

Technologii inzerční mutageneze lze využít i u živočichů. Zda se využívají např. transpozony odvozené z Drosophily (transpozon Minos, viz schéma vlevo nahoře (Klinakis et al., 2000). V tomto případě bylo nutne provést kotransfekci s tzv. helper plasmiem, kódujícím transponázu (neautonomní transpozon). Neo kóduje rezistenci k neomycinu, šipky ukazují směr transkripce řízený přislušnými promotory, pA je polyadenylační signál, ori je počátek replikace viru SV40, S-P je promotor téhož viru. Pro identifikaci inzercí "in frame" se zasaženými geny lze využít transpozony, obsahující fůzi akceptorových míst sestřihu s ORF reportérového genu, např. lacZ-neo (bez AUG kodonu). Tento přístup umožňuje identifikovat inzerce do aktivních genů prostřednictvím selekce inzerčních mutantů na rezistenci k neomycinu, resp. vykazující β-galaktozidázovou aktivitu (Klinakis et al., 2000).

Izolace sekvenčně specifických mutantů "Trojrozměrné" vyhledávání pomocí PCR izolace genomové DNA z jednotlivých rostlin mutantní populace a vytvoření souhrnných souborů DNA ("trojice", rady a sloupce trojic a jednotlivé podnosy) identifikace pozitivní "trojice" pomocí PCR, blotování PCR produktů a hybridizace s genově specifickou sondou

 identifikace pozitivní linie pomocí Identifikace pozitivního "tácu", řady a sloupce

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky

Využití autonomních transpozonů pro izolaci nových stabilních mutací a revertantních linií

Analysis of GUS expression of supertransformed rice callus. Transgenic rice tissue containing a single Gus transgene supertransformed with UbiDGus[s], UbiDGus[ays], UbiDGus[iyr], DGus[iyr].

It has been found that dsRNA might be either an intermediate or a trigger in PTGS.

In the first case, dsRNA is formed by the action of RNA-dependent RNA polymerases (RdRPs), which use specific transcripts as a template. It is still not clear, how these transcripts are recognized, but it might be e.g. abundant RNA that is a result of viral amplification or transcription of foreign DNA.

It is not clear, how the foreign DNA might be recognized, possibly, lack of bound proteins on the foreign "naked" DNA and its subsequent "signature" (e.g. by specific methylation pattern) during packing of the foreign DNA into the chromatin structure might be involved.

The highly abundant transcripts might be recruited to the RdRPs by the defects in the RNA processing, e.g. lack of polyadenylation.

In the case when dsRNA is a direct trigger, there are two major RNA molecules involved in the process: Short interference RNA (siRNA) and micro RNA (miRNA), both encoded by the endogenous DNA.

These two functionally similar molecules differ in their origin:

siRNAs are dominantly product of the cleavage of the long dsRNA that are produced by the action of cellular or viral RdRPs. However, there are also endogenous genes, e.g. short hairpin RNAs (shRNAs) allowing production of the siRNA (see the figure).

miRNAs are involved in the developmental-specific regulations and are product of transcription of endogenous genes encoding for small dsRNAs with specific structure (see the figure).

In addition to siRNAs, there are trans-acting siRNAs (tasiRNAs) that are a special class of siRNAs that appear to function in development (much like miRNAs) but have a unique mode of origin involving components of both miRNA and siRNA pathways.

Developmental regulations via miRNAs are more often used in animals then in plants.

The dsRNAs of all origins and pre miRNAs are cleaved by DICER or DICER-like (DCL) enzyme complexes with RNAse activity, leading to production of siRNAs and miRNA, respectively.

These small RNAs are of 21-24 bp long and bind either to RNA-induced transcriptional silencing complex (RITS) or RNA-induced silencing komplex (RISC).

In siRNA and miRNA biogenesis, DICER or DICER-like (DCL) proteins cleave long dsRNA or foldback (hairpin) RNA into $\sim 21 - 25$ nt fragments.

Dicer's structure allows it to measure the RNA it is cleaving. Like a cook who "dices" a carrot, DICER chops RNA into uniformly-sized pieces.

Note the two strands of the RNA molecule. The cleavage sites are indicated by yellow arrows.

ARGONAUTE proteins bind small RNAs and their targets and it is an important part of both RITS and RISC complexes.

ARGONAUTE proteins are named after the *argonaute1* mutant of *Arabidopsis*; *ago1* has thin radial leaves and was named for the octopus *Argonauta* which it resembles (see the figure).

ARGONAUTE proteins were originally described as being important for plant development and for germline stem-cell division in *Drosophila melanogaster*.

ARGONAUTE proteins are classified into three paralogous groups: Argonaute-like proteins, which are similar to *Arabidopsis thaliana AGO1;* Piwi-like proteins, which are closely related to *D. melanogaster PIWI* (P-element induced wimpy testis); and the recently identified *Caenorhabditis elegans*-specific group 3 Argonautes.

Members of a new family of proteins that are involved in RNA silencing mediated by Argonaute-like and Piwi-like proteins are present in bacteria, archaea and eukaryotes, which implies that both groups of proteins have an ancient origin.

The number of Argonaute genes that are present in different species varies. There are 8 Argonaute genes in humans (4 Argonaute-like and 4 Piwi-like), 5 in the *D. melanogaster genome (2 Argonaute-like and* 3 Piwi-like), 10 Argonaute-like in *A. thaliana, only* 1 Argonaute-like in *Schizosaccharomyces pombe and at* least 26 Argonaute genes in *C. elegans (5 Argonaute-like,* 3 Piwi-like and 18 group 3 Argonautes).

http://youdpreferanargonaute.com/2009/06/

MicroRNAs are encoded by MIR genes, fold into hairpin structures that are recognized and cleaved by DCL (Dicer-like) proteins.

In summary, **siRNAs**-mediates silencing via post-transcriptional and transcriptional gene silencing, while **miRNAs** -mediate slicing of mRNA and translational repression.

In 2006, Andrwe Z. Fire and Craig C. Mello were honored by the Nobel prize "for their discovery of RNA interference - gene silencing by double-stranded RNA".

CRISPR-Cas9-mediated DNA interference in bacterial adaptive immunity. A typical CRISPR locus in a type II CRISPR-Cas system comprises an array of repetitive sequences (repeats, brown diamonds) interspaced by short stretches of nonrepetitive sequences (spacers, colored boxes), as well as a set of CRISPRassociated (cas) genes (colored arrows). Preceding the cas operon is the transactivating CRISPR RNA (tracrRNA) gene, which encodes a unique noncoding RNA with homology to the repeat sequences. Upon phage infection, a new spacer (dark green) derived from the invasive genetic elements is incorporated into the CRISPR array by the acquisition machinery (Cas1, Cas2, and Csn2). Once integrated, the new spacer is cotranscribed with all other spacers into a long precursor CRISPR RNA (pre-crRNA) containing repeats (brown lines) and spacers (dark green, blue, light green, and yellow lines). The tracrRNA is transcribed separately and then anneals to the pre-crRNA repeats for crRNA maturation by RNase III cleavage. Further trimming of the 5' end of the crRNA (gray arrowheads) by unknown nucleases reduces the length of the guide sequence to 20 nt. During interference, the mature crRNA-tracrRNA structure engages Cas9 endonuclease and further directs it to cleave foreign DNA containing a 20-nt crRNA complementary sequence preceding the PAM sequence. Asterisks denote conserved, key residues for Cas9-mediated DNA cleavage activity. Abbreviations: Arg, arginine-rich bridge helix; crRNA, CRISPR RNA; CTD, C-terminal domain; nt, nucleotide; NUC, nuclease lobe; PAM, protospacer adjacent motif; REC, recognition lobe; tracrRNA, trans-activating CRISPR RNA.

The mechanism of CRISPR–Cas9–mediated genome engineering. The synthetic sgRNA or crRNA-tracrRNA structure directs a Cas9 endonuclease to almost arbitrary DNA sequence in the genome through a user-defined 20-nt guide RNA sequence and further guides Cas9 to introduce a double-strand break (DSB) in targeted genomic DNA. The DSB generated by two distinct Cas9 nuclease domains is repaired by host-mediated DNA repair mechanisms. In the absence of a repair template, the prevalent error-prone nonhomologous end joining (NHEJ) pathway is activated and causes random insertions and deletions (indels) or even substitutions at the DSB site, frequently resulting in the disruption of gene function. In the presence of a donor template containing a sequence of interest flanked by homology arms, the error-free homology directed repair (HDR) pathway can be initiated to create desired mutations through homologous recombination, which provides the basis for performing precise gene modification, such as gene knock-in, deletion, correction, or mutagenesis. CRISPR–Cas9 RNA-guided DNA targeting can be uncoupled from cleavage activity by mutating the catalytic residues in the HNH and RuvC nuclease domains, making it a versatile platform for many other applications beyond genome editing. Abbreviations: crRNA, CRISPR RNA; nt, nucleotide; PAM, protospacer adjacent motif; sgRNA, single-guide RNA; tracrRNA, trans-activating CRISPR RNA.

Evropským sociálním fondem a státním rozpočtem České republiky

