10.1 Consider a solid-state plasma with the same number of electrons (e) and holes (h). Using the linearized Langevin equation (with $\alpha = e, h$)

$$m_{\alpha} \frac{\partial \mathbf{u}_{\alpha}}{\partial t} = q_{\alpha} (\mathbf{E} + \mathbf{u}_{\alpha} \times \mathbf{B}_{0}) - \nu_{c\alpha} m_{\alpha} \mathbf{u}_{\alpha}$$

taking $m_e = m_h$, $\nu_{ce} = \nu_{ch}$, assuming a time dependence for both **E** and \mathbf{u}_{α} of the form exp $(-i\omega t)$, and choosing a Cartesian coordinate system with the z axis pointing along the constant and uniform magnetic field \mathbf{B}_0 , show that the conductivity dyad is given by

$$\mathcal{S} = 2 \begin{pmatrix} \sigma_{\perp} & 0 & 0 \\ 0 & \sigma_{\perp} & 0 \\ 0 & 0 & \sigma_{0} \end{pmatrix}$$

with σ_{\perp} and σ_0 given by (5.3) and (5.5), respectively. Explain, in physical terms, why we have $\sigma_H = 0$ in this case.

$$\sigma_{\perp} = \frac{(\nu_c - i\omega)^2}{(\nu_c - i\omega)^2 + \Omega_{ce}^2} \sigma_0 \tag{5.3}$$

$$\sigma_H = \frac{(\nu_c - i\omega)\Omega_{ce}}{(\nu_c - i\omega)^2 + \Omega_{ce}^2} \sigma_0 \tag{5.4}$$

$$\sigma_0 = \frac{n_e e^2}{m_e (\nu_c - i\omega)} = \frac{n_e e^2 (\nu_c + i\omega)}{m_e (\nu_c^2 + \omega^2)}$$
 (5.5)

10.3 Consider the equation $\mathbf{J} = \mathcal{S} \cdot \mathbf{E}$, with \mathcal{S} as given in (4.23). If we choose a Cartesian coordinate system such that $E_x = E_{\perp}$, $E_y = 0$, $E_z = E_{\parallel}$, and $\mathbf{B}_0 = B_0 \hat{\mathbf{z}}$ (refer to Fig. 2), verify that in this coordinate system we have

$$J_x = \sigma_{\perp} E_{\perp}$$
 $J_y = \sigma_H E_{\perp}$
 $J_z = \sigma_{\parallel} E_{\parallel}$

Interpret physically this result with reference to Fig. 2.

Fig. 2 Relative orientation of the vector fields \mathbf{E}_{\parallel} , \mathbf{E}_{\perp} , and $-\mathbf{E} \times \mathbf{B}_{0}$. The conductivities σ_{\parallel} , σ_{\perp} , and σ_{H} govern the magnitude of the electric currents flowing along these directions, respectively.