R Reference Card 2.0  Public domain, v2.0 2012-12-24. V 2 by Matt Baggott, matt@baggott.net V 1 by Tom Short, t.short@ieee.org Material from R for Beginners by permission of Emmanuel Paradis. Getting help and info  help(topic) documentation on topic ?topic same as above; special chars need quotes: for example ?’&&’ help.search(ʺtopicʺ) search the help system; same as ??topic apropos(ʺtopicʺ) the names of all objects in the search list matching the regular expression “topic” help.start() start the HTML version of help summary(x) generic function to give a “summary” of x, often a statistical one str(x) display the internal structure of an R object ls() show objects in the search path; specify pat="pat" to search on a pattern ls.str() str for each variable in the search path dir() show files in the current directory methods(x) shows S3 methods of x methods(class=class(x)) lists all the methods to handle objects of class x findFn() searches a database of help packages for functions and returns a data.frame (sos)     Other R References   CRAN task views are summaries of R resources for task domains at: cran.r-project.org/web/views Can be accessed via ctv package R FAQ:  cran.r-project.org/doc/FAQ/R-FAQ.html R Functions for Regression Analysis, by Vito Ricci: cran.r-project.org/doc/contrib/Ricci- refcard-regression.pdf R Functions for Time Series Analysis, by Vito Ricci: cran.r-project.org/doc/contrib/Ricci- refcard-ts.pdf R Reference Card for Data Mining, by Yanchang Zhao: www.rdatamining.com/docs/R-refcard- data-mining.pdf R Reference Card, by Jonathan Baron: cran.r- project.org/doc/contrib/refcard.pdf Operators  <‐ Left assignment, binary ‐> Right assignment, binary = Left assignment, but not recommended <<‐  Left assignment in outer lexical scope; not for beginners $ List subset, binary ‐ Minus, can be unary or binary + Plus, can be unary or binary ~ Tilde, used for model formulae : Sequence, binary (in model formulae: interaction) :: Refer to function in a package, i.e, pkg::function; usually not needed * Multiplication, binary / Division, binary ^ Exponentiation, binary %x%  Special binary operators, x can be replaced by any valid name %% Modulus, binary %/% Integer divide, binary %*% Matrix product, binary %o% Outer product, binary %x% Kronecker product, binary %in% Matching operator, binary (in model formulae: nesting) ! x logical negation, NOT x x & y elementwise logical AND x && y vector logical AND x | y elementwise logical OR x || y vector logical OR xor(x, y) elementwise exclusive OR < Less than, binary > Greater than, binary == Equal to, binary >= Greater than or equal to, binary <= Less than or equal to, binary Packages  install.packages(“pkgs”, lib) download and install pkgs from repository (lib) or other external source update.packages checks for new versions and offers to install library(pkg) loads pkg, if pkg is omitted it lists packages detach(ʺpackage:pkgʺ) removes pkg from memory Indexing vectors  x[n]   nth element x[‐n] all but the nth element x[1:n] first n elements x[‐(1:n)] elements from n+1 to end x[c(1,4,2)] specific elements x[ʺnameʺ] element named "name" x[x > 3] all elements greater than 3 x[x > 3 & x < 5] all elements between 3 and 5 x[x %in% c(ʺaʺ,ʺifʺ)] elements in the given set   Indexing lists  x[n]  list with elements n x[[n]] nth element of the list x[[ʺnameʺ]]  element named "name" x$name as above (w. partial matching)   Indexing matrices  x[i,j] element at row i, column j x[i,]  row i x[,j]  column j x[,c(1,3)]  columns 1 and 3 x[ʺnameʺ,] row named "name"   Indexing matrices data frames (same as matrices  plus the following)  X[[ʺnameʺ]]  column named "name" x$name as above (w. partial matching)   Input and output (I/O)    R data object I/O  data(x) loads specified data set; if no arg is given it lists all available data sets save(file,...) saves the specified objects (...) in XDR platform-independent binary format save.image(file) saves all objects load(file) load datasets written with save Database I/O  Useful packages: DBI interface between R and relational DBMS; RJDBC access to databases through the JDBC interface; RMySQL interface to MySQL database; RODBC ODBC database access; ROracle Oracle database interface driver; RpgSQL interface to PostgreSQL database; RSQLite SQLite interface for R R p 1 of 6 Other file I/O  read.table(file), read.csv(file),  read.delim(“file”), read.fwf(“file”) read a file using defaults sensible for a table/csv/delimited/fixed-width file and create a data frame from it. write.table(x,file), write.csv(x,file) saves x after converting to a data frame txtStart and txtStop: saves a transcript of commands and/or output to a text file (TeachingDemos) download.file(url) from internet url.show(url) remote input cat(..., file=ʺʺ, sep=ʺ ʺ) prints the arguments after coercing to character; sep is the character separator between arguments print(x, ...) prints its arguments; generic, meaning it can have different methods for different objects format(x,...) format an R object for pretty printing sink(file) output to file, until sink() Clipboard I/O   File connections of functions can also be used to read and write to the clipboard instead of a file. Mac OS: x <‐ read.delim(pipe(“pbpaste”)) Windows: x <‐ read.delim(ʺclipboardʺ)  See also read.clipboard (psych)   Data creation  c(...) generic function to combine arguments with the default forming a vector; with recursive=TRUE descends through lists combining all elements into one vector from:to generates a sequence; “:” has operator priority; 1:4 + 1 is “2,3,4,5” seq(from,to) generates a sequence by= specifies increment; length= specifies desired length seq(along=x) generates 1, 2, ..., length(along); useful in for loops rep(x,times) replicate x times; use each to repeat “each” element of x each times; rep(c(1,2,3),2) is 1 2 3 1 2 3; rep(c(1,2,3),each=2) is 1 1 2 2 3 3 data.frame(...) create a data frame of the named or unnamed arguments data.frame (v=1:4, ch= c("a","B","c","d"), n=10); shorter vectors are recycled to the length of the longest list(...) create a list of the named or unnamed arguments; list(a=c(1,2),b="hi", c=3); array(x,dim=)  array with data x; specify dimensions like dim=c(3,4,2); elements of x recycle if x is not long enough matrix(x,nrow,ncol) matrix; elements of x recycle factor(x,levels) encodes a vector x as a factor gl(n, k, length=n*k, labels=1:n) generate levels (factors) by specifying the pattern of their levels; k is the number of levels, and n is the number of replications expand.grid() a data frame from all combinations of the supplied vectors or factors   Data conversion  as.array(x), as.character(x), as.data.frame(x),  as.factor(x), as.logical(x), as.numeric(x),  convert type; for a complete list, use methods(as)    Data information  is.na(x), is.null(x), is.nan(x); is.array(x),  is.data.frame(x), is.numeric(x),  is.complex(x), is.character(x); for a complete list, use methods(is)  x prints x head(x), tail(x) returns first or last parts of an object   summary(x) generic function to give a summary str(x) display internal structure of the data length(x) number of elements in x dim(x) Retrieve or set the dimension of an object; dim(x) <‐ c(3,2)  dimnames(x) Retrieve or set the dimension names of an object nrow(x), ncol(x) number of rows/cols; NROW(x),  NCOL(x) is the same but treats a vector as a one-row/col matrix class(x) get or set the class of x; class(x) <‐  ʺmyclassʺ; unclass(x) removes the class attribute of x attr(x,which) get or set the attribute which of x attributes(obj) get or set the list of attributes of obj   Data selection and manipulation  which.max(x), which.min(x) returns the index of the greatest/smallest element of x rev(x) reverses the elements of x sort(x) sorts the elements of x in increasing order; to sort in decreasing order: rev(sort(x)) cut(x,breaks) divides x into intervals (factors); breaks is the number of cut intervals or a vector of cut points match(x, y) returns a vector of the same length as x with the elements of x that are in y (NA otherwise) which(x == a) returns a vector of the indices of x if the comparison operation is true (TRUE), in this example the values of i for which x[i] == a (the argument of this function must be a variable of mode logical) choose(n, k) computes the combinations of k events among n repetitions = n!/[(n − k)!k!] na.omit(x) suppresses the observations with missing data (NA) na.fail(x) returns an error message if x contains at least one NA complete.cases(x) returns only observations (rows) with no NA unique(x) if x is a vector or a data frame, returns a similar object but with the duplicates suppressed table(x) returns a table with the numbers of the different values of x (typically for integers or factors) split(x, f) divides vector x into the groups based on f  subset(x, ...) returns a selection of x with respect to criteria (..., typically comparisons: x$V1 < 10); if x is a data frame, the option select gives variables to be kept (or dropped, using a minus) sample(x, size) resample randomly and without replacement size elements in the vector x, for sample with replacement use: replace = TRUE sweep(x, margin, stats) transforms an array by sweeping out a summary statistic prop.table(x,margin) table entries as fraction of marginal table xtabs(a b,data=x) a contingency table from crossclassifying factors replace(x, list, values) replace elements of x listed in index with values   R p 2 of 6 Data reshaping  merge(a,b) merge two data frames by common col or row names stack(x, ...) transform data available as separate cols in a data frame or list into a single col unstack(x, ...) inverse of stack() rbind(...) , cbind(...) combines supplied matrices, data frames, etc. by rows or cols melt(data, id.vars, measure.vars) changes an object into a suitable form for easy casting, (reshape2 package) cast(data, formula, fun) applies fun to melted data using formula (reshape2 package) recast(data, formula) melts and casts in a single step (reshape2 package) reshape(x, direction...) reshapes data frame between ’wide’ (repeated measurements in separate cols) and ’long’ (repeated measurements in separate rows) format based on direction   Applying functions repeatedly  (m=matrix, a=array, l=list; v=vector, d=dataframe)  apply(x,index,fun) input: m; output: a or l; applies function fun to rows/cols/cells (index) of x lapply(x,fun) input l; output l; apply fun to each element of list x sapply(x,fun) input l; output v; user friendly wrapper for lapply(); see also replicate() tapply(x,index,fun) input l output l; applies fun to subsets of x, as grouped based on index by(data,index,fun) input df; output is class “by”, wrapper for tapply aggregate(x,by,fun) input df; output df; applies fun to subsets of x, as grouped based on index. Can use formula notation. ave(data, by, fun = mean) gets mean (or other fun) of subsets of x based on list(s) by   plyr package functions have a consistent names: The first character is input data type, second is output. These may be d(ataframe), l(ist), a(rray), or _(discard). Functions have two or three main arguments, depending on input: a*ply(.data, .margins, .fun, ...)  d*ply(.data, .variables, .fun, ...)  l*ply(.data, .fun, ...)  Three commonly used functions with ply functions are summarise(), mutate(), and transform()  Math  Many math functions have a logical parameter na.rm=FALSE to specify missing data removal. sin,cos,tan,asin,acos,atan,atan2,log,log10,exp  min(x), max(x) min/max of elements of x range(x) min and max elements of x sum(x) sum of elements of x diff(x) lagged and iterated differences of vector x prod(x) product of the elements of x round(x, n) rounds the elements of x to n decimals log(x, base) computes the logarithm of x scale(x) centers and reduces the data; can center only (scale=FALSE) or reduce only (center=FALSE) pmin(x,y,...), pmax(x,y,...) parallel minimum/maximum, returns a vector in which ith element is the min/max of x[i], y[i], . . . cumsum(x), cummin(x), cummax(x),  cumprod(x) a vector which ith element is the sum/min/max from x[1] to x[i] union(x,y), intersect(x,y), setdiff(x,y),  setequal(x,y), is.element(el,set) “set” functions  Re(x) real part of a complex number Im(x) imaginary part Mod(x) modulus; abs(x) is the same Arg(x) angle in radians of the complex number Conj(x) complex conjugate convolve(x,y) compute convolutions of sequences  fft(x) Fast Fourier Transform of an array mvfft(x) FFT of each column of a matrix filter(x,filter) applies linear filtering to a univariate time series or to each series separately of a multivariate time series   Correlation and variance  cor(x) correlation matrix of x if it is a matrix or a data frame (1 if x is a vector) cor(x, y) linear correlation (or correlation matrix) between x and y var(x) or cov(x) variance of the elements of x (calculated on n − 1); if x is a matrix or a data frame, the variance-covariance matrix is calculated var(x, y) or cov(x, y) covariance between x and y, or between the columns of x and those of y if they are matrices or data frames Matrices  t(x) transpose diag(x) diagonal %*% matrix multiplication solve(a,b) solves a %*% x = b for x solve(a) matrix inverse of a rowsum(x), colsum(x) sum of rows/cols for a matrix-like object (consider rowMeans(x), colMeans(x)) Distributions  Family of distribution functions, depending on first letter either provide: r(andom sample) ; p(robability density), c(umulative probability density),or q(uantile): rnorm(n, mean=0, sd=1) Gaussian (normal)   rexp(n, rate=1) exponential  rgamma(n, shape, scale=1) gamma  rpois(n, lambda) Poisson  rweibull(n, shape, scale=1) Weibull   rcauchy(n, location=0, scale=1) Cauchy   rbeta(n, shape1, shape2) beta  rt(n, df) ‘Student’ (t)  rf(n, df1, df2) Fisher-Snedecor (F) (!!!2)  rchisq(n, df) Pearson  rbinom(n, size, prob) binomial   rgeom(n, prob) geometric  rhyper(nn, m, n, k) hypergeometric   rlogis(n, location=0, scale=1) logistic   rlnorm(n, meanlog=0, sdlog=1) lognormal   rnbinom(n, size, prob) negative binomial   runif(n, min=0, max=1) uniform  rwilcox(nn, m, n), rsignrank(nn, n) Wilcoxon Descriptive statistics  mean(x) mean of the elements of x median(x) median of the elements of x quantile(x,probs=) sample quantiles corresponding to the given probabilities (defaults to 0,.25,.5,.75,1) weighted.mean(x, w) mean of x with weights w rank(x) ranks of the elements of x describe(x) statistical description of data (in Hmisc package) describe(x) statistical description of data useful for psychometrics (in psych package) sd(x) standard deviation of x density(x) kernel density estimates of x R p 3 of 6 Some statistical tests cor.test(a,b) test correlation; t.test() t test;   prop.test(), binom.test() sign test; chisq.test() chisquare test; fisher.test() Fisher exact test;  friedman.test() Friedman test; ks.test() Kolmogorov-Smirnov test... use help.search(ʺtestʺ)    Models     Model formulas  Formulas use the form: response ~ termA + termB ... Other formula operators are: 1 intercept, meaning depdendent variable has its mean value when independent variables are zeros or have no influence : interaction term * factor crossing, a*b is same as a+b+a:b ^ crossing to the specified degree, so (a+b+c)^2 is same as (a+b+c)*(a+b+c) ‐ removes specified term, can be used to remove intercept as in resp ~ a - 1 %in% left term nested within the right: a + b %in% a is same as a + a:b I() operators inside parens are used literally: I(a*b) means a multiplied by b |  conditional on, should be parenthetical Formula-based modeling functions commonly take the arguments: data, subset, and na.action.   Model functions  aov(formula, data) analysis of variance model lm(formula, data) fit linear models; glm(formula, family, data) fit generalized linear models; family is description of error distribution and link function to be used; see ?family nls(formula, data) nonlinear least-squares estimates of the nonlinear model parameters lmer(formula, data) fit mixed effects model (lme4); see also lme() (nlme) anova(fit, data...) provides sequential sums of squares and corresponding F-test for objects contrasts(fit, contrasts = TRUE) view contrasts associated with a factor; to set use: contrasts(fit, how.many) <‐ value  glht(fit, linfct) makes multiple comparisons using a linear function linfct (mutcomp) summary(fit) summary of model, often w/ t-values confint(parameter) confidence intervals for one or more parameters in a fitted model. predict(fit,...) predictions from fit df.residual(fit) returns residual degrees of freedom coef(fit) returns the estimated coefficients (sometimes with standard-errors) residuals(fit) returns the residuals deviance(fit) returns the deviance fitted(fit) returns the fitted values logLik(fit) computes the logarithm of the likelihood and the number of parameters AIC(fit), BIC(fit) compute Akaike or Bayesian information criterion influence.measures(fit) diagnostics for lm & glm approx(x,y) linearly interpolate given data points; x can be an xy plotting structure spline(x,y) cubic spline interpolation loess(formula) fit polynomial surface using local fitting optim(par, fn, method = c(ʺNelder‐Meadʺ,  ʺBFGSʺ, ʺCGʺ, ʺL‐BFGS‐Bʺ, ʺSANNʺ) general-purpose optimization; par is initial values, fn is function to optimize (normally minimize) nlm(f,p) minimize function f using a Newton-type algorithm with starting values p Flow control  if(cond) expr  if(cond) cons.expr else alt.expr   for(var in seq) expr  while(cond) expr repeat expr  break   next  switch  Use braces {} around statements ifelse(test, yes, no) a value with the same shape as test filled with elements from either yes or no do.call(funname, args) executes a function call from the name of the function and a list of arguments to be passed to it Writing functions  function( arglist ) expr function definition, missing test whether a value was specified as an argument to a function require load a package within a function <<‐ attempts assignment within parent environment before search up thru environments on.exit(expr) executes an expression at function end return(value) or invisible Strings  paste(vectors, sep, collapse) concatenate vectors after converting to character; sep is a string to separate terms; collapse is optional string to separate “collapsed” results; see also str_c below substr(x,start,stop) get or assign substrings in a character vector. See also str_sub below strsplit(x,split) split x according to the substring split grep(pattern,x) searches for matches to pattern within x; see ?regex  gsub(pattern,replacement,x) replace pattern in x using regular expression matching; sub() is similar but only replaces the first occurrence. tolower(x), toupper(x) convert to lower/uppercase match(x,table) a vector of the positions of first matches for the elements of x among table x %in% table as above but returns a logical vector pmatch(x,table) partial matches for the elements of x among table nchar(x) # of characters. See also str_length below stringr package provides a nice interface for string functions: str_detect detects the presence of a pattern; returns a logical vector str_locate locates the first position of a pattern; returns a numeric matrix with col start and end. (str_locate_all locates all matches) str_extract extracts text corresponding to the first match; returns a character vector (str_extract_all extracts all matches) str_match extracts “capture groups” formed by () from the first match; returns a character matrix with one column for the complete match and one column for each group str_match_all extracts “capture groups” from all matches ; returns a list of character matrices str_replace replaces the first matched pattern; returns a character vector str_replace_all replaces all matches. str_split_fixed splits string into a fixed number of pieces based on a pattern; returns character matrix str_split splits a string into a variable number of pieces; returns a list of character vectors str_c joins multiple strings, similar to paste str_length gets length of a string, similar to nchar str_sub extracts substrings from character vector, similar to substr R p 4 of 6 Dates and Times  Class Date is dates without times. Class POSIXct is dates and times, including time zones. Class timeDate in timeDateincludes financial centers. lubridate package is great for manipulating time/dates and has 3 new object classes: interval class: time between two specific instants. Create with new_interval() or subtract two times. Access with int_start() and int_end() duration class:  time spans with exact lengths  new_duration() creates generic time span that can be added to a date; other functions that create duration objects start with d: dyears(), dweeks()…   period class: time spans that may not have a consistent lengths in seconds; functions include: years(), months(), weeks(), days(), hours(), minutes(), and seconds() ymd(date, tz), mdy(date, tz), dmy(date, tz) transform character or numeric dates to POSIXct object using timezone tz (lubridate)   Other time packages: zoo, xts, its do irregular time series; TimeWarp has a holiday database from 1980+; timeDate also does holidays; tseries for analysis and computational finance; forecast for modeling univariate time series forecasts; fts for faster operations; tis for time indexes and time indexed series, compatible with FAME frequencies. Date and time formats are specified with: %a, %A Abbreviated and full weekday name. %b, %B Abbreviated and full month name. %d Day of the month (01-31) %H Hours (00-23) %I Hours (01-12) %j Day of year (001-366) %m Month (01-12) %M Minute (00-59) %p AM/PM indicator %S Second as decimal number (00-61) %U Week (00-53); first Sun is day 1 of wk 1 %w Weekday (0-6, Sunday is 0) %W Week (00-53); 1st Mon is day 1 of wk 1 %y Year without century (00-99) Don’t use %Y Year with century %z (output only) signed offset from Greenwich; -0800 is 8 hours west of %Z (output only) Time zone as a character string Graphs  There are three main classes of plots in R: base plots, grid & lattice plots, and ggplot2 package. They have limited interoperability. Base, grid, and lattice are covered here. ggplot2 needs its own reference sheet.   Base graphics  Common arguments for base plots:   add=FALSE if TRUE superposes the plot on the previous one (if it exists) axes=TRUE if FALSE does not draw the axes and the box type=ʺpʺ specifies the type of plot, "p": points, "l": lines, "b": points connected by lines, "o": same as previous but lines are over the points, "h": vertical lines, "s": steps, data are represented by the top of the vertical lines, "S": same as previous but data are represented by the bottom of the vertical lines xlim=, ylim= specifies the lower and upper limits of the axes, for example with xlim=c(1, 10) or xlim=range(x) xlab=, ylab= annotates the axes, must be variables of mode character main= main title, must be a variable of mode character sub= sub-title (written in a smaller font)   Base plot functions  plot(x) plot of the values of x (on the y-axis) ordered on the x-axis plot(x, y) bivariate plot of x (on the x-axis) and y (on the y-axis) hist(x) histogram of the frequencies of x barplot(x) histogram of the values of x; use horiz=TRUE for horizontal bars dotchart(x) if x is a data frame, plots a Cleveland dot plot (stacked plots line-by-line and column- by-column) boxplot(x) “box-and-whiskers” plot stripplot(x) plot of the values of x on a line (an alternative to boxplot() for small sample sizes) coplot(x˜y | z) bivariate plot of x and y for each value or interval of values of z interaction.plot (f1, f2, y) if f1 and f2 are factors, plots the means of y (on the y-axis) with respect to the values of f1 (on the x-axis) and of f2 (different curves); the option fun allows to choose the summary statistic of y (by default fun=mean) matplot(x,y) bivariate plot of the first column of x vs. the first one of y, the second one of x vs. the second one of y, etc. fourfoldplot(x) visualizes, with quarters of circles, the association between two dichotomous variables for different populations (x must be an array with dim=c(2, 2, k), or a matrix with dim=c(2, 2) if k=1) assocplot(x) Cohen-Friendly graph showing the deviations from independence of rows and columns in a two dimensional contingency table mosaicplot(x) ‘mosaic’ graph of the residuals from a log-linear regression of a contingency table pairs(x) if x is a matrix or a data frame, draws all possible bivariate plots between the columns of x plot.ts(x) if x is an object of class "ts", plot of x with respect to time, x may be multivariate but the series must have the same frequency and dates ts.plot(x) same as above but if x is multivariate the series may have different dates and must have the same frequency qqnorm(x) quantiles of x with respect to the values expected under a normal distribution qqplot(x, y) diagnostic plotr of quantiles of y vs. quantiles of x; see also qqPlot in cars package and distplot in vcd package contour(x, y, z) contour plot (data are interpolated to draw the curves), x and y must be vectors and z must be a matrix so that dim(z)= c(length(x), length(y)) (x and y may be omitted). See also filled.contour, image, and persp symbols(x, y, ...) draws, at the coordinates given by x and y, symbols (circles, squares, rectangles, stars, thermometers or “boxplots”) with sizes, colours . . . are specified by supplementary arguments termplot(mod.obj) plot of the (partial) effects of a regression model (mod.obj) colorRampPalette creates a color palette (use: colfunc <- colorRampPalette(c("black", "white")); colfunc(10)   Low‐level base plot arguments  points(x, y) adds points (the option type= can be used) lines(x, y) same as above but with lines text(x, y, labels, ...) adds text given by labels at R p 5 of 6 R p 6 of 6 coordinates (x,y); a typical use is: plot(x, y, type="n"); text(x, y, names) mtext(text, side=3, line=0, ...) adds text given by text in the margin specified by side (see axis() below); line specifies the line from the plotting area segments(x0, y0, x1, y1) draws lines from points (x0,y0) to points (x1,y1) arrows(x0, y0, x1, y1, angle= 30, code=2) same as above with arrows at points (x0,y0) if code=2, at points (x1,y1) if code=1, or both if code=3; angle controls the angle from the shaft of the arrow to the edge of the arrow head abline(a,b) draws a line of slope b and intercept a abline(h=y) draws a horizontal line at ordinate y abline(v=x) draws a vertical line at abcissa x abline(lm.obj) draws the regression line given by lm.obj rect(x1, y1, x2, y2) draws a rectangle with left, right, bottom, and top limits of x1, x2, y1, and y2, respectively polygon(x, y) draws a polygon linking the points with coordinates given by x and y legend(x, y, legend) adds the legend at the point (x,y) with the symbols given by legend title() adds a title and optionally a sub-title axis(side, vect) adds an axis at the bottom (side=1), on the left (2), at the top (3), or on the right (4); vect (optional) gives the abcissa (or ordinates) where tick-marks are drawn rug(x) draws the data x on the x-axis as small vertical lines locator(n, type="n", ...) returns the coordinates (x, y) after the user has clicked n times on the plot with the mouse; also draws symbols (type="p") or lines (type="l") with respect to optional graphic parameters (...); by default nothing is drawn (type="n") Plot parameters These can be set globally with par(...); many can be passed as parameters to plotting commands. adj controls text justification (0 left-justified, 0.5 centred, 1 right-justified) bg specifies the colour of the background (ex. : bg="red", bg="blue", . . the list of the 657 available colours is displayed with colors()) bty controls the type of box drawn around the plot, allowed values are: "o", "l", "7", "c", "u" ou "]" (the box looks like the corresponding character); if bty="n" the box is not drawn cex a value controlling the size of texts and symbols with respect to the default; the following parameters have the same control for numbers on the axes, cex.axis, the axis labels, cex.lab, the title, cex.main, and the sub-title, cex.sub col controls the color of symbols and lines; use color names: "red", "blue" see colors() or as "#RRGGBB"; see rgb(), hsv(), gray(), and rainbow(); as for cex there are: col.axis, col.lab, col.main, col.sub font an integer that controls the style of text (1: normal, 2: italics, 3: bold, 4: bold italics); as for cex there are: font.axis, font.lab, font.main, font.sub las an integer that controls the orientation of the axis labels (0: parallel to the axes, 1: horizontal, 2: perpendicular to the axes, 3: vertical) lty controls the type of lines, can be an integer or string (1: "solid", 2: "dashed", 3: "dotted", 4: "dotdash", 5: "longdash", 6: "twodash", or a string of up to eight characters (between "0" and "9") that specifies alternatively the length, in points or pixels, of the drawn elements and the blanks, for example lty="44" will have the same effect than lty=2 lwd numeric that controls the width of lines, default 1 mar a vector of 4 numeric values that control the space between the axes and the border of the graph of the form c(bottom, left, top, right), the default values are c(5.1, 4.1, 4.1, 2.1) mfcol a vector of the form c(nr,nc) that partitions the graphic window as a matrix of nr lines and nc columns, the plots are then drawn in columns mfrow same as above but the plots are drawn by row pch controls the type of symbol, either an integer between 1 and 25, or any single char within "" ps an integer that controls the size in points of texts and symbols pty a character that specifies the type of the plotting region, "s": square, "m": maximal tck a value that specifies the length of tick-marks on the axes as a fraction of the smallest of the width or height of the plot; if tck=1 a grid is drawn tcl a value that specifies the length of tick-marks on the axes as a fraction of the height of a line of text (by default tcl=-0.5) xaxt if xaxt="n" the x-axis is set but not drawn (useful in conjonction with axis(side=1, ...)) yaxt if yaxt="n" the y-axis is set but not drawn (useful in conjonction with axis(side=2, ...)) L ce graphics Lattice functions return objects of class trellis and must be printed. Use print(xyplot(...)) inside functions where automatic printing doesn’t work. Use lattice.theme and lset to change Lattice defaults. In the normal Lattice formula, y x|g1*g2 has combinations of optional conditioning variables g1 and g2 plotted on separate panels. Lattice functions take many of the same args as base graphics plus also data= the data frame for the formula variables and subset= for subsetting. Use panel= to define a custom panel function (see apropos("panel") and ?llines). xyplot(y˜x) bivariate plots (with many functionalities) barchart(y˜x) histogram of the values of y with respect to those of x dotplot(y˜x) Cleveland dot plot (stacked plots lineby-line and column-by-column) densityplot(˜x) density functions plot histogram(˜x) histogram of the frequencies of x bwplot(y˜x) “box-and-whiskers” plot qqmath(˜x) quantiles of x with respect to the values expected under a theoretical distribution stripplot(y˜x) single dimension plot, x must be numeric, y may be a factor qq(y˜x) quantiles to compare two distributions, x must be numeric, y may be numeric, character, or factor but must have two ‘levels’ splom(˜x) matrix of bivariate plots parallel(˜x) parallel coordinates plot levelplot(z˜x*y|g1*g2) coloured plot of the values of z at the coordinates given by x and y (x, y and z are all of the same length) wireframe(z˜x*y|g1*g2) 3d surface plot cloud(z˜x*y|g1*g2) 3d scatter plot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ●16 17 18 ●19 ●20 ●21 22 23 24 25 ** . XX aa ??