Spectral mixture modeling proved to be a sharp lens through which
to analyze dry season land cover variability in Tabora. Forest sites had
lower fraction image proportions of substrate and NPV than non-
forest sites from June–August, during the early and mid-dry season.
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Fig. 7. Illustration of forest change detection (regrowth) using the LSMA-derived Z[Sub+NPV] thresholdingmetric. (a) Surface reflectance 1990–2013 of an example forest regrowth site.
As forest regrows reflectance evolves in the direction of the green arrow; overall albedo decreases, and reflectance at the 1.65 μm and 2.22μm shortwave infrared broad-band centers
(Landsat 5) decreases relative to the 0.83 μm band (near infrared). (b) LSMA-modeled endmember fractions (bars) for the surface reflectance spectra at the regrowth forest site,
1990–2013. Vegetation fraction increases while the summed substrate and NPV fractions decrease, with the largest changes occurring from 2001–2008. (c) Line plot of the Z
[Sub + NPV] metric used as an indicator of forest land cover status. Change from non-forest–forest was assigned to year 2004 based on the inter-annual corrections (Table 2).
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The SMA models across the June 2008 dry season (June, July, early and
late August) were within reasonable values. The primary source of
error in the model, the tradeoff of substrate and NPV fractions when
either was at particularly high % cover, did not significantly impact dif-
ferentiation of forest from non-forest. Non-forest areas had high overall
percentages and normalized sums of substrate and NPV fractions, while
forest areas had low normalized percentages of substrate and NPV frac-
tions. The high accuracy of the multi-date, unsupervised classification
Table 5
Tabora forest cover area estimates and rates of change from1995–2011 in twoperiods (1995–20
were quantified by analyses of forest cover using the Landsat LSMA fraction image-derived me
accounted by adding gross forest change areas (loss, gain) identified with LSMA metrics and i
and gain for 1995–2001 include losses and gains assessed in 1997 and 2001. Rates of loss and
assessed at 2004 and 2008.

Sub-districts (area kha) Analysis period
(Baseline — end)

Baseline forest
area (kha)

Sikonge (112.2) 1995–2001 56.0
Tabora (95.7) 1995–2001 25.6
Urambo (35.7) 1995–2001 30.0
Uyui (56.6) 1995–2001 29.6
Uyui-MVP (50.5) 1995–2001 22.3
TOTAL (350.7) 1995–2001 163.5
Sikonge (112.2) 2001–2011 53.6
Tabora (95.7) 2001–2011 24.9
Urambo (35.7) 2001–2011 26.7
Uyui (56.6) 2001–2011 28.9
Uyui-MVP (50.5) 2001–2011 20.8
TOTAL (350.7) 2001–2011 154.9
showed from a “top-down,” image-based perspective that differences
in seasonal patterns of variability in substrate and NPV components be-
tween forest and non-forest land cover types held across the analysis re-
gion. ANOVA and Kruskal–Wallis analyses of Z(Sub + NPV) metrics at
field validation sites provided “bottom-up,” ground-truth statistical ver-
ification that differences in substrate andNPV surface componentswere
stable between forest and non-forest land cover with no confounding
effects of image observation. The low variations in forest areas mapped
01, 2001–2011) reported in thousands of hectares (1 kha=1000ha). Baseline forest areas
tric from a single image date (1995, or 2001). Averaged annual forest area changes were
nter-annual correction factors given in Table 2. Averaged (annualized) rates of forest loss
gain for 2001–2011 include loss areas assessed at 2004, 2008 and 2011, and gain areas

cover Averaged annual forest area
change (kha yr-1)

End forest cover
area (kha)

Loss Gain

−1.51 0.45 49.7
−0.77 0.39 23.3
−0.56 0.03 26.8
−0.43 0.28 28.7
−0.48 0.35 21.6
−3.75 1.45 150.0
−1.48 0.57 44.5
−1.48 0.68 16.9
−0.47 0.34 25.4
−0.84 0.26 23.1
−0.60 0.37 18.5
−2.92 1.33 139.0



(c)

Fig. 8. Forest changes across the Tabora, Tanzania study region from 1995–2011. (a) Forest area changes shown in terms of area, thousands of hectares (kha). (b) Forest changes expressed
as a percentage of forest area in the baseline year (starting year of the analysis period). (c) Map of forest changes 1995–2011 (combined). Red indicates regions of forest loss; cyan shows
regions of forest gain. Sub-districts are labeled in white and bordered in yellow.
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in June and July single-date analyses, and their high consumer accura-
cies (N90%) – comparable to the multi-date classification – showed
that those dates are the most effective for mapping forest cover in this
region with single images. The results support the hypothesis that
early in the dry season at landscape scales, substrate and NPV fractions
of non-forest areas should be high immediately following harvest (agri-
culture) or as a result of high grazing pressure on crop residues and
grasses in mbuga regions. In contrast, substrate and NPV fractions
would comprise lower proportions of forest areas, which retain green
leaf cover further into the dry season before senescence progresses.

What was not apparent from Landsat LSMA analyses, or MODIS EVI
observations were differences in the temporal variability of surface
components between forest and non-forest. The ground-observed pat-
tern of converging surface material proportions through the dry season
was only observed for the NPV fraction images, and different rates of
change in surface components, such as senescence leading to accelerat-
ing loss of vegetation components in forests through the dry season,
were not apparent at Landsat scales. At MODIS scales, EVI greenness
patterns were similar across land cover types. Our finding of similar
patterns of temporal variability between forest and non-forest land
cover components matches those of past research on Miombo region
phenology using satellite data of coarse spatial/high temporal resolution
(e.g. MODIS 250 m, 500 m or AVHRR), which show satellite-observed
land cover phenology varies dominantly with climate (Serneels et al.,
2007; Zhang et al., 2005). This result also echoes those of recent work
that studied impacts of using 30 m Landsat versus 250 m MODIS data
to map forest changes in a small-holder dominated region of Brazil,
which found that up to 80% of forest change in areas smaller than 2 ha
was missed by MODIS data (Toomey et al., 2013). In future work,
Landsat analyses may be useful as masks to isolate land cover types
such as forest and non-forest in MODIS data to study differences
phenology, productivity or other ecosystem functions.

To differentiate forest from non-forest cover in the dry season across
small-holder Miombo landscapes, the higher spatial resolution of
Landsat imagery and the use of LSMA to identify patterns in non-
green surface components offer an approach that is reliable and robust
against variations in the status of land cover phenological cycles.
Other LSMA approaches using multiple endmembers may be able to
quantify surface components in such a way to distinguish land cover
conditions over a wider seasonal timeframe where the landscape phe-
nology is at different points (Quintano, Fernandez-Manso, & Roberts,
2013; Roberts et al., 1998). Our use of thresholds to classify forest versus
non-forest areas discretely precluded study of forest land cover condi-
tions in greater detail. There is ample room for further research to use
LSMA fraction images as continuous metrics to evaluate forest and
non-forest land cover conditions, beyond their use to map forest versus
non-forest areas discreetly. For example, the shade fractionwas difficult
to relate straightforwardly to physical land cover features aside from
identifying burned areas due to the different types of burning in forests
(sub-canopy andwhole stand burns), heterogeneous canopy structures
(canopy cover b 30%) within non-burnt forests, and the variety of land
use practices involving fire and resulting in burned areas on non-
forest land cover types. These include burning of crop residues on fields
and fires set to spur forage growth for livestock in mbuga grassland
areas (Frost, 1996). Future work might enable use of LSMA fraction im-
ages to study variations in forest condition and structure relating to re-
growth, land use pressures or management policies, as has been
effective in regions such as coniferous forests in the Pacific Northwest
of North America (Sabol et al., 2002; Yang et al., 2012). There is also
an opportunity to validate burned areas and study the patterns of
surface components they affect. Our approach for mapping and
masking burned areas using the shade fraction images and
normalized-burn index (NBR) was meant to be a conservative meth-
od for excluding regions whose land cover class was unclear at the
time of observation, rather than a rigorously mapping burned areas
themselves. The proportion of areas confounded by burns increased
significantly through the dry season (from b2% in June–over 12% of
the analysis area by the end of August). Thus for mapping land
cover change with single-date analyses, use of later season images
results in more ambiguous forest loss and regrowth estimates. For
example, a regrowth forest that experiences burns in adjacent obser-
vational periods might not be designated regrowth because it is
masked out as burn/transition. With our methods, the larger the
burned area at a given time point, the more likely forest losses will
be over-estimated or forest regrowth under-estimated. Future
work to improve our methods could compare burned areas mapped
with LSMA to global scale products such as the MODIS burned area
product (MCD45A1).
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4.2. Single-date forest cover maps approached the accuracy of multi-
temporal classifications and comparisons quantify measurement
uncertainties in land cover areas due to seasonal variability

Single-date forest cover maps using a constant threshold of the
Z(Sub+NPV)metric performed comparably tomulti-temporal classifi-
cation in the early dry season. For change analyses, the differences in
forest area mapped between sets of image dates such as June–July
(4.7% of June forest cover) gives a quantitative estimate for an uncer-
tainty in land cover mapping due to seasonal variability of surface
components. However, many factors (e.g. variations in vegetation
phenology, soil moisture) contribute to the differences in SMA model
performance and fraction image models for given surface components
and land cover classes. Our seasonal uncertainty of approximately 5%
difference between forest areas does not identify which of such factors
may contribute most to uncertainty in mapped forest areas across sea-
sonal conditions within or between years. Greater consumer accuracies
than producer accuracies for forest, and the opposite trend for
non-forest areas, suggest that forest areaswere slightly underestimated.
Forest monitoring methods that yield conservative estimates of forest
areas may be desirable for two reasons. First, conservative estimates of
forest area align to a “precautionary principle” approach for estimating
the status of available forest resources and habitat areas. Second, as
potential inputs for coupled land–climate models, lower estimates of
forest area could parameterize maximum-effect scenarios for studying
impacts of forest change for climate through mechanisms such as
reduced leaf-area and evapotranspiration, changes in albedo or surface
roughness affecting land–atmosphere moisture exchange (Runyan,
D'Odorico, & Lawrence, 2012).

4.3. Regional aggregate forest changes 2001–2011 are high relative to
Tanzanian national data, and forest loss rates declined, while gain rates
remained steady between decades

From 1995–2001 to 2001–2011, land cover transitioned in Tabora
from 46.6% forested–39.6% forested. Forest losses were due to a mix of
clearing for agriculture and tree harvesting for wood products for tim-
ber and wood-derived fuels (firewood, charcoal). Gains were due to
both forest succession on abandoned cultivated plots, and recovery on
sites cleared for tree harvests, but never cultivated. Our measured
aggregate forest changes (27.4% for 2001–2011) are over twice as
high as Tanzanian national aggregate changes (10.3%) (Hansen et al.,
2013). Our findings of regional net forest losses during 1995–2001
comprising 8.6% of 1995 forest area were slightly lower, but comparable
to those of Yanda (2010)who reported 11.2% forest losses for 1995–2000
in a larger region of analysis overlapping Tabora. Between decades we
calculated a decrease in the net rate of forest conversion to non-forest
from 1995–2001 (2.25 kha yr-1) to 2001–2011 (1.59 kha yr-1). This
contrasts a coarse prediction by Yanda (2010) of unbounded, continuous
linear increases in land clearing due to tobacco demands from the 2000s
onward. We found that rates of gross forest loss were lower for
2001–2011 than 1995–2001. This drove an increased contribution of for-
est gain to overall forest changes, shown by the lower forest loss:gain
ratio of 2.1 in 2001–2011 compared to 2.5 for the prior decade through-
out the study area. Our results show that drivers affecting forest gains are
interacting with pressures driving forest losses in Tabora and that both
must be understood to estimate the trajectory of future forest area
changes.

4.4. Variations in sub-district forest losses and gains suggest differing local
drivers of forest change

Though it is beyond the scope of this work to attribute forest change
patterns to drivers, the patterns in gross forest loss and gains we report
serve as evidence for hypotheses for land-use drivers that are testable
when the appropriate field data is available. For example, in Tabora
sub-district, both forest loss and gain areas nearly doubled from
1995–2001 to 2001–2011. This pattern could relate to processes such
as forest cutting for timber or charcoal without subsequent cultivation.
Studies on Miombo forest succession after cutting without cultivation
show that tree biomass and canopy cover can recover quickly
(7–20 years) after disturbance when stems are cut, if other physical
disturbances to roots or soil are minor (Chidumayo, 2013; Williams
et al., 2008). Urambo's changes in forest loss and grain trajectories
could be consistent with effects of a new local management plan since
2001 (after the Village Land Act of 1999) promoting forest conservation
(Understanding Land InvestmentDeals in Africa, 2011).We can identify
that a particular target region, Uyui-MVP, had multi-decadal forest
change trends similar to the landscape at large. Future work to assess
driving factors of forest change such as charcoal production, agricultural
expansion or local managementwill need data collected at highly local-
ized scales to explain these trends quantitatively, or, analyses will re-
quire up-scaling to spatial regions where reliable statistical data is
available.

5. Conclusions

Complex landscape structure and the high spatio-temporal variabil-
ity of phenology and land-use patterns have complicated identification
of forest area and the study of land cover changes in seasonally dry
tropical ecosystems worldwide. In a regional case study based in the
Tanzanian Miombo Woodlands, we examined the hypothesis that
non-forest sites would have higher proportions of non-green surface
components than forest sites in the early tomid-dry seasons, due to dif-
fering processes affecting removal of green vegetation (harvest/grazing
at non-forest sites versus senesce at forest sites). Using spectralmixture
analyses of Landsat data, we found that the proportion of non-green
surface components was significantly greater at non-forest than forest
sites throughout the early to mid-dry season, substantiating our
hypothesis. A multi-temporal classification of LSMA fraction images
combining data from four image dates through a dry season, and
threshold-based analyses using data from images at single dates in the
same dry season, attained similar overall accuracies (86.5% multi-
temporal, 81.0–85.3%) for mapping forest and non-forest land cover.
The difference in mapped forest areas between single dates of imagery
served as a “seasonal uncertainty” term for change detection analyses
using single-date imagery — in our case the term was 5% of forest area
between June and July images. Our methods may be applicable for
other Miombo and dry tropical landscapes.

Our study region in Tabora showed net forest losses from
1995–2011 of 24.5 kha, representing 15% of 1995 forest area, a 7.0% re-
duction in forest land cover, and a transition from a state of dominantly
forest to non-forest land cover. Rates of forest loss declined from
1995–2001 to 2001–2011 while forest gain rates were similar, leading
to increases in forest gain areas relative to losses. Our change detection
methodswere sensitive to variable patterns in the balances of forest loss
and gain areas by sub-district. This detection capability enables moni-
toring of forest changes at regional scales, but with spatial resolution
to detect different localized trajectories of change where patterns may
be indicative of varying land change pressures. Future work to improve
satellitemonitoring for dry tropical forest changes could examine use of
spectral mixture analysis methods to study forest land cover conditions
incorporate improved methods for characterizing land cover amidst
high burn frequencies in the dry season. Quantitative satellite monitor-
ing of land changes in remote dry tropical forest regions has high
potential for improving understanding of drivers and ecosystem
impacts of forest changes, and managing forest conservation efforts.
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