
 OH, a prominent flame emitter, absorber.
Useful for T, XOH measurements.
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1. Introduction

Selected region of 
A2Σ+←X2Π(0,0) 
band at 2000K 
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 Term energies
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2. Energy levels

 Separation of terms: Born-Oppenheimer approximation

 G(v) = ωe(v + 1/2) – ωexe(v + 1/2)2

 Sources of Te, ωe, ωexe  Herzberg

 Overall system : A2Σ+←X2Π

       JFvGnTJvnE e ,,
elec. q. no.

vib. q. no.
ang. mom. q. no.

Electronic 
energy

Vibrational
energy

Angular momentum energy (nuclei + electrons)

A2Σ+
Te ωe ωexe X2Π

Te ωe ωexe

32682.0 3184.28 97.84 0.0 3735.21 82.21

in [cm-1]

Let’s first look at the upper state  Hund’s case b!



 Hund’s case b (Λ=0, S≠0) – more standard, especially for hydrides
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2. Energy levels

Recall:

 Σ, Ω not rigorously defined

 N = angular momentum without spin

 S = 1/2-integer values

 J = N+S, N+S-1, …, |N-S|

 i = 1, 2, …

Fi(N) = rotational term energy

Now, specifically, for OH?



 The upper state is A2Σ+
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2. Energy levels

For OH:

 Λ = 0, ∴	Σ not defined  use Hund’s case b

 N = 0, 1, 2, …

 S = 1/2

 J = N ± 1/2

 F1 denotes J = N + 1/2

F2 denotes J = N – 1/2

Common to write either F1(N) or F1(J)



 The upper state: A2Σ+
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2. Energy levels

 for pure case b 

 ∴ the spin-splitting is γv(2N+1)  function of v; increases with N 
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   21  OHfor  cm1.0constant  splitting Av

 Notes:

 Progression for A2Σ+

 “+” denotes positive 
“parity” for even N [wave 
function symmetry]

 Importance? Selection 
rules require parity 
change in transition

γv(2N+1) ~ 0.1(5) ~ 0.5cm-1 for N2
Compare with ∆νD(1800K) = 0.23cm-1



 The ground state: X2Π (Λ=1, S=1/2) 
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2. Energy levels

 Note:

1. Rules less strong for hydrides

2. OH behaves like Hund’s a @ low N
like Hund’s b @ large N

 at large N,      couples more to N, Λ is less defined, S 
decouples from A-axis

3. Result? OH X2Π is termed “intermediate case”

L


Hund’s case a Hund’s case b
Λ ≠ 0, S ≠ 0, Σ defined Λ = 0, S ≠ 0, Σ not defined



 The ground state: X2Π
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2. Energy levels

 Notes:
3. For “intermediate/transition cases”

where Yv ≡ A/Bv (< 0 for OH); A is effectively the moment of inertia
Note: F1(N) < F2(N)
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For small N
Behaves like Hund’s a, i.e., symmetric top, with spin splitting ΛA

Behaves like Hund’s b, with small (declining) effect from spin



 The ground state: X2Π
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2. Energy levels

 Notes:
4. Some similarity to symmetric top

Showed earlier that F1 < F2

N

3

2

1

J

5/2

3/2

1/2

J

7/2

5/2

3/2
F1: J = N + 1/2 F2: J = N – 1/2

Ω = 3/2 Ω = 1/2

Te = T0 + AΛΣ
For OH, A = -140 cm-1

 Te = T0 + (-140)(1)(1/2), Σ = 1/2
+ (-140)(1)(-1/2), Σ = -1/2

 ∆Te = 140 cm-1

Not too far off the 130 cm-1 spacing 
for minimum J

130

Hund’s a → 2|(A-Bv)| Recall: Hund’s case a has 
constant difference of 2(A-Bv) for same J

F(J) = BJ(J+1) + (A-B)Ω2

(A–B)Ω2 ≈ -158.5Ω2

(A for OH~ -140, B ~ 18.5), Ω = 3/2, 1/2
 Ω = 3/2 state lower by 316 cm-1

Actual spacing is only 188 cm-1, reflects 
that hydrides quickly go to Hund’s case b



Hundův typ a



 The ground state: X2Π
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2. Energy levels

 Notes:
5. Role of Λ-doubling

Showed earlier that F1 < F2

   
    icid

diid

ciic FF
JJJFF
JJJFF
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 Fic(J) – Fid(J) ≈ 0.04 cm-1 for 
typical J in OH

 c and d have different parity 
(p)

 Splitting decreases with 
increasing N

N

3

2

1

J

5/2

3/2

1/2

J

7/2

5/2

3/2
F1: J = N + 1/2 F2: J = N – 1/2

Ω = 3/2 Ω = 1/2

p

+
–

–
+

+
–

p
–
+

+
–

+
–

Now let’s proceed to draw transitions, but 
first let’s give a primer on transition notation.



 Transition notations

 General selection rules
 Parity must change + → – or – → +
 ∆J = 0, േ1
 No Q (J = 0) transitions, J = 0 → J = 0 not allowed
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3. Allowed radiative transitions

Full description: A2Σ+ (v')←X2Π (v") YXαβ(N" or J")

where Y – ∆N (O, P, Q, R, S for ∆N = -2 to +2)
X – ∆J (P, Q, R for ∆J = -1, 0, +1)
α = i in Fi'; i.e., 1 for F1, 2 for F2

β = i in Fi"; i.e., 1 for F1, 2 for F2

 "or  " JNXY


 Notes:
1. Y suppressed when ∆N = ∆J
2. β suppressed when α = β
3. Both N" and J" are used

Strongest trans.
e.g., R1(7) or R17

Example: SR21: 
∆J = +1, ∆N = +2
F' = F2(N')
F" = F1(N")
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 Allowed transitions
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3. Allowed radiative transitions

Allowed rotational transitions from N"=13 in the A2Σ+←X2Π system

 12 bands possible (3 originating from each lambda-doubled, spin-split X state)
 Main branches: α = β; Cross-branches: α ≠ β
 Cross-branches weaken as N increases

F1(13)F1c(13) 
F1d(13)

State or level

a specific 
v",J",N",and
Λ-coupling



 Allowed transitions
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3. Allowed radiative transitions

Allowed rotational transitions from N"=13 in the A2Σ+←X2Π system

 Notes:
 A given J" (or N") has12 branches (6 are strong; ∆J = ∆N)
 + ↔ – rule on parity
 F1c–F1d ≈ 0.04N(N+1) for OH  for N~10, Λ-doubling is ~ 4cm-1, giving clear separation
 If upper state has Λ-doubling, we get twice as many lines!



 Allowed transitions
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3. Allowed radiative transitions

Allowed rotational transitions from N"=13 in the A2Σ+←X2Σ+ system

 Note:
1. The effect of the parity selection rule in reducing the number of 

allowed main branches to 4
2. The simplification when Λ=0 in lower state, i.e., no Λ-doubling



 Absorption oscillator strength
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4.1. Oscillator strengths

   

1"2
notation   shorthandin or 

1"2
'"

'"'"'"

'"
'"'"',',',',',",",",","







J
Sqff

J
Sqff

JJ
vvnnJJ

JJ
vvnnJvnJvn

elec.   vib.   spin   ang. mom.   Λ-doubling 

elec. osc. strength F-C factor   H-L factor

'"vvf = band oscillator strength

(v',v") fv'v"

(0,0) 0.00096
(1,0) 0.00028

 Notes: qv"v' and SJ"J' are normalized





1
'

'" 
v

vvq

  





2Xfor  4"

'
'" 121"2

elg
J

JJ SJS 

this sum includes the S values for all states with J"

1 for Λ = 0 (Σ state), 2 otherwise

For OH A2Σ+–X2Π



 Is SJ"J' = SJ'J"?  Yes, for our normalization scheme!
 From g1f12 = g2f21, and recognizing that 2J+1 is the ultimate (non removable) degeneracy at 

the state level, we can write, for a specific transition between single states

In this way, there are no remaining electronic degeneracy and we require, for detailed 
balance, that and 

 Do we always enforce                           for a state?  No!
 But note we do enforce (14.17) 

and (14.19)

where, for OH A2Σ←X2Π, (2S+1) = 2 and δ = 2.

 When is there a problem?
 Everything is okay for Σ-Σ and Π-Π, where there are equal “elec. degeneracies”, i,e., g"el = 

g'el. But for Σ-Π (as in OH), we have an issue. In the X2Π state, gel = 4 (2 for spin and 2 for Λ-
doubling), meaning each J is split into 4 states. Inspection of our H-L tables for SJ"J' for OH 
A2Σ←X2Π (absorption) confirms ΣSJ"J' from each state is 2J"+1. All is well. But, in the upper 
state, 2Σ, we have a degeneracy g'el of 2 (for spin), not 4, and now we will find that the sum 
of           is twice 2J'+1 for a single J' when we use the H-L values for SJ"J' for SJ'J". However, 
as there are 2 states with J', the overall sum as required by (14.19)
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4.1. Oscillator strengths

   
1'2

'1'2
1"2

"1"2 "'
"'

'"
'" 





J

SqfJ
J
SqfJ JJ

vvel
JJ

vvel

 1"2
'

'"  JS
J

JJ

"''" JJJJ SS 


"

"'
J

JJS

"''",'" vvvvelel qqff 
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'

'"  SJS
J

JJ
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"
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J
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"
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 Absorption oscillator strength for f00 in OH A2Σ+–X2Π
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4.1. Oscillator strengths

Source f00

Oldenberg, et al. (1938) 0.00095 ± 0.00014

Dyne (1958) 0.00054 ± 0.0001

Carrington (1959) 0.00107 ± 0.00043

Lapp (1961) 0.00100 ± 0.0006

Bennett, et al. (1963) 0.00078 ± 0.00008

Golden, et al. (1963) 0.00071 ± 0.00011

Engleman, et al. (1973) 0.00096

Bennett, et al. (1964) 0.0008 ± 0.00008

Anketell, et al. (1967) 0.00148 ± 0.00013



 Absorption oscillator strength
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4.1. Oscillator strengths

Hönl-London factors for selected OH transitions

Transition SJ"J'/(2J"+1) ΣF1(J) ΣF2(J) Σ[F1(J)+F2(J)]
Q12(0.5) 0.667 0 2 2
Q2(0.5) 0.667
R12(0.5) 0.333
R2(0.5) 0.333
P1(1.5) 0.588 2 2 4
P12(1.5) 0.078
P21(1.5) 0.392
P2(1.5) 0.275
Q1(1.5) 0.562
Q12(1.5) 0.372
Q21(1.5) 0.246
Q2(1.5) 0.678
R1(1.5) 0.165
R12(1.5) 0.235
R21(1.5) 0.047
R2(1.5) 0.353
P1(2.5) 0.530 2 2 4
P12(2.5) 0.070
P21(2.5) 0.242
P2(2.5) 0.358
Q1(2.5) 0.708
Q12(2.5) 0.263
Q21(2.5) 0.214
Q2(2.5) 0.757
R1(2.5) 0.256
R12(2.5) 0.173
R21(2.5) 0.050
R2(2.5) 0.379

Transition SJ"J'/(2J"+1) ΣF1(J) ΣF2(J) Σ[F1(J)+F2(J)]
P1(3.5) 0.515 2 2 4
P12(3.5) 0.056
P21(3.5) 0.167
P2(3.5) 0.405
Q1(3.5) 0.790
Q12(3.5) 0.195
Q21(3.5) 0.170
Q2(3.5) 0.814
R1(3.5) 0.316
R12(3.5) 0.131
R21(3.5) 0.044
R2(3.5) 0.402
P1(9.5) 0.511 2 2 4
P12(9.5) 0.016
P21(9.5) 0.038
P2(9.5) 0.488
Q1(9.5) 0.947
Q12(9.5) 0.050
Q21(9.5) 0.048
Q2(9.5) 0.950
R1(9.5) 0.441
R12(9.5) 0.035
R21(9.5) 0.014
R2(9.5) 0.462




