5.1 Consider a system of particles uniformly distributed in space, with a constant particle number density n_0 , and characterized by a velocity distribution function f(v) such that

$$f(v) = K_0$$
 for $|v_i| \le v_0$ $(i = x, y, z)$

$$f(v) = 0$$
 otherwise,

where K_0 is a nonzero positive constant. Determine the value of K_0 in terms of n_0 and v_0 .

5.4 Consider the motion of charged particles, in one dimension only, in the presence of an electric potential V(x). Show, by direct substitution, that a function of the form

$$f = f(\tfrac{1}{2}mv^2 + qV)$$

is a solution of the Boltzmann equation under steady-state conditions.

 ${f 5.8}$ Consider a one-dimensional harmonic oscillator whose total energy can be expressed by

$$E = \frac{1}{2}(mv^2 + cx^2)$$

where c is a constant and x its displacement coordinate. Show that the trajectory described by the representative point of the oscillator, in phase space, is an ellipse.