1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Technologii inzerční mutageneze lze využít i u živočichů. Zda se využívají  např. transpozony odvozené z Drosophily (transpozon Minos, viz schéma  vlevo nahoře (Klinakis et al., 2000). V tomto případě bylo nutne provést  kotransfekci s tzv. helper plasmiem, kódujícím transponázu (neautonomní  transpozon). Neo kóduje rezistenci k neomycinu, šipky ukazují směr  transkripce řízený přislušnými promotory, pA  je polyadenylační signál, ori  je počátek replikace viru SV40, S‐P je promotor téhož viru. Pro identifikaci  inzercí „in frame“ se zasaženými geny lze využít transpozony, obsahující  fůzi akceptorových míst sestřihu s ORF reportérového genu, např. lacZ‐neo  (bez AUG kodonu). Tento přístup umožňuje identifikovat inzerce do  aktivních genů prostřednictvím selekce inzerčních mutantů na rezistenci k  neomycinu, resp. vykazující β‐galaktozidázovou aktivitu (Klinakis et al.,  2000). 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 It has been found that dsRNA might be either an intermediate or a trigger in PTGS. In the first case, dsRNA is formed by the action of RNA‐dependent RNA polymerases (RdRPs), which use specific transcripts as a template. It is still not clear, how these transcripts are recognized, but it might be e.g. abundant RNA that is a result of viral amplification or transcription of foreign DNA. It is not clear, how the foreign DNA might be recognized, possibly, lack of bound proteins on the foreign “naked” DNA and its subsequent “signature” (e.g. by specific methylation pattern) during packing of the foreign DNA into the chromatin structure might be involved. The highly abundant transcripts might be recruited to the RdRPs by the defects in the RNA processing, e.g. lack of polyadenylation. In the case when dsRNA is a direct trigger, there are two major RNA molecules involved in the process: Short interference RNA (siRNA) and micro RNA (miRNA), both encoded by the endogenous DNA. These two functionally similar molecules differ in their origin: siRNAs are dominantly product of the cleavage of the long dsRNA that are produced by the action of cellular or viral RdRPs. However, there are also endogenous genes, e.g. short hairpin RNAs (shRNAs) allowing production of the siRNA (see the figure). miRNAs are involved in the developmental‐specific regulations and are product of transcription of endogenous genes encoding for small dsRNAs with specific structure (see the figure). In addition to siRNAs, there are trans‐acting siRNAs (tasiRNAs) that are a special class of siRNAs that appear to function in development (much like miRNAs) but have a unique mode of origin involving components of both miRNA and siRNA pathways. Developmental regulations via miRNAs are more often used in animals then in plants. The dsRNAs of all origins and pre miRNAs are cleaved by DICER or DICER‐like (DCL) enzyme complexes with RNAse activity, leading to production of siRNAs and miRNA, respectively. These small RNAs are of 21‐24 bp long and bind either to RNA-induced transcriptional silencing complex (RITS) or RNAinduced silencing komplex (RISC). 56 In siRNA and miRNA biogenesis, DICER or DICER-like (DCL) proteins cleave long dsRNA or foldback (hairpin) RNA into ~ 21 – 25 nt fragments. Dicer’s structure allows it to measure the RNA it is cleaving. Like a cook who “dices” a carrot, DICER chops RNA into uniformly-sized pieces. Note the two strands of the RNA molecule. The cleavage sites are indicated by  yellow arrows.  57 ARGONAUTE proteins bind small RNAs and their targets and it is an important part of both RITS and RISC complexes. ARGONAUTE proteins are named after the argonaute1 mutant of Arabidopsis; ago1 has thin radial leaves and was named for the octopus Argonauta which it resembles (see the figure). ARGONAUTE proteins were originally described as being important for plant development and for germline stem‐cell division in Drosophila melanogaster. ARGONAUTE proteins are classified into three paralogous groups: Argonaute‐like proteins, which are similar to Arabidopsis thaliana AGO1; Piwi‐like proteins, which are closely related to D. melanogaster PIWI (P‐element induced wimpy testis); and the recently identified Caenorhabditis elegans‐specific group 3 Argonautes. Members of a new family of proteins that are involved in RNA silencing mediated by Argonaute‐like and Piwi‐like proteins are present in bacteria, archaea and eukaryotes, which implies that both groups of proteins have an ancient origin. The number of Argonaute genes that are present in different species varies. There are 8 Argonaute genes in humans (4 Argonaute‐like and 4 Piwi‐like), 5 in the D. melanogaster genome (2 Argonaute‐like and 3 Piwi‐like), 10 Argonaute‐like in A. thaliana, only 1 Argonaute‐like in Schizosaccharomyces pombe and at least 26 Argonaute genes in C. elegans (5 Argonaute‐like, 3 Piwi‐like and 18 group 3 Argonautes). http://youdpreferanargonaute.com/2009/06/ 58 MicroRNAs are encoded by MIR genes, fold into hairpin structures that are  recognized and cleaved by DCL (Dicer‐like) proteins.  In summary, siRNAs-mediates silencing via post-transcriptional and transcriptional gene silencing, while miRNAs -mediate slicing of mRNA and translational repression. 59 In 2006, Andrwe Z. Fire and Craig C. Mello were honored by the Nobel prize “for their discovery of RNA interference - gene silencing by double-stranded RNA“. 60 61 CRISPR–Cas9‐mediated DNA interference in bacterial adaptive immunity. A  typical CRISPR locus in a type II CRISPR–Cas system comprises an array of  repetitive sequences (repeats, brown diamonds) interspaced by short stretches  of nonrepetitive sequences (spacers, colored boxes), as well as a set of CRISPR‐ associated (cas) genes (colored arrows). Preceding the cas operon is the trans‐ activating CRISPR RNA (tracrRNA) gene, which encodes a unique noncoding RNA  with homology to the repeat sequences. Upon phage infection, a new spacer  (dark green) derived from the invasive genetic elements is incorporated into the  CRISPR array by the acquisition machinery (Cas1, Cas2, and Csn2). Once  integrated, the new spacer is cotranscribed with all other spacers into a long  precursor CRISPR RNA (pre‐crRNA) containing repeats (brown lines) and spacers  (dark green, blue, light green, and yellow lines). The tracrRNA is transcribed  separately and then anneals to the pre‐crRNA repeats for crRNA maturation by  RNase III cleavage. Further trimming of the 5’ end of the crRNA ( gray  arrowheads) by unknown nucleases reduces the length of the guide sequence to  20 nt. During interference, the mature crRNA–tracrRNA structure engages Cas9  endonuclease and further directs it to cleave foreign DNA containing a 20‐nt  crRNA complementary sequence preceding the PAM sequence.  Asterisks denote  conserved, key residues for Cas9‐mediated DNA cleavage activity. Abbreviations:  Arg, arginine‐rich bridge helix; crRNA, CRISPR RNA; CTD, C‐terminal domain; nt, nucleotide; NUC, nuclease lobe; PAM, protospacer adjacent motif; REC,  recognition lobe; tracrRNA, trans‐activating CRISPR RNA. 62 The mechanism of CRISPR–Cas9–mediated genome engineering. The synthetic  sgRNA or crRNA–tracrRNA structure directs a Cas9 endonuclease to almost  arbitrary DNA sequence in the genome through a user‐defined 20‐nt guide RNA  sequence and further guides Cas9 to introduce a double‐strand break (DSB) in  targeted genomic DNA. The DSB generated by two distinct Cas9 nuclease  domains is repaired by host‐mediated DNA repair mechanisms. In the absence of  a repair template, the prevalent error‐prone nonhomologous end joining (NHEJ)  pathway is activated and causes random insertions and deletions (indels) or even  substitutions at the DSB site, frequently resulting in the disruption of gene  function. In the presence of a donor template containing a sequence of interest  flanked by homology arms, the error‐free homology directed repair (HDR)  pathway can be initiated to create desired mutations through homologous  recombination, which provides the basis for performing precise gene  modification, such as gene knock‐in, deletion, correction, or mutagenesis.  CRISPR–Cas9 RNA‐guided DNA targeting can be uncoupled from cleavage activity  by mutating the catalytic residues in the HNH and RuvC nuclease domains,  making it a versatile platform for many other applications beyond genome  editing. Abbreviations: crRNA, CRISPR RNA; nt, nucleotide; PAM, protospacer  adjacent motif; sgRNA, single‐guide RNA; tracrRNA, trans‐activating CRISPR RNA. 63 64 65 66 67