OES	CR modelling	CRM neon	Examples 000	Self-absorption

Optická emisní spektroskopie atomů Diagnostické metody 1

Zdeněk Navrátil

Ústav fyzikální elektroniky Přírodovědecké fakulty Masarykovy univerzity, Brno

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

OES	CR modelling	CRM neon	Examples 000	Self-absorption
Outline				

2 CR modelling

3 CR model for neon discharge

- DC
- RF
- MW

5 Measurement of densities by self-absorption methods

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

- typically grating spectrometer of Czerny-Turner mounting equipped with CCD/ICCD detector
- spectral range and sensitivity: detector (silicon CCD, photocathode), grating efficiency
- resolution: number of illuminated grating grooves, slit width, pixel size

$$R = \lambda / \Delta \lambda = mN$$

Sac

OES	CR modelling	CRM neon	Examples 000	Self-absorption
Technique	overview – ho	w we measure		

- collecting the light emitted by plasma (optical emission spectroscopy, OES):
 - non-intrusive
 - sensing the light at the plasma boundary
 - optical probes
- sending the light through the plasma (optical absorption spectroscopy):
 - based on Lambert-Beer law
 - can disturb the plasma, two ports
 - white light, hollow cathode lamps, LASERS DM2 Dvořák

• collecting the light emitted and reabsorbed by the plasma (self-absorption methods of OES)

- collecting the light emitted by plasma (optical emission spectroscopy, OES):
 - non-intrusive
 - $\bullet\,$ sensing the light at the plasma boundary $\rightarrow\,$ self-absorption can play a role
 - optical probes
- sending the light through the plasma (optical absorption spectroscopy):
 - based on Lambert-Beer law
 - can disturb the plasma, two ports
 - white light, hollow cathode lamps, LASERS DM2 Dvořák

• collecting the light emitted and reabsorbed by the plasma (self-absorption methods of OES)

OES	CR modelling	CRM neon	Examples 000	Self-absorption
Technique	overview – v	what we look at		

• line positions (wavelengths): electric, magnetic fields, atom velocities (Stark, Zeeman, Doppler effect)

- lineshapes and linewidths: electron density, gas pressure, density, temperatures (Stark, van der Waals, resonance, Doppler line broadening) DM1 – Synek
- line intensities: . . . all

OES	CR modelling	CRM neon	Examples 000	Self-absorption
Technique	overview – wh	at we look at		

- line positions (wavelengths): electric, magnetic fields, atom velocities (Stark, Zeeman, Doppler effect)
- lineshapes and linewidths: electron density, gas pressure, density, temperatures (Stark, van der Waals, resonance, Doppler line broadening) DM1 – Synek
- line intensities: . . . all
 - relative instrument spectral sensitivity is taken into account, no absolute intensity calibration is performed output: relative populations of excited states, excitation temperatures etc.

• absolute – access to absolute densities of excited states, electron density etc.

OES	CR modelling	CRM neon	Examples 000	Self-absorption
Absolute	intensity me	asurement		

 radiant flux/zářivý tok – energy emitted/incident on surface per unit time

$$\Phi = \frac{\mathrm{d}\mathscr{E}}{\mathrm{d}t}, \quad \mathrm{W} \tag{1}$$

• irradiance - flux density (per unit surface)

$$I = \frac{\mathrm{d}\Phi}{\mathrm{d}S} = \frac{\mathrm{d}^2\mathscr{E}}{\mathrm{d}t\mathrm{d}S}, \quad \mathrm{W}\,\mathrm{m}^{-2} \tag{2}$$

- specified during calibratrion of calibrated light sources (spectral irradiance)
- optical fibre is not a detector of irradiance (acceptance angle)
- radiometric irradiance probes, cosine correction diffusers, integrating spheres, . . .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

 radiance (zář) – radiant flux per unit perpendicular surface and unit solid angle

$$L = \frac{d^2 \Phi}{dS \cos \theta d\Omega} = \frac{d^3 \mathscr{E}}{dt \, dS \cos \theta \, d\Omega}, \quad W \, m^{-2} \, \mathrm{sr}^{-1} \qquad (3)$$

• radiance \times irradiance

$$I = \int_{\Omega} L(\theta) \cos \theta d\Omega \qquad (4)$$

For constant *L* (Lambert) radiators $I = \pi L$.

• for description of radiating solid surfaces

Э

Sac

イロト イポト イヨト イヨト

 OEs
 CR modelling
 CRM neon
 Examples oco
 Self-absorption

 Absolute intensity measurement 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3

• emission coefficient - radiant power emited by unit volume into unit solid angle

$$j = \frac{\mathrm{d}^3 \mathscr{E}}{\mathrm{d}t \,\mathrm{d}V \,\mathrm{d}\Omega}.\tag{5}$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• all quantities have their spectral densities, e.g. $j(\lambda)$

irradation of detector for optical thin plasma condition

 OEs
 CR modelling
 CRM neon
 Examples oco
 Self-absorption

 Electron temperature from Boltzmann plot?

• density of atoms in excited state

$$n_i = n \frac{g_i}{Q} e^{-\frac{\mathscr{E}_i}{k_{\rm b} T_{\rm e}}} \tag{6}$$

 g_i – statistical weight, \mathcal{E}_i – excitation energy, n – atom density, Q – state sum, T_e excitation temperature (= electron temperature)

• spectral line intensity

$$I \propto n_i A_{ij} \frac{hc}{\lambda} \tag{7}$$

$$I = C \cdot \frac{g_i A_{ij}}{\lambda} e^{-\frac{\mathscr{E}_i}{k_{\rm b} T_{\rm e}}}$$
(8)

Boltzmann plot

$$\ln \frac{l\lambda}{g_i A_{ij}} = -\frac{1}{k_b T_e} \mathscr{E}_i + \ln k_1, \qquad (9)$$

OES	CR modelling	CRM neon	Examples	Self-absorption
			000	

Possibilities for excitation temperature measurement

excited level balance

- local thermodynamic equilibrium (LTE) plasma
 - LTE condition

$$n_{\rm e} \gg 1.6 \cdot 10^{12} \sqrt{T_{\rm e}} (\Delta E)^3 ~({\rm cm}^{-3})$$

- electron temperature from Boltzmann plot
- non-LTE plasma
 - corona equilibrium, excitation saturation phase, ...
 - low electron density plasma
 - use of Boltzmann-plot leads to erroneous electron temperature

CR modelling

non-Maxwellian EDF

- inelastic collisions, beam electrons, non-local EDF

Quasi-steady state-solution of differential equations

coupled DE for densities of excited states

$$\frac{\partial n_i}{\partial t} + \nabla (n_i \vec{v}) = \left(\frac{\partial n_i}{\partial t}\right)_{c,r}$$
(10)

population and depopulation processes are very fast:

$$\frac{\partial n_i}{\partial t} = \left(\frac{\partial n_i}{\partial t}\right)_{\rm c,r} = 0 \tag{11}$$

not valid for ground-state atoms, ions, metastables, high pressure

Level balance

$$\frac{\partial n_0}{\partial t} + \bigtriangledown (n_0 \vec{v_0}) = -S_{\rm cr} n_{\rm e} n_0 + \alpha_{\rm cr} n_{\rm e} n_{\rm ion}$$

$$\frac{\partial n_{\rm ion}}{\partial t} + \bigtriangledown (n_{\rm ion} v_{\rm ion}) = + S_{\rm cr} n_{\rm e} n_0 - \alpha_{\rm cr} n_{\rm e} n_{\rm ion}$$

classification of models (plasma state)

- ionizing plasma $S_{\rm cr} n_{\rm e} n_0 \alpha_{\rm cr} n_{\rm e} n_{\rm ion} > 0$
 - plasma conducting current, ionizing waves
- recombining plasma
 - $S_{\rm cr} n_{\rm e} n_0 \alpha_{\rm cr} n_{\rm e} n_{\rm ion} < 0$
 - afterglows, outer regions of flames
- equilibrium plasma $S_{cr}n_en_0 \alpha_{cr}n_en_{ion} = 0$ (ioniozation-recombination equilibrium)

recombining plasma

Sac

population by electron impact excitation, radiative deexcitation

$$k_{0i}^{\rm el} n_{\rm e} n_0 + k_{\rm mi}^{\rm el} n_{\rm e} n_{\rm m} (+ \sum_{j>i} \Lambda_{ji} A_{ji} n_j) = \sum_{j
(12)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

saturation of the excited state densities with increasing n_e

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

• no Saha equilibrium, $S_i n_i \gg \alpha_i n_{\rm ion}$

 \bullet stepwise excitation \rightarrow ladder-like excitation flow

$$k_{i-1,i}n_{e}n_{i-1}-k_{i,i-1}n_{e}n_{i}=k_{i,i+1}n_{e}n_{i}-k_{i+1,i}n_{e}n_{i+1}-S_{i}n_{e}n_{i}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

OES	CR modelling		CRM neo	n Exa ooc	amples	Self-absorption
Excitation	phases:	partial	local	thermodyr	namic	equilibrium

- $\bullet~2$ equilibria: excited state \times ion state, neighbouring excited states
- $\bullet\,$ ionization \sim recombination \gg excitation flow

$$k_{i-1,i}n_{e}n_{i-1} - k_{i,i-1}n_{e}n_{i} = k_{i,i+1}n_{e}n_{i} - k_{i+1,i}n_{e}n_{i+1} - S_{i}n_{e}n_{i} + \alpha_{i}n_{e}n_{ion}$$

OES		CR modelling	CRM neon	Examples 000	Self-absorption
-	~				

・ロト・日本・HEF - HEF - ACC

OES	CR modelling	CRM neon	Examples 000	Self-absorption
Excita	tion phases			

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

UES	CR modelling	CRM neon	Examples 000	Self-absorption
Electron	distribution f	unction		

- Maxwellian EDF
- solution of Boltzmann kinetic equation
- normalization of the EDF

$$\int_0^\infty f(\varepsilon)\varepsilon^{1/2}\mathrm{d}\varepsilon = 1 \tag{13}$$

• mean electron energy

$$\langle \varepsilon \rangle = \int_0^\infty f(\varepsilon) \varepsilon^{3/2} \mathrm{d}\varepsilon,$$
 (14)

• rate coefficients k, $k_{\rm inv}$ of electron collision with cross section σ and of inverse process

$$k = \sqrt{\frac{2e}{m_{\rm e}}} \int_0^\infty \sigma(\varepsilon) f_0(\varepsilon) \varepsilon d\varepsilon$$
$$k_{\rm inv} = \sqrt{\frac{2e}{m_{\rm e}}} \frac{g_j}{g_i} \int_{\varepsilon_{ij}}^\infty \sigma(\varepsilon) f_0(\varepsilon - \varepsilon_{ij}) \varepsilon d\varepsilon$$

OES

CRM neon

Examples

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Approaches of OES data processing

- line ratio methods
 - selection of convenient line pair (sensitivity, model simplicity, ease of measurement)
 - no control of model validity
- "many line fitting"methods

Boffard J B et al 2012 J. Phys. D: Appl. Phys. 45 045201

OES	CR modelling	CRM neon	Examples 000	Self-absorption
TRG s	pectroscopy			

・ロト・西ト・ヨト・ヨー シック

DES	CR modelling	CRM neon	Examples 000	Self-absorption

Electric field measurement

<ロト < 回 ト < 回 ト < 回 ト - 三 三

590

Ivkovic S S et al 2014 J. Phys. D: Appl. Phys. 47 055204

OES	CR modelling	CRM neon	Examples 000	Self-absorption
Excited	levels			

i	nlpqr	Racah	Paschen		(eV)
1	21000	2p ⁶	1po	1	0.000000
2	30332	3s [3/2] ^o ₂	1s5	5	16.61907
3	30331	$3s [3/2]_{1}^{\sigma}$	1s4	3	16.67083
4	30110	3s' [1/2]0	1s3	1	16.71538
5	30111	$3s' [1/2]_1^o$	1s ₂	3	16.84805
6	31311	3p [1/2]1	2p10	3	18.38162
7	31353	3p [5/2]3	2pg	7	18.55511
8	31352	3p [5/2] ₂	2p8	5	18.57584
9	31331	3p [3/2]1	2p7	3	18.61271
10	31332	3p [3/2]2	2p6	5	18.63679
11	31131	3p [3/2]1	2p5	3	18.69336
12	31132	3p [3/2]2	2p4	5	18.70407
13	31310	3p [1/2]0	2p3	1	18.71138
14	31111	3p' [1/2]1	2p2	3	18.72638
15	31110	3p' [1/2]o	2p1	1	18.96596
16	40332	4s [3/2]2	2s5	5	19.66403
17	40331	4s [3/2] ₁	2s4	3	19.68820
18	40110	4s [1/2]0	2s3	1	19.76060
19	40111	$4s' [1/2]_1^o$	2s ₂	3	19.77977
20	32310	3d [1/2]0	3d6	1	20.02464
21	32311	$3d [1/2]_{1}^{3}$	3d5	5	20.02645
22	32374	3d [7/2]4	3d'4	9	20.03465
23	32373	3d [7/2]	3d4	7	20.03487
24	32332	3d [3/2]	3d3	5	20.03675
25	32331	3d [3/2]	3d ₂	3	20.04039
26	32352	3d [5/2]2	3d'1	5	20.04821
	32353	3d [5/2] ^o	3d'1	7	20.04843
27	32152	3d' [5/2]2	3s''''	5	20.13611
	32153	3d' [5/2]3	3s'''	7	20.13630
28	32132	$3d' [3/2]_2^\circ$	3s''	5	20.13751
29	32131	3d' [3/2]	3s1	3	20.13946
			► < Ξ >		

 OES
 CR modelling
 CRM neon
 Examples 000
 Self-absorption

 Considered elementary processes

• Electron impact excitation out of the g.s. $Ne(1) + e^{-} \xrightarrow{k_{1j}} Ne(j) + e^{-}, \quad j = 2,...29$

2 Electron impact excitation out of $2p^53s$ states Ne $(i) + e^{-} \xrightarrow{k_{ij}} Ne(j) + e^{-}, \quad i = 2, \dots 5, j = 6, \dots 15$

S Electron impact deexcitation to the g.s. and 2p⁵3s states

$$Ne(i) + e^{-} \xrightarrow{k_{ij}} Ne(j) + e^{-}, \quad i = 2,...29, \ j = 1,...5, \ i > j$$

• Electron induced excitation transfer among 2p⁵3s states Ne(i) + e⁻ $\stackrel{k_{ij}}{\rightarrow}$ Ne(j) + e⁻, i, j = 2,...5

Spontaneous emission and absorption of radiation $Ne(i) \xrightarrow{\Lambda_{ij}A_{ij}} Ne(j) + hv, \quad i = 2, ..., 29, i > j$ OES CR modelling CRM neon Examples Self-absorption Considered elementary processes 2

Two-body collision induced deactivation and excitation transfer among 2p⁵3p states

 $\operatorname{Ne}(i) + \operatorname{Ne}(1) \xrightarrow{k_{ij}} \operatorname{Ne}(j) + \operatorname{Ne}(1), \quad i, j = 6, \dots 15$

- Chemoionization 7 $Ne(2-5) + Ne(2-5) \xrightarrow{k_{met}} Ne(1) + Ne^{+} + e^{-}$
- Two-body collision induced deactivation $Ne(2-5) + Ne(1) \xrightarrow{k_{2b}} 2Ne(1)$

Penning ionization of impurities Ne(2-5) + H₂ $\xrightarrow{k_{H_2^+}}$ H₂⁺ + Ne(1) + e⁻ $Ne(2-5) + H_2 \xrightarrow{k_{NeH^+}} NeH^+ + H + e^ \operatorname{Ne}(2-5) + \operatorname{N_2}^{k_{\operatorname{N_2}^+}} \operatorname{N_2}^+ + \operatorname{Ne}(1) + \operatorname{e}^-_{\operatorname{N_2}^+} + \operatorname{Ne}(1) + \operatorname{Ne}(1)$

- Electron impact ionization of the ground-state and metastable atoms
- Three-body production of dimers

$$Ne(2,4) + Ne(1) + Ne(1) \xrightarrow{k_{3b_m}} Ne_2^* + Ne(1)$$
$$Ne(3) + Ne(1) + Ne(1) \xrightarrow{k_{3b_3}} Ne_2^m + Ne(1)$$
$$Ne(5) + Ne(1) + Ne(1) \xrightarrow{k_{3b_5}} Ne_2^m + Ne(1)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

OES	CR modelling	CRM neon	Examples 000	Self-absorption
Spont	anoous omission			

Einstein coefficient A_{ii} $A_{ij} = \frac{16\pi^3 v^3}{3\varepsilon_0 hc^3} \frac{S}{g_i}$ $A_{ij} = \frac{g_j}{g_i} \frac{2\pi e^2 v^2}{\varepsilon_0 m c^3} f$ effective levels $A_{\{i\}j} = \frac{\sum_{i} g_i A_{ij}}{\sum_{i} \sigma_i}$

 \leftarrow relative differences of two data source – NIST and Seaton 1998

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Absorption of radiation

Number of absorption transitions between states i, j (j is lower) in unit volume is

 $n_j B_{ji} \rho(\omega_0)$

What is $\rho(\omega_0)$?

The spatial distribution of population of excited state due to the radiation propagation can be described by Holstein equation

$$\frac{\partial n(\vec{r})}{\partial t} = -An(\vec{r}) + A \int n(\vec{r}') G(\vec{r}', \vec{r}) d\vec{r}', \qquad (15)$$

$$G(\vec{r}',\vec{r}) = -\frac{1}{4\pi\rho^2} \frac{\partial T}{\partial \rho}, \rho = |\vec{r}' - \vec{r}|, \quad T(\rho) = \int f(\omega) e^{-kf(\omega)\rho} d\omega.$$

Solution of Holstein equation has a form

$$n(\vec{r},t) = \sum_{j} c_{j} n_{j}(\vec{r}) e^{-A/g_{j}t},$$
 (16)

in which g_j are *trapping* factors attached to eigenfunctions n_j . Escape factor $\Lambda = 1/g_0$.

◆ロト ◆個ト ◆注ト ◆注ト

æ

590

Trapping factor

Parameters of solution:

- discharge geometry
- opacity $k_0 R$
- spectral line profile

OES	CR modelling	CRM neon	Examples 000	Self-absorption
Solutio	on of rate-equat	ions		

Initial conditions

$$n_{i}(t=0) = \begin{cases} N \equiv \frac{p}{k_{\rm b}T_{\rm n}}, & i=1\\ 0, & i>1 \end{cases}$$
(17)

- Runge-Kutta methods
- stationary state solution: all excited states reach stationary state ($\frac{\partial\,n_i}{\partial\,t}=0)$
- Non-linear dependence of some rate equations

$$\left(\frac{\partial n_2}{\partial t}\right)_{\text{met}} = -4k_{\text{met}}n_2^2 - 2k_{\text{met}}n_2n_4 - \dots - (k_{\text{H}_2^+} + k_{\text{NeH}^+})[\text{H}_2]n_2 - (k_{\text{N}_2^+} + k_{\text{NeN}_2^+})[\text{N}_2]n_2 - k_{\text{O}_2^+}[\text{O}_2]n_2 - \frac{D_2}{l_D^2}n_2 - k_{\text{ionmet}}n_en_2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 OES
 CR modelling
 CRM neon
 Examples 000
 Self-absorption

 Spectrum calculation and comparison

 measured spectral line intensities, integrated over lineshapes

$$[\lambda_k, I_k^{\text{exp}}], k = 1, \dots n, n = 30$$

• calculated total emission coefficients of transitions

$$I_{ij}^{\rm cr} = \frac{1}{4\pi} n_i \Lambda_{ij} A_{ij} h v_{ij}$$

• comparison of spectra by least squares method

$$\mathscr{S} = \sum_{k=1}^{n} \frac{(\mathscr{F} \cdot I_{k}^{cr}(T_{e}, n_{e}, n_{1s_{3}}, n_{1s_{5}}) - I_{k}^{exp})^{2}}{I_{k}^{exp}}$$

イロト イポト イヨト イヨト

Э

Sac

• simplified 0D scheme is not valid

$$\frac{\partial n_i}{\partial t} + \bigtriangledown (n_i \vec{v}) = \left(\frac{\partial n_i}{\partial t}\right)_{c,r}$$
(18)

- longer computational times
- increased sensitivity at low electron energies

argon

Boffard J B, Jung R O, Lin C C and Wendt A

E 2010 Plasma Sources Sci. Technol. 19(6)

Sac

Direct and stepwise excitation

Maxwellian EDF, gas temperature 300 K, fixed densities of all 1s; levels

500

ŀ

OES CR modelling

CRM neon

Examples

DC glow discharge in neon

- positive column of DC glow discharge at 1.1 Torr
- OES in spectral range 300-850 nm
- CR model with stationary BKE solver

Navrátil Z, Trunec D, Hrachová V and Kaňka A 2007 J. Phys. D: Appl. Phys. 40(4) 1037 🕢 🗄 🖉 🔗 🖉

CRM neon

Examples

Self-absorption

Sac

Radio-frequency discharge in neon

- capacitively coupled RF discharge in neon (13.56 MHz)
- low pressure (10 Pa)
- reactor R3 "Temelín", inner diameter 33 cm, discharge gap 40 mm, electrodes 8 cm in diameter
- studied by OES/CR, OAS, PIC/MC, Langmuir probe
- absolute intensity measurement

イロト イロト イヨト

RF (13.56 MHz) capacitive discharge in neon at 10 Pa

Navrátil Z, Dvořák P, Brzobohatý O and Trunec D 2010 J. Phys. D: Appl. Phys. 43(50) 505203.

3

- two-cylinder quartz tube with copper rod antenna, length 320 mm, dimensions $d_1 = 5$ mm, $d_2 = 7$ mm, $d_3 = 11$ mm, $d_4 = 20$ mm and $d_5 = 24$ mm
- microwave power 60 W

OES

CR modelling

CRM neon

Examples

Self-absorption

Electron distribution function

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

OES	CR modelling	CRM neon	Examples 000000000	Self-absorption
Spectra	fit			

- using BKE solver
- effect of deactivation by heavy particles on spectra under studied conditions is small

イロト イポト イヨト イヨト

Э

500

Sac

Image: A matrix and a matrix

sensitivity to metastables: 0.3 eV or 2 Td per order of density

OES

CRM neon

Examples

Self-absorption

◆□ > ◆母 > ◆臣 > ◆臣 > ─ 臣 = ∽ へ ⊙

N_2 rotational temperature in $C^3\Pi_u$ state

Program Specair. Laux C O 2002. In Fletcher D, Charbonnier J M, Sarma G S R and Magin T, eds., von Karman Institute Lecture Series 2002–07, Physico-Chemical Modeling of High Enthalpy and Plasma Flows Rhode-Saint-Gencse, Belgium.

◆ロト ◆個ト ◆注ト ◆注ト

Э

Sac

OES CR modelling

CRM neon

Examples

Self-absorption

N₂ rotational temperature in $C^3\Pi_{\mu}$ state

<≣⇒ 590 イロト イヨト イヨト E

N₂ rotational temperature

Self-absorption

- heating by oscillating field is governed by E/N and ω/N , elastic collisions inhance heating
- ω/N is not constant along the column
- in effective field approximation

$$E_{\rm eff} = \frac{E_0}{\sqrt{2}} \frac{1}{\sqrt{1 + \omega^2/\gamma_{\rm c}^2}}$$

OES	CR modelling	CRM neon	Examples 000	Self-absorption
Self-abs	sorption			

æ

990

isolated atom

$$\Gamma_{ij} = \frac{A_{ij}}{\sum_{l} A_{il}}$$

• plasma

$$\Gamma_{ij}^{\rm eff} = \frac{g(k_{ij}^0 L) A_{ij}}{\sum_l g(k_{il}^0 L) A_{il}}$$

• absorption coefficient

$$k_{ij}^{0} = \frac{\lambda_{ij}^{3}}{8\pi^{3/2}} \sqrt{\frac{m_{0}}{2k_{\rm b}T}} \frac{g_{i}}{g_{j}} A_{ij} n_{j}$$

measured

$$\Gamma_{ij}^{\exp} = \frac{I_{ij}/h\nu_{ij}}{\sum_{l}I_{il}/h\nu_{il}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

OES	CR modelling	CRM neon	Examples 000	Self-absorption
Escape	factor			

• Mewe approximate expression

$$g(k_{ij}^{0}L) = \frac{2 - e^{-k_{ij}^{0}L/1000}}{1 + k_{ij}^{0}L}$$

- assumption of homogeneous distribution of atoms
- ullet e.g. Ar 2p_6 ightarrow 1s5 (763.5 nm), ho= 10 cm

Figure 1. Energy levels and selected transitions for density measurement of (a) Ti neutral atom and (b) Ti ion.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

990

Vašina P 2015 Plasma Sources Sci. Technol. 24 065022

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

Example – density of Ti and Ti⁺ in magnetron discharge

Figure 7. Measurements of the Ti atom and ion density for 200 μ s pulse in HiPIMS mode. The pressure was set to 5 Pa, the repetition rate to 20 Hz and the optical fiber was placed 23 mm above the target surface. The total density of the sputtered species is added too.