

Photosynthesis

Katerina Dadakova, Department of Biochemistry

Figures adopted from Buchanan et al., Biochemistry & molecular biology of plants

Using light energy to synthesize organic compounds from inorganic precursors

$$CO_2 + 2H_2O \xrightarrow{hv} (CH_2O) + O_2 + H_2O$$

Oxygenic photosynthesis

The free energy change is $\Delta G = +2840$ kJ per mol of glucose formed

Plant chloroplast

Water oxidation and CO₂ reduction are not obligately linked.

The energy of a photon is inversely proportional to its wavelength

 $E = hc/\lambda$

Energy levels in the molecule of the light-absorbing pigment chlorophyll

Mechanisms of energy release:

- relaxation
- fluorescence
- energy transfer
- charge separation (photochemistry)

pigment + acceptor \xrightarrow{hv} pigment* + acceptor $\xrightarrow{}$ pigment+ + acceptor -

 Φ = number of products formed photochemically / number of quanta absorbed

Phycobilins

Light harvesting

LHC-II structure

The reaction center complex

- Reaction centers are integral membrane protein complexes involved in conversion of light energy into chemical products
- Plants contain two different reaction center complexes: Photosystem I and Photosystem II
- Reaction centers contain both chlorophyll and electron acceptor molecules

Carrier	PSI	PSII	
Chl	P700	P680	
A ₀	Chlorophyll a	Pheophytin a	
A ₁	Phylloquinone	Plastoquinone (Q _A)	
A ₂	Fe-S center	Plastoquinone (Q _B)	

 $\operatorname{Chl} A_{O}A_{1}A_{2} \xrightarrow{hv} \operatorname{Chl}^{*}A_{O}A_{1}A_{2} \longrightarrow \operatorname{Chl}^{+}A_{O}^{-}A_{1}A_{2} \longrightarrow \operatorname{Chl}^{+}A_{O}A_{1}^{-}A_{2} \longrightarrow \operatorname{Chl}^{+}A_{O}A_{1}A_{2}^{-}$

Electron transport pathways

The chloroplast noncyclic electron transport chain produces O_2 , NADPH, and ATP and involves the cooperation of PSI and PSII

Electron transport pathways

PSII

Stroma

1.	P680 →	Q _A	Q _B	
2.	P680 ⁺	$Q_{A}^{-} \longrightarrow$	Q _B	
3.	P680	Q _A	Q _B -	
4.	P680 ⁺	$Q_A^- \longrightarrow$	• Q _B -	
$Q_B^{2-} + 2H^+ \longrightarrow Q_B H_2$				

 $QH_2 + 2PC_{ox} + 2H^+_{stroma} \rightarrow Q + 2PC_{red} + 4H^+_{lumen}$

Cytochrome *b*₆*f*

LI

H

G

PC-

N

Stroma

Lumen

D

 A_1

Α

FA

e

0

P700

e

PC

С

 A_0

B

F

Fdx Fdx Fdx Fdx

Structure and redox chemistry of flavin coenzymes

Cyclic electron transport chain

ATP synthesis in chloroplasts

Chloroplasts synthesize ATP by a chemiosmotic mechanism driven by a proton gradient

Organization of the thylakoid membrane

Energy distribution between PSI and PSII

Balanced excitation of both photosystems is required for maximum electron transfer efficiency

Carbon reactions in C₃ plants

- C_3 plants produce a three-carbon compound as the first stable product.
- In these plants, photosynthetic carbon fixation is catalyzed by a single enzyme, Rubisco.
- Rubisco, probably the most prevalent protein on Earth, constitutes up to half the protein of the chloroplast stroma

Photosynthesis

TV I

Carbon reactions (Calvin cycle)

The Calvin cycle regulation

Activation of Rubisco by carbamylation

C₄ fixation mechanism

- C₄ plants contain two distinct CO₂-fixing enzymes
- They have specialized foliar anatomy:

• They form four-carbon organic acids as the first products of CO_2 fixation

CAM fixation mechanism

