{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tefun=lambda r,rho,N:pow(1-rho**2,(N-1)/2.)*pow(1-r**2,(N-4)/2.)/pow(1-rho*r,N-1.5)*(1+(1+rho*r)/8./(N-0.5))" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "import sympy\n", "sr,sk,sn=[sympy.Symbol(a) for a in \"r k n\".split()]\n", "sympy.integrate(pow(1-sk**2,(sn-1)/2.)*pow(1-sr**2,(sn-4)/2.)/pow(1-sk*sr,sn-1.5),sr)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Bayesovský přístup\n", "\n", "integrujeme pres $\\rho$" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEKCAYAAAACS67iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXax/Hvnd5DGklICBNYFAsIgljAFUSRVRQbKqtr\nX1zF1eVVEZUSmoAiiGIDkeIKgrs2EAULgmUFURELokJCTU9I7/O8f8wQAwQSkkkmM3N/rouLzMkz\nc+4c4efDOee5jxhjUEop5fq8nF2AUkopx9BAV0opN6GBrpRSbkIDXSml3IQGulJKuQkNdKWUchMa\n6Eop5SYaDHQRCRCRzSLyvYj8JCKT7NuTRWSTiPwmIitExK/ly1VKKXUsjZmhVwAXGmPOAHoCQ0Tk\nHGAmMMcY0xXIB+5ouTKVUko1xKehAca2lLTY/tLX/ssAFwJ/tW9fAqQALxzvs6Kjo43FYmliqUop\n5Zm++eabHGNMTEPjGgx0ABHxBr4B/gQ8B+wEDhpjqu1D9gEJx3jvSGAkQFJSElu2bGnMLpVSStmJ\nyO7GjGvURVFjTI0xpieQCPQFTqlv2DHeO98Y08cY0ycmpsH/wSillGqiE7rLxRhzEPgUOAdoJyKH\nZviJwAHHlqaUUupENOYulxgRaWf/OhC4CNgOrAeutQ+7BXinpYpUSinVsMacQ48HltjPo3sBK40x\nq0XkZ+B1EZkKfAcsbEoBVVVV7Nu3j/Ly8qa8XTUgICCAxMREfH19nV2KUqqFNeYul21Ar3q278J2\nPr1Z9u3bR2hoKBaLBRFp7sepOowx5Obmsm/fPpKTk51djlKqhTl9pWh5eTlRUVEa5i1ARIiKitJ/\n/SjlIZwe6ICGeQvSY6tUG7F+eovvok0EulJKuavq/Hwypj1OzYczW3xfGujAeeed1+CYp59+mtLS\n0lao5mgpKSnMmjXLKftWSjWNMYbCNWvYddlQ8pcvpzS75dtduWygz/nwV4d91pdfftngGGcGulLK\ntVRlZrJv1L3s/78H8CWD5IsOEJpQASnhtl8tdPrFZQN97se/OeyzQkJCAPj0008ZMGAA1157Ld26\ndePGG2/EGMMzzzzDgQMHGDhwIAMHDgRg3bp1nHvuuZx55pkMHz6c4mJbu5s1a9bQrVs3+vfvz333\n3cfQoUPr3ecTTzxB9+7dOeOMMxg7diwAO3fuZMiQIfTu3Zvzzz+fX3755bD37Ny5kzPPPLP29W+/\n/Ubv3r0ddhyUUs1jrFbyV6xk12VDKfnyS9qPGYNl4w4Cns61DUgpsP0a+EiL7L9RvVw8yXfffcdP\nP/1Ehw4d6NevH1988QX33Xcfs2fPZv369URHR5OTk8PUqVP56KOPCA4OZubMmcyePZsxY8Zw1113\nsXHjRpKTkxkxYkS9+3j//fd5++232bRpE0FBQeTl5QEwcuRIXnzxRbp27cqmTZu45557+OSTT2rf\n16VLF8LDw9m6dSs9e/Zk0aJF3Hrrra1xWJRSDahMSyN9/ARKv/6aoLPPJn7KZPySklq1BpcK9Dkf\n/nrYzNwy9j0A7h/UldEXn+SQffTt25fExEQAevbsSVpaGv379z9szFdffcXPP/9Mv379AKisrOTc\nc8/ll19+oXPnzrX3fI8YMYL58+cftY+PPvqI2267jaCgIAAiIyMpLi7myy+/ZPjw4bXjKioqjnrv\nnXfeyaJFi5g9ezYrVqxg8+bNDvm5lVJNY6qryVu8mOxn5yF+fsRPnUL4NdccfYfZBWNbvBaXCvTR\nF59UG9yWse+RNuMyh+/D39+/9mtvb2+qq6uPGmOM4eKLL2b58uWHbf/uu+8atQ9jzFH/sa1WK+3a\ntWPr1q3Hfe8111zDpEmTuPDCC+nduzdRUVGN2qdSyvHKt28n/bFxlP/8MyEXDSJu/AR8Y9vXP7iF\nTrPU5bLn0FtbaGgoRUVFAJxzzjl88cUX/P777wCUlpby66+/0q1bN3bt2kVaWhoAK1asqPezBg8e\nzCuvvFJ7kTUvL4+wsDCSk5N54403AFvof//990e9NyAggEsuuYS7776b2267zdE/plKqEawVFWTN\neZrUa4dTlZVFwtNPk/jss8cO81bisoF+/6Curbq/kSNH8pe//IWBAwcSExPD4sWLGTFiBD169OCc\nc87hl19+ITAwkOeff54hQ4bQv39/YmNjCQ8PB2DLli3ceeedAAwZMoQrrriCPn360LNnz9pbEl97\n7TUWLlzIGWecwWmnncY779Tf7+zGG29ERBg8eHDr/PBKqVql33xD6pVXkfvSS4RfcQVdVq8ibMgl\nbWIRn9geSNQ6+vTpY458wMX27ds55ZT62qu7puLiYkJCQjDGMGrUKLp27cro0aMduo9Zs2ZRUFDA\nlClTGjXe3Y6xUs5QU1xM9uzZ5C9bjm9CAnGTJhHSv1+r7FtEvjHG9GlonEudQ3cFCxYsYMmSJVRW\nVtKrVy/uuusuh37+VVddxc6dOw+7+0Up1bKKN2wgPWUS1RkZRN5yMzH33YdXcLCzyzqKBrqDjR49\n2uEz8rreeuutFvtspdThqvPzyXx8OoWrVuH3py5Yli8jsGdPZ5d1TBroSil1BGMMhe+tIXPaNGqK\ni4keNYqou0bi5dfyy/ebQwNdKaXqqEpPJyNlEsUbNhDQowdJU6cQcJJj1rm0NA10pZTCtmz/4IoV\nZM16CmO1EvvIWCJuugnx9nZ2aY2mga6U8ngVqamkjx9P2ZZvCD7vXOImT8bPvmLclbjsfeiOkpaW\nxumnn96i+3j88ccPe32oXe/x9r1kyRK6du1K165dWbJkSb1jUlJSSEhIoGfPnvTs2ZM1a9Y4tnCl\n3JypqiJn/gJSh11Jxa+/ET9tGh0XLnTJMAdXDvRWePqHoxwZ6A21683Ly2PSpEls2rSJzZs3M2nS\nJPLz8+sdO3r0aLZu3crWrVu59NJLHVazUu6u/OefSb3+erJnzyZkwAC6vLeadtdc3SYWCDWV6wb6\nhhkO/8hdu3bRq1cvvv76a84++2x++umn2u8NGDCAb775hs2bN3PeeefRq1cvzjvvPHbs2AHA4sWL\nufrqqxkyZAhdu3ZlzJgxAIwdO5aysjJ69uzJjTfeCPzRrvdY1q5dy8UXX0xkZCQRERFcfPHFfPDB\nBw7/eZXyRNbycrKemk3q8Ouozs4m4Zm5JD4zF5+YGGeX1myuG+gOtmPHDq655hoWLVrEWWedxQ03\n3MDKlSsBSE9P58CBA/Tu3Ztu3bqxceNGvvvuOyZPnsyjjz5a+xlbt25lxYoV/PDDD6xYsYK9e/cy\nY8YMAgMD2bp1K6+99lqjatm/fz8dO3asfZ2YmMj+/fvrHTtv3jx69OjB7bfffsxZvFLKpvTrr0kd\ndiW5CxYQftWVdFm9mjA3aqHhWoG+fvofT/wAhz39Izs7m2HDhvHvf/+bnvZFA9ddd11to6yVK1fW\ntrUtKChg+PDhnH766YwePfqwWfygQYMIDw8nICCAU089ld27dzepnvraMdT3z8C7776bnTt3snXr\nVuLj43nggQeatD+l3F1NcTHpKSns/tvNGKuVpEWv0GHqVLztvZbchWsF+sBH/njiBzjs6R/h4eF0\n7NiRL774onZbQkICUVFRbNu2jRUrVnDDDTcAMH78eAYOHMiPP/7IqlWrKC8vr31PY1rvNkZiYiJ7\n9+6tfb1v3z46dOhw1LjY2Fi8vb3x8vLi73//u/ZGV6ou+0SvaP16dg29nIMr3yDy1lvp/M7bBJ97\nrpOLaxmuFegtxM/Pj7fffpulS5eybNmy2u033HADTzzxBAUFBXTv3h2wzdATEhIA23nzxvD19aWq\nqqrR9VxyySWsW7eO/Px88vPzWbduHZdccslR49LT02u/fuutt1r8bh2lXEn12ifY/8CD7Lv7HrxD\nQ7G8vpzYsQ/jZX+wjDtqMNBFpKOIrBeR7SLyk4jcb9+eIiL7RWSr/Vfr3mLh4Kd/BAcHs3r1aubM\nmVPbtvbaa6/l9ddf57rrrqsdN2bMGB555BH69etHTU1Noz575MiR9OjRo/aiaEMiIyMZP348Z511\nFmeddRYTJkwgMjISsD2x6FDHyjFjxtC9e3d69OjB+vXrmTNnzon8yEq5JWMMBatWsWtNDIXr1hF9\n3z9J/u9/COzRw9mltbgG2+eKSDwQb4z5VkRCgW+AK4HrgGJjzKzG7swT2ue2RXqMlaeo+u9jpM9b\nRkl6AIFRlcT3PYh/eLVtAtgKTwxqKQ5rn2uMSQfS7V8Xich2IKH5JSqllGMYq5X85cvJfuoDDJHE\nPvovIn6/F5lc4OzSWtUJnUMXEQvQC9hk33SviGwTkVdEJMLBtSmlVIMqdu1i999uJnPKVAJ79aLz\nu+8SefPfEA+8QtjoH1lEQoD/Av8yxhQCLwBdgJ7YZvBPHeN9I0Vki4hsyc7OrvezW/OpSZ5Gj61y\nV6aqipwXX7It2//9d+JnTKfjywvwS7SfQHDwdTZX0KhAFxFfbGH+mjHmTQBjTKYxpsYYYwUWAH3r\ne68xZr4xpo8xpk9MPSuxAgICyM3N1eBpAcYYcnNzCQgIcHYpSjlU2Y8/kTr8OrKffpqQiwbZlu1f\neeXh6zVc+Jx5UzV4Dl1sR2ghsN0YM7vO9nj7+XWAq4Afm1JAYmIi+/bt41izd9U8AQEBJLpooyGl\njmQtKyN73jzyFi3GJzqaxOfmETpokLPLajMa0z63H/A34AcR2Wrf9igwQkR6AgZIA5r08ExfX1+S\nk5Ob8lallAcp2bSZ9Anjqdq9h3bDh9P+oQfxDgtzdlltSmPucvkcqK/9mPZqVUq1uJqiIrKenMXB\nlSvxTUoiafFigs8529lltUn6gAulVJtV9MknZKRMojonh8jbbyfmn/fiFRjo7LLaLA10pVSbU52b\nS+a0aRSueR//k08m8bnnCOyurS0aooGulGozjDEUvvsumY9Px1paSsy/7ifqjjsQX19nl+YSNNCV\nUm1C1f79pE9MoeTzzwns1Yv4qVPw79LF2WW5FA10pZRTGauV/NeWkTVnDgLEjhtHxF9HIF4euNSz\nmTTQlVJOU7FzJ+njxlP23XcEn38+8SkT8U3QVlFNpYGulGp1prKS3IULyXn+BbyCgujwxEzCLr/c\npR/Q3BZooCulWlXZDz+Q/tg4Kn79lbBLLyX2sUfxiYpydlluQQNdKdUqrGVlZD/zLHlLluATE0Pi\n888TeuFAZ5flVjTQlVItruSrr0gfP4GqvXtpd/31tH/wAbxDQ51dltvRQFdKtZiawkKynnySg2/8\nB99OSSQtXUJw33obsyoH0EBXSrWIoo8+ImPSZKrz8oj6+51EjxqFl7ZyblEa6Eopx1k/nerT7yRj\n6jSK1q7F/5RTSHzxBQJPO83ZlXkEDXSllEMYYyhYPJfMX97BlJURM3o0Ubffpsv2W5EGulKq2Sr3\n7Sdj4kRKNkUQ2PtPxE+Zgn9nfc5Ba9O1tUqpJjM1NeSNv5ldQy6kbNNnxPY+SKc/rcJ/aU9YP93Z\n5XkcnaErpZqk4vffSX9sHGXff0/wBQOInzgR3/mnQEqBs0vzWBroSqkTYioryVmwgJwXX8I7OJgO\nTz5J2NDLdNl+G6CBrpRqtLJt22zL9n/7jbChQ4l99BF8IiP/GHDBWOcVpzTQlVINs5aWkj33GfJe\nfRWf9u1JfPEFQgcMOHrgwEdavTb1Bw10pdRxlfzvf7Zl+/v20W7EDbR/4AG8Q0KcXZaqhwa6Uqpe\nNQUFZD7xBAX/fRM/i4VOry4l6KyznF2WOg4NdKXUUQrXrSNjyhRq8vKJGjmS6FH34OXv7+yyVAM0\n0JVStaqyssicMpWiDz/E/9RTSHrpJQJOPdXZZalG0kBXStmW7b/5Jpkzn8BUVBDzwP8RddttiI9G\nhCtp8L+WiHQElgJxgBWYb4yZKyKRwArAAqQB1xlj8luuVKVUS6jcu9e2bP/L/xHUpw9xUybjn6zL\n9l1RY5b+VwMPGGNOAc4BRonIqcBY4GNjTFfgY/trpZSLMDU15C5ezK4rhlH2/TbiUlJIWrpEw9yF\nNThDN8akA+n2r4tEZDuQAAwDBtiHLQE+BR5ukSqVUg5V/uuvpI8bT/m2bYQMGEBcykR84+KcXZZq\nphM6QSYiFqAXsAmItYc9xph0EWnv8OqUUg5lrawk98WXyFmwAO+QEDo8NYuwSy/VZftuotGBLiIh\nwH+BfxljChv7B0BERgIjAZKSkppSo1LKAcq2buXAuHFU/r6TsCsuJ/aRR/CJiHB2WcqBGhXoIuKL\nLcxfM8a8ad+cKSLx9tl5PJBV33uNMfOB+QB9+vQxDqhZKXUCrCUlZM2dS/6r/8YnLo6O818i5M9/\ndnZZqgU0eFFUbFPxhcB2Y8zsOt96F7jF/vUtwDuOL08p1RzFn3/BrsuvIH/pq0SMGEHnVas0zN1Y\nY2bo/YC/AT+IyFb7tkeBGcBKEbkD2AMMb5kSlVInqubgQTJnzKTg7bfxS06m02v/Jqh3b2eXpVpY\nY+5y+Rw41gnzQY4tRynVHMYYitauJWPKVGoKCoj6x11E3323Ltv3ELoMTCk3UZWZRcaUyRR/9DEB\np51G0sKXCejWzdllqVakzxRVypWtn44xhvw33mDX0KGUfPY57R96EMuK1zXMPZDO0JVyYZWrnyR9\n8Q5KN20iqG9f4qdMxq9TJ2eXpZxEA10pF2Sqq8lbspTsD2KQwJ+ImzyJdtdei3jpP7o9mQa6Ui6m\n/NUxpL/wX8rz/AhJqCCu9+/4/vx32LBTHwHn4TTQlXIR1spKcl54gdwF7+MdHk/CnMcI/eoGZFKB\ns0tTbYQGulIuoPTbb0kfN57KXbsIHzaM9mMfti3b3+TsylRbooGuVBtWU1xC9pw55C9bhk98HB0X\nLCDk/P5/DLhAu1arP2igK9VGFX/2GekTJ1KdnkHETTfR/l/34xUcfPggPWeu6tBAV6qNqc7PJ2vG\nDAreeRe/zp3p9NprBJ3Zy9llKRegga5UG2GMoej998mYOo2awkKi77mbqH/8Ay8/P2eXplyEBrpS\nbUBVRgYZkyZTvH49AaefTtKiVwg4+WRnl6VcjAa6Uk5krFYOrnyDrFmzMNXVtB8zhsib/4b46F9N\ndeL0T41STlKZlkb6+AmUfv01QWefbVu2r0/1Us2gga5UKzPV1eQtXkz2s/MQPz/ip04h/Jpr9Lme\nqtk00JVqReXbt5P+2DjKf/6ZkIsGETd+Ar6x+nx15Rga6Eq1AmtFBTnPPU/uwoV4R0SQ8PTThF4y\nWGflyqE00JVqYaVbttiW7aelEX7VVcQ+PAbvdu2cXZZyQxroSrWQmuJismfPJn/ZcnwTEuj48suE\n9O/n7LKUG9NAV6oFFH36KRkpk6jOzCTylpuJue++o5ftK+VgGuhKOVB1Xh6Zj0+ncPVq/P7UBcvT\nywjs2dPZZSkPoYGulAMYYyhc/R6Zjz9OTXEx0aNGEXXXSF22r1qVBrpSzVSVnk5GyiSKN2wgoEcP\nkqZOIeCkk5xdlvJA+gBCpU7U+umAbdl+/vLl7Bp6OSWbN9N+7MNYli/TMFdOozN0pU7UhhlUdLqB\n9AnjKdvyDUHnnkP85Mn4dezo7MqUh9NAV+oEmKoqcn8OIefKK5GAAOKnTSP86qt0gZBqExo85SIi\nr4hIloj8WGdbiojsF5Gt9l+XtmyZSjnZ+umU3RdN6vmnkL0tjJD2BXQe+CvtIndomKs2ozEz9MXA\nPGDpEdvnGGNmObwipdoYa3k5Od/4kvtxHN6REST0+5WwhZnOLkupozQ4QzfGbATyWqEWpdqcks2b\nSR12JbkvLyT8ymF0Wb2asI7lzi5LqXo15xz6vSJyM7AFeMAYk1/fIBEZCYwESNJez8pF1BQVkTXr\nKQ6uWIFvYiJJrywk+LzzbN+8YKxzi1PqGMQY0/AgEQuw2hhzuv11LJADGGAKEG+Mub2hz+nTp4/Z\nsmVLc+pVqsUVfbKejEmTqM7OJvLmm4m57594BQU5uyzlwUTkG2NMn4bGNWmGboypPYEoIguA1U35\nHKXakurcXDKnPU7hmjX4d+1K4rPPENijh7PLUqrRmhToIhJvjEm3v7wK+PF445Vqy4wxFK5aRebj\n06kpKSH6n/cS/fe/I7psX7mYBgNdRJYDA4BoEdkHTAQGiEhPbKdc0oC7WrBGpVpM1YEDpKekULLx\nMwLPOIP4qVPw79rV2WUp1SQNBroxZkQ9mxe2QC1KtZpDy/azn5qNMYbYRx8l4sa/It7ezi5NqSbT\nlaLK41Ts2kX6uPGUffstwf36ETdpEn6JCc4uS6lm00BXHsNUVZG7cCE5zz2PBAURP3064VcO05We\nym1ooCuPUPbDj6SPG0fFjh2EDhlC3LjH8ImOdnZZSjmUBrpya9ayMrLnzSNv0WJ8oqJInPcsoRdd\n5OyylGoRGujKbZV8tYn0CROo2rOHdsOH0/6hB/EOC3N2WUq1GA105XZqCgvJenIWB994A9+kJJIW\nLyb4nLOdXZZSLU4DXbmVoo8/JmPSZKpzcoi8/XZi/nkvXoGBzi5LqVahga7cQnVODhnTplH0/gf4\nn3wyic89R2D3051dllKtSgNduTRjDAXvvEPm9BmY0lJi/nU/UXfcgfj6Ors0pVqdBrpyWZX79pMx\ncSIlX3xBYK9etmX7Xbo4uyylnEYDXbkcU1ND/rLlZM2ZgwCx48YR8dcRiFeDz2tRyq3p3wDlGtZP\nB6Di99/ZfeNNZE6bRlDv3nRe9S6RN92oYa4UOkNXLsJ8MoOc7eHkvvAiXkFBdHhiJmGXX67L9pWq\nQwNdtXllP/xA+roYKgqeJezSS4l97FF8oqKcXZZSbY7+O1W1Wda1U8gc1pG064ZTU+lF4vm5JIS9\njM+2+c4uTak2SWfoqk0q+eor0md9RtXeENpdfz3tq57G+/GDzi5LqTZNZ+iqTakpLOTAuHHsufU2\n8BKSli4hflIK3n4NP8xcKU+nM3TVZhR++CGZk6dQnZdH1N/vJHrUKLwCAmzfvGCsc4tTygVooCun\nq87OJmPqNIrWrsX/lFNIfPEFAk877fBBAx9xTnFKuRANdOU0xhgK3nqbzJkzMWVlxIweTdTtt+my\nfaWaSANdOUXlvn1kTJhIyZdfEti7N/FTpuDfOdnZZSnl0jTQVasyNTXk//vfZD09FxEhbuIE2l1/\nva70VMoBNNBVq6n47TcOjBtH+ffbCLngAuJSJuIbH+/sspRyGxroqsWZykpy5i8g56WX8A4JocOT\nTxI29DJdtq+Ug2mgqxZV9v33pI8bR8VvvxM2dCixjz6CT2Sks8tSyi01GOgi8gowFMgyxpxu3xYJ\nrAAsQBpwnTEmv+XKVK7GWlpK9txnyFu6FJ/YWBJffIHQAQOcXZZSbq0xV6IWA0OO2DYW+NgY0xX4\n2P5aKQBKvvySXVcMI2/JEtrdcD2dV6/SMFeqFTQ4QzfGbBQRyxGbhwED7F8vAT4FHnZgXcoF1RQU\nkDnzCQrefBM/i4VOry4l6KyznF2WUh6jqefQY40x6QDGmHQRae/AmpQLKly7joypU6jJyydq5Eii\nR92Dl7+/s8tSyqO0+EVRERkJjARISkpq6d2pVlaVlUXmlKkUffgh/qeeQtJLLxFw6qnOLkspj9TU\nQM8UkXj77DweyDrWQGPMfGA+QJ8+fbRlnpswxlDw5ptkznwCU1FBzAP/R9RttyE+euOUUs7S1L99\n7wK3ADPsv7/jsIpUm1e5dy/pEyZQ+r+vCOrTh7gpk/FP1mX7SjlbY25bXI7tAmi0iOwDJmIL8pUi\ncgewBxjekkWqtsHU1JC39FWy585FvL2JS0mh3XXDddm+Um1EY+5yGXGMbw1ycC2qDSvf8Svp48dT\nvm0bIQMG2Jbtx8U5uyylVB06tVL1Wz8dAGtlJdnPPEvqNddQtW8fHZ6aReILz2uYK9UG6RUsVb8N\nMyhtN4T0ceOp3LmTsCsuJ/aRR/CJiHB2ZUqpY9BAV0exlpSQ9W0Y+StuxCcujo7zXyLkz392dllK\nqQZooKs/rJ9O8etzyPg6nKrSYCK6FhHT4wDeNV8AGuhKtXUa6AqAmoMHyVxbSMGGKPySk+nU+WuC\nnst2dllKqROgF0U9nDGGwg8+YOdlQylYvZqof9xF8ttvERRT6ezSlFInSGfoHqwqM4uMyZMp/vhj\nAk47jaSFLxPQrZvtmxdoA02lXI0GugcyxnDwjTfIenIWprKS9g89SOQttxy+bH/gI84rUCnVJBro\nHqZy927SJ0ykdNMmgvr2JX7KZPw6dXJ2WUopB9BA9xCmupq8JUvJfuYZxNeXuMmTaHfttbpsXyk3\nooHuAcp/+YX0x8ZR/tNPhFx4IXETJ+AbG+vsspRSDqaB7sasFRXkvPACuS8vxDs8nIQ5swkdMgQR\ncXZpSqkWoIHupkq//da2bH/XLsKHDaP92Id12b5Sbk4D3c3UFJeQPWcO+cuW4RMfR8cFCwg5v7+z\ny1JKtQK9IuZGijduZNfll5O/bBkRN91El1WrNMyVaiPmfPhri+9DA90NVOfns3/MGPaOvAuvoCA6\nLXuNuMcexSs42NmlKaXs5n78W4vvQ0+5uDBjDIVr1pA57XFqCguJvuduov7xD7z8/JxdmlIezxhD\nfkU+aQVppBWmId4t305DA91FVWVkkJEyieJPPyWge3eSFr1CwMknO7sspTxOZU0le4v2klaQRmph\nKqkFqaQVppFWkEZhZWHtOO/Av2EZ+x4A9w/qyuiLT3J4LRroLsZYrRxcudK2bL+mhvYPP0zkzX9D\nvL2dXZpSbssYQ255bm1Ypxak1s689xfvx2qstWPbB7bHEm5hiGUIlnALljALlnAL50/bStqMy1q0\nTg10F1KRmkrG+AmUbtlC0Nln25btJyU5uyyl3EZFTQW7C3cfFtiHfi+uKq4dF+AdQKewTpwadSqX\nJl+KJdxCclgyncI6EeIXcoxP39bi9WuguwBTXU3uokXkPDsP8fcnfuoUwq+5RhcIKXUccz78td7T\nGsYYskqzSC08OrQPFB/AYGrHxgXHYQmzMLTz0NrQtoRbiAuOw0tO7J6S+wd1bfbP1BAN9Dau/Oef\nOTBuHBUJIqW+AAATLklEQVQ/byfkokHEjZ+Ab2x7Z5elVJs395OfGHJmTW1gHwrw3YW7Ka0urR0X\n6BOIJcxCj5geDOsyrPY0SaewTgT5BjmsnpY4Z34kDfQ2ylpeTs5zz5P7yit4R0SQ8PTThF4yWGfl\nStVhNVYySjIOC+y0Qtuv0G4ZXLfaNk4Q4oPjSQ5P5szYM2vPa1vCLMQGxbrN3ysN9LZk/XQY+Ail\nW7bYlu2npRF+1VXEPjwG73btnF2dUk5TUlVydGjbZ9vlNeW143wlkPLSKKyV8VgrumOtjMFaGcPd\n/c7mocHdnfgTtA4N9Dak5qOZZG2s5ODy1/FNSKDjyy8T0r+fs8tSqlXUWGtIL0k/7La/Q79nlWXV\njvMSLxJCErCEWegb3xdLmIXk8GQsYRaiA6NrZ9uWse+1+F0lbU2zAl1E0oAioAaoNsb0cURRnqjo\n00/JWNOe6vIVRN5yMzH33acrPZXLOdaFyLqKKouOmm2nFqSyp3APldY/Ft+E+YVhCbdwTodzagPb\nEmYhKSwJP29dPFcfR8zQBxpjchzwOR6p+t2JZM5bTOGeIPzCrFj6ZRFYMQM2o4+BUy5n7se/Mfri\nk6i2VnOg+EBtWNeddeeW59aO9xZvOoZ2xBJmoX9C/9pz28nhyUT4RzTr3HZr3FXS1ugpFycxxlC4\n+j0yH19HTUk40aNGEpX1GF5TCpxdmlKNVlBRcNhim4DErxj29nz2FO2h2lpdOy7CPwJLuIU/J/75\nsMU2HUM64uvt2yK1tcZdJW1NcwPdAOtExAAvGWPmO6Amt1eVnm5btr9hAwE9epA0dQoBJ50EKY85\nuzSljlJlrWJf0b56z23nV+TXjjPGGy+/KHbsi8Za0Y9Bfzqdu861nS4J9w934k/gOZob6P2MMQdE\npD3woYj8YozZWHeAiIwERgIkefiqRmO1cnDFCrJmPYWxWol9ZCwRN930x7L9C8Y6t0DlsYwx5JXn\nHRXYaYVp7CvaR7X5Y7YdFRCFJdzChUkXkhyeXHt+u0NIB/706FqPuxDZljQr0I0xB+y/Z4nIW0Bf\nYOMRY+YD8wH69OljjvoQD1GxK5X0CeMp2/INweedS9zkyfglJh4+SM+ZqxZWWVPJnsI9tfdqH6uR\nlJ+XH0lhSXSN6MrFnS7+Y2l7eCfC/MKc+BOo42lyoItIMOBljCmyfz0YmOywytyEqaoi95VF5Dz3\nHBIQQPy0aYRffZXbLGRQzlXfXSXGGHLKco4K7MY2kkoOTyY+OB5vrxNv+OaJFyLbkubM0GOBt+zB\n5AMsM8Z84JCq3ETZTz+RPm48Fdu3Ezp4MHHjx+ETE+PsspSbKK8u59nPN3Jq1yY0krKfJgn2deyt\nsZ54IbItaXKgG2N2AWc4sBa3YV07hZwfAsldtBjvyAgSnplL2ODBzi5LuSBjDJmlmUed204tSCW9\nJJ3gzoYHN9jGOrKRlHJNetuig5Vs3kzGuKVUFvkQfu01xD70EN7heoVfHV9pVSm7C3cf1UgqrTCN\nsuqy2nGBPoEESTwZOTFYK0+1LW2viMZaGcPtF56mM2QPp4HuIDVFRWTNeoqDK1bgGwxJi14h+Nxz\nnV2WakOO10gqoySjdpwgdAjpgCXM0mAjKU9c3q6OTQPdAYo+WU/Gow9SXVBC5MklxHQvwmvtEFiL\n7VZEvXvFrTS0vL2xjaSCfYNJDkumT2yfw0K7U1gnAnwCWuNHUW5GA70ZqnNzyZw2jcI17+N/0kkk\nLphKYPfukBIOKbri013N/fg37hvUhQMlB466GFlfI6kOwR1IDk8+biOpptK7SlRdGuhNYIyhcNUq\nMqc9jrW0lOj7/kn0nXciftowyN0UVhYeFdpBydvo+9qEwxpJhfqFkhye3OqNpPScuapLA/0EVR04\nQHpKCiUbPyOwZ0/ip07B/09/OnyQrvh0KdXWavYX7z+s8199jaSM8cJURmKqoinOPhlrZTRXn96L\nMYPOJzIgUtcWKKfTQG8kY7WSv3w52U/NxgCxjz5KxI1//WPZfl16zrxNOtRI6sjFNkc2kmrn347k\n8ORjNpLSC5GqrdJAb4SKXbtIHzeesm+/JbhfP+ImTcIvMcHZZal6NLaRlI+XD0mhSVjCLAzoOOCw\nc9vtAvTpUMo1aaAfy/rpmP4PkrtwITnPPY8EBRE/Yzrhw4bpP62doO6dJcYY8ivyaxfYnEgjqUOz\n7YSQBHy8mvbHXy9EqrZKA/0Yyt56ivSnN1GxYwehfxlC3GOP4RMd7eyyPEplTSV7i/aSVpDGC1vf\nJyfQv9GNpA4Fd0s0ktILkaqt0kA/grWsjOx588j7MBqfmHwSn5tH6KBBzi7LbRljyC3Prffcdt1G\nUv7t4asDjm0kpZS70UCvo+Sl+0lfsIaqYh/adS6lfc/v8f7savDSxUHNVV5dftjS9sY0kooyZ/O/\nHd61T24vsvqzE9spj7+dq7NkpY6kgY592f6Tszi4ch2+SZ1JmjeZ4A8G6+KgE3SsRlJphWkcKD6A\n4Y92+PU1kkoOTyY2OLbeRlJ6Z4lSDfP4QC/65BMyUiZRnZND5B23E3PvvXgFBoKHNwI+3vL2E2kk\nZQmz0COmB8O6DKtt25oUmkSQb1Br/ShKeQyPDfTqnBwypk2j6P0P8D/5ZBKfe47A7qf/McDDFwfN\n/XgH158bclRgpxakklmaWTuuvkZSh+4maR/U3mF3BOmdJUo1TIxpvafC9enTx2zZsqXV9lcfYwwF\n77xD1vQZtmX7o+4h6o47EN+WefJ4W1dfI6nUglR25KYiXlW140J8Qw5rIFV3tq2NpJRqWSLyjTGm\nT0PjPGqGXrV/P+kTUyj5/HMCzzzTtmy/c2dnl9Xiaqw1RzWSOhTg2WXZteMEL2oqI7BWRmOtONt+\nMTKa2/uezaOX9NX775Vq4zwi0E1NDfnLlpM1Zw4CxI4fR8SIEYiXez3Fpb5GUqkFqewp3HNYI6kw\nvzAs4RbO7XBu7emR5PBkOoZ2rG0kpRchlXI9bh/oFcseJv3dPZRt3Urwn88nPiUF3w4dnF1WvRrq\nsw3HbiSVWpBKXnle7Thv8aZjaEcsYRb6J/Q/bJVkhH+EzraVckNuG+imspKcl18md947eIVF0OGJ\nmYRdfnmbDrK5H/9WG+gHyw/W+9T2IxtJRfhHYAm3cEHiBYeFdmJoIr5eTb8uoBchlXI9bhnoZT/8\nQPpj46j49VfCksqIXf4FPlFRzi7rKFXWqtql7WmFafjHf8bN7684biOpgR0HHrZKMty/ZZ5Xqsvb\nlXI9bhXo1rIysp95lrzFi/EJqCbx/IOEJlTAs/YLn630OLgjG0nllefVu9hmb9FeakxN7ft8QkL4\nOjUGa2VX+nc6hVvOsj3hpkNIhyY3klJKeQ63SYmSr74iffwEqvbupd0N19P+gQfwDg1ttcfBVdZU\nsqdwD2mFabyw9YPaRlKpBakUVRbVjjuykVTd0yTdJ2zUC5FKqSZz+UCvKSwk84knKPjPf/HtlETS\n0iUE9+3b7M+t7wKlMYacspyjLkamFaRxoORAvY2k/mL5S+0925YwizaSUkq1GJcO9MIPPyRz8hSq\n8/KI+vudRI8ahVfAEYtcmrDis7y6nGc/38ipXVMPu2d7d+HuehtJnRZ9GtGcU6eRVDRF1oATbiSl\nFyKVUs3hOoG+fnrt+e/q7Gwypk6jaO1a/E85hcQXXyDwtNPqfduc6msYXc/2+hpJHZptp5ekE9zZ\n8OAG29j6GklZwi3EBcc5tJGUXohUSjVHswJdRIYAcwFv4GVjzAyHVFWfDTMwA8ZS8NbbZM6ciSkr\nI2b0aKJuv+24y/bnfvITQ86sOWqF5O7C3ZRWl9aOC/QJJEjiyciJwVp5qm2mXWFfKXnhaRq2Sqk2\nr8mBLiLewHPAxcA+4GsRedcY87OjiqurstibjDvupOTLLwns3Zv4KVPw75wMgNVYySjJOKonSVph\nGqHdMrhutb3mIxpJHZpp19dIqjkrJfXUiVLKGZozQ+8L/G6M2QUgIq8DwwDHBfr66bBhBvm/B5H5\nXQzI51jPLuXHawJZXfAeaRvSamfb5TXltW/zlSDKSyOxVsZjreiOtbI91soY7u7Xl4cGd3dYecei\ns3mllDM0J9ATgL11Xu8Dzj5ykIiMBEYCJCUlndAO5lRfw9zyHlzp+wr9Ov3Mc0O8yQ1vB/lf4XVw\nMwkhCSSHJ3N2/NmHLbaJCoiqnW03daats2yllKtpTqDXt4b+qF68xpj5wHywtc89kR2MvvgkRl98\nEm/uKOPbdQ9x04DHak+T1G0k1RJ0lq2UcjXNCfR9QMc6rxOBA80rp35Xn3wte159jzu733nC79WZ\ntlLKUzSnf+zXQFcRSRYRP+AG4F3HlHU0c0HTluzrTFsp5SmaPEM3xlSLyL3AWmy3Lb5ijPnJYZUd\nQYNZKaWOr1n3oRtj1gBrHFSLUkqpZnCvR/YopZQH00BXSik3oYGulFJuQgNdKaXchAa6Ukq5CTHm\nhBZvNm9nItlACZDTajt1LdHosTkWPTb10+NybO50bDoZY2IaGtSqgQ4gIluMMX1adacuQo/Nsemx\nqZ8el2PzxGOjp1yUUspNaKArpZSbcEagz3fCPl2FHptj02NTPz0ux+Zxx6bVz6ErpZRqGXrKRSml\n3ESrBrqIDBGRHSLyu4iMbc19tzUi8oqIZInIj3W2RYrIhyLym/33CGfW6Awi0lFE1ovIdhH5SUTu\nt2/XYyMSICKbReR7+7GZZN+eLCKb7Mdmhb2dtccREW8R+U5EVttfe9xxabVAr/NQ6b8ApwIjROTU\n1tp/G7QYGHLEtrHAx8aYrsDH9teephp4wBhzCnAOMMr+50SPDVQAFxpjzgB6AkNE5BxgJjDHfmzy\ngTucWKMz3Q9sr/Pa445La87Qax8qbYypBA49VNojGWM2AnlHbB4GLLF/vQS4slWLagOMMenGmG/t\nXxdh+wuagB4bjE2x/aWv/ZcBLgT+Y9/ukcdGRBKBy4CX7a8FDzwurRno9T1UOqEV9+8KYo0x6WAL\nNqC9k+txKhGxAL2ATeixAWpPK2wFsoAPgZ3AQWNMtX2Ip/69ehoYA1jtr6PwwOPSmoHeqIdKKwUg\nIiHAf4F/GWMKnV1PW2GMqTHG9MT2DN++wCn1DWvdqpxLRIYCWcaYb+purmeo2x+XZj2x6AS12kOl\nXVimiMQbY9JFJB7bLMzjiIgvtjB/zRjzpn2zHps6jDEHReRTbNcZ2omIj3026ol/r/oBV4jIpUAA\nEIZtxu5xx6U1Z+it+lBpF/UucIv961uAd5xYi1PYz30uBLYbY2bX+ZYeG5EYEWln/zoQuAjbNYb1\nwLX2YR53bIwxjxhjEo0xFmy58okx5kY88Li0drfFS7H9n/PQQ6WntdrO2xgRWQ4MwNYRLhOYCLwN\nrASSgD3AcGPMkRdO3ZqI9Ac+A37gj/Ohj2I7j+7px6YHtot73tgmYyuNMZNFpDO2mwwige+Am4wx\nFc6r1HlEZADwoDFmqCceF10pqpRSbkJXiiqllJvQQFdKKTehga6UUm5CA10ppdyEBrpSSrkJDXTl\nUkSk2P57BxH5j/3rW0VknhNqWSwi1zY8UqnWoYGuXJIx5oAxxmXDVERac5W28hAa6MppRGSmiNxT\n53WKiDxg//ohEflaRLYd6vt9xHstdXvJ19l+mYj8T0Sij7PfeBHZKCJbReRHETnfvn2EiPxg3zaz\nzvjiOl9fKyKL63zcRSLymYj8au8pcqhv+SL7Z30nIgPt228VkTdEZBWwTkQGHOrdbf/+PBG5tTHH\nTqn6aKArZ3oduL7O6+uAN0RkMNAVW/OpnkBvEflzQx8mIldh65N+qTEm5zhD/wqstTe5OgPYKiId\nsPXPvtC+z7NEpDHtVi3ABdhat74oIgHAKABjTHdgBLDEvh3gXOAWY8yFjfhspU6I/rNPOY0x5jsR\naW8P0xgg3xizR0TuAwZjW64NEIIt4Dce5+MGAn2AwY3ozvg18Iq9CdjbxpitInIh8KkxJhtARF4D\n/oytHcPxrDTGWIHfRGQX0A3oDzxr/xl/EZHdwEn28R96WssC1Xo00JWz/QdbA6U4bDN2sLU+nW6M\neekEPmcX0BlbcG453kBjzEb7jP8y4FUReRI43v8E6vbHCDjO9w69rq916yEldb6u5vB/JR/52Uqd\nED3lopztdWwd8q7lj6fLrAVut/dER0QSRKShB1rsBq4GlorIaccbKCKdsPXPXoCts+OZ2Jp/XSAi\n0fbHJY4ANtjfkikip4iIF3DVER83XES8RKQLtv+h7MD2L4kb7fs6CVtDsR3HqPlUEfEXkXBgUAM/\no1LHpTN05VTGmJ9EJBTYX+eJROtE5BTgf7ZuuhQDN9FAD3RjzA4RuRHbefjLgdOAPsaYCUcMHQA8\nJCJV9s++2d5n/RFsLVcFWGOMOdRudSywGtsTt37EdgrokB3Ygj8W+IcxplxEnsd2Pv0HbLPwW40x\nFfafpW69e0VkJbAN+I0/TjEp1STabVEppdyEnnJRSik3oYGulFJuQgNdKaXchAa6Ukq5CQ10pZRy\nExroSinlJjTQlVLKTWigK6WUm/h/OPiZ1+y70S0AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from matplotlib import pyplot as pl\n", "%matplotlib inline\n", "import numpy as np\n", "from scipy import integrate as ig\n", "Ns=list(range(2,10,2))+list(range(10,50,5))\n", "norms=[ig.quad(lambda x:tefun(x,0.5,n),-0.99,0.99)[0] for n in Ns]#gaussova kvadratura\n", "ints05=[ig.quad(lambda x:tefun(x,0.5,n),-0.99,0.5)[0] for n in Ns]\n", "#zavislost na N sqrt(aN+b)/sqrt(a_2 N+b_2)\n", "pl.plot(Ns,1/np.r_[norms]**2,'+')\n", "zz1=np.polyfit(Ns,1/np.r_[norms]**2,1)\n", "pl.plot(Ns,1/np.r_[ints05]**2,'+')\n", "pl.plot(Ns,np.polyval(zz1,Ns))\n", "zz05=np.polyfit(Ns,1/np.r_[ints05]**2,1)\n", "pl.plot(Ns,np.polyval(zz05,Ns))\n", "pl.xlabel(\"velik. souboru\")\n", "pl.legend([\"integ.cely\",\"kvantil 0.5\"])" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0.43121001, 0.26442757, 0.21709263, 0.18458887, 0.15844065,\n", " 0.11076818, 0.07919624, 0.05744818, 0.04209682, 0.03108073,\n", " 0.02308156, 0.01722121])" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEJJJREFUeJzt3X+s3XV9x/Hna1SmmQOKFEJosWzpElmyodwgxiWlukFh\nZmWLJLhNGsPsYnTBRTNb/2mHW4rJJo7EkbBBKImCxB+jMTjWdBX3ByK3yvgxpu2cQEdDa4rIZqbB\nvffH+V449HPbe7m3vd9zep+P5OR8v+/z+Z7zPp/09nW+P+65qSokSRr2c303IEkaPYaDJKlhOEiS\nGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGkv6bmCuzjjjjFq5cmXfbUjSWNm9e/cPqmrZTOPG\nNhxWrlzJ5ORk321I0lhJ8uRsxnlYSZLUMBwkSQ3DQZLUMBwkSQ3DQZLUMBwkaZzs2rogL2M4SNI4\nuf+GBXkZw0GS1BjbX4KTpEVj19ZX7jFsOXVwv3ojrNl0XF7ScJCkUbdm08shsOVU2PL8cX9JDytJ\nkhqGgySNk9UbF+RlDAdJGifH6RzD4QwHSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAk\nNQwHSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAkNQwHSVJjxnBIsiLJriRPJHk8yXVd/fQkO5Ls6e6X\ndvUkuSnJ3iSPJHnL0HOt78bvSbJ+qH5hkke7bW5KkuPxZiVJszObPYcXgY9U1ZuAi4EPJjkf2Ajs\nrKpVwM5uHeByYFV32wDcDIMwATYDbwUuAjZPBUo3ZsPQdmvn/9YkSXM1YzhU1f6q+la3/ALwBHAO\nsA7Y1g3bBlzZLa8D7qiBbwCnJTkbuAzYUVWHquo5YAewtnvslKp6oKoKuGPouSRJPXhV5xySrATe\nDDwInFVV+2EQIMCZ3bBzgKeHNtvX1Y5W3zdNXZLUk1mHQ5LXA18EPlxVPzra0GlqNYf6dD1sSDKZ\nZPLgwYMztSxJmqNZhUOS1zAIhs9W1Ze68rPdISG6+wNdfR+wYmjz5cAzM9SXT1NvVNUtVTVRVRPL\nli2bTeuSpDmYzdVKAW4FnqiqTw09tB2YuuJoPXDPUP2a7qqli4Hnu8NO9wGXJlnanYi+FLive+yF\nJBd3r3XN0HNJknqwZBZj3g68F3g0ycNd7ePADcDdSa4FngKu6h67F7gC2Av8GHgfQFUdSvIJ4KFu\n3PVVdahb/gBwO/A64KvdTZLUkwwuEBo/ExMTNTk52XcbkjRWkuyuqomZxvkb0pKkhuEgSWoYDpKk\nhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEg\nSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoY\nDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkxozhkOS2JAeSPDZU25Lkv5I83N2uGHpsU5K9\nSb6T5LKh+tqutjfJxqH6eUkeTLInyeeTnHws36Ak6dWbzZ7D7cDaaeo3VtUF3e1egCTnA1cDv9pt\n87dJTkpyEvAZ4HLgfOA93ViAT3bPtQp4Drh2Pm9IkjR/M4ZDVX0dODTL51sH3FVVP6mq/wT2Ahd1\nt71V9b2q+ilwF7AuSYB3AF/ott8GXPkq34Mk6RibzzmHDyV5pDvstLSrnQM8PTRmX1c7Uv0NwA+r\n6sXD6tNKsiHJZJLJgwcPzqN1SdLRzDUcbgZ+GbgA2A/8dVfPNGNrDvVpVdUtVTVRVRPLli17dR1L\nkmZtyVw2qqpnp5aT/B3wlW51H7BiaOhy4Jluebr6D4DTkizp9h6Gx0uSejKnPYckZw+t/i4wdSXT\nduDqJD+f5DxgFfBN4CFgVXdl0skMTlpvr6oCdgHv7rZfD9wzl54kScfOjHsOSe4ELgHOSLIP2Axc\nkuQCBoeAvg/8MUBVPZ7kbuDfgBeBD1bVz7rn+RBwH3AScFtVPd69xMeAu5L8BfBt4NZj9u4kSXOS\nwYf38TMxMVGTk5N9tyFJYyXJ7qqamGmcvyEtSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoY\nDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpKk\nhuEgSWoYDpKkhuEgSWoYDpKkhuEgSWoYDpI0k11b++5gwRkOkjST+2/ou4MFZzhIkhpL+m5AkkbS\nrq2v3GPYcurgfvVGWLOpn54WkOEgSdNZs+nlENhyKmx5vt9+FpiHlSRJDcNBkmayemPfHSw4w0GS\nZrIIzjEcznCQJDVmDIcktyU5kOSxodrpSXYk2dPdL+3qSXJTkr1JHknylqFt1nfj9yRZP1S/MMmj\n3TY3JcmxfpOSpFdnNnsOtwNrD6ttBHZW1SpgZ7cOcDmwqrttAG6GQZgAm4G3AhcBm6cCpRuzYWi7\nw19LkrTAZgyHqvo6cOiw8jpgW7e8DbhyqH5HDXwDOC3J2cBlwI6qOlRVzwE7gLXdY6dU1QNVVcAd\nQ88lSerJXM85nFVV+wG6+zO7+jnA00Pj9nW1o9X3TVOXJPXoWJ+Qnu58Qc2hPv2TJxuSTCaZPHjw\n4BxblCTNZK7h8Gx3SIju/kBX3wesGBq3HHhmhvryaerTqqpbqmqiqiaWLVs2x9YlSTOZazhsB6au\nOFoP3DNUv6a7auli4PnusNN9wKVJlnYnoi8F7useeyHJxd1VStcMPZckqSczfrdSkjuBS4Azkuxj\ncNXRDcDdSa4FngKu6obfC1wB7AV+DLwPoKoOJfkE8FA37vqqmjrJ/QEGV0S9Dvhqd5Mk9SiDi4TG\nz8TERE1OTvbdhiSNlSS7q2pipnH+hrQkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIa\nhoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMk\nqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4\nSBo9u7b23cGiZzhIGj3339B3B4vevMIhyfeTPJrk4SSTXe30JDuS7Onul3b1JLkpyd4kjyR5y9Dz\nrO/G70myfn5vSZI0X8diz2FNVV1QVRPd+kZgZ1WtAnZ26wCXA6u62wbgZhiECbAZeCtwEbB5KlAk\nLSK7tsKWUwc3eHnZQ0y9WHIcnnMdcEm3vA34GvCxrn5HVRXwjSSnJTm7G7ujqg4BJNkBrAXuPA69\nSRpVazYNbtAFw/P99rPIzXfPoYB/SrI7yYaudlZV7Qfo7s/s6ucATw9tu6+rHaneSLIhyWSSyYMH\nD86zdUnSkcx3z+HtVfVMkjOBHUn+/ShjM02tjlJvi1W3ALcATExMTDtG0glg9caZx+i4mteeQ1U9\n090fAL7M4JzBs93hIrr7A93wfcCKoc2XA88cpS5psZo6vKTezDkckvxCkl+cWgYuBR4DtgNTVxyt\nB+7plrcD13RXLV0MPN8ddroPuDTJ0u5E9KVdTZLUk/kcVjoL+HKSqef5XFX9Y5KHgLuTXAs8BVzV\njb8XuALYC/wYeB9AVR1K8gngoW7c9VMnpyVJ/cjg4qHxMzExUZOTk323IUljJcnuoV89OCJ/Q1qS\n1DAcJEkNw0GS1DAcJEkNw0GS1DAcJEkNw0GS1DAcJEkNw0GS1DAcJEkNw0GS1DAcJEkNw0GS1DAc\nJEkNw0HSwK6tfXegEWI4SBq4/4a+O9AIMRwkSY35/JlQSeNu19ZX7jFsOXVwv3ojrNnUT08aCYaD\ntJit2fRyCGw5FbY8328/GhkeVpIkNQwHSQOrN/bdgUaI4SBpwHMMGmI4SJIahoMkqWE4SJIahoMk\nqWE4SH3y+4w0ogwHqU9+n5FGlOEgSWr49RnSQvP7jDQGDAdpofl9RhoDHlbS4uIJYGlWDActLqN2\nAtjvM9KIMhykPnmOQSNqZMIhydok30myN4kfp04kfR/K2bW1O7bfnfidWu67L2mEjUQ4JDkJ+Axw\nOXA+8J4k5x+v13vg1o+e0NvNd9tjru9DOWs2DU76Tp34nVoegU/tN+74bt8tvMRejmyU+lmoXkYi\nHICLgL1V9b2q+ilwF7DueL3Y257+uxN6u/luq4XzNzv39N3CS+zlyEapn4XqZVTC4Rzg6aH1fV1N\n42pED+V8+sXf6/X1pXGRquq7B5JcBVxWVX/Urb8XuKiq/uSwcRuADQDnnnvuhU8++eSsX+OBWz86\n7afpB1a8n7dd+1djv918tz3Wbtzx3Zc+4Xz/tb/Pyv/9HADXvXMVf/pbv9JbL8P66GXU+rGX8ejn\nWPaSZHdVTcw4sKp6vwFvA+4bWt8EbDraNhdeeGHN2eZTTuzt5rvtsTZCvbzxY1/pu4VXGKV+7OXI\nRqmf+fYCTNYs/l8elcNKDwGrkpyX5GTgamB7zz3pGPFQjjR+RiIcqupF4EPAfcATwN1V9fjxer0H\nVrz/hN5uvtsea7W6/6uCplz3zlV9t/AKo9SPvRzZKPWzUL2MxDmHuZiYmKjJycm+25CksTLbcw4j\nsecgSRothoMkqWE4SJIahoMkqWE4SJIaY3u1UpKDwP8AP+i7lxF1Bs7NdJyXI3NujuxEmps3VtWy\nmQaNbTgAJJmczSVZi5FzMz3n5cicmyNbjHPjYSVJUsNwkCQ1xj0cbum7gRHm3EzPeTky5+bIFt3c\njPU5B0nS8THuew6SpONgLMMhydok30myN8nGvvvpU5LbkhxI8thQ7fQkO5Ls6e6X9tljX5KsSLIr\nyRNJHk9yXVdf9POT5LVJvpnkX7u5+fOufl6SB7u5+Xz3FfqLTpKTknw7yVe69UU3L2MXDklOAj4D\nXA6cD7wnyfn9dtWr24G1h9U2AjurahWws1tfjF4EPlJVbwIuBj7Y/VtxfuAnwDuq6teBC4C1SS4G\nPgnc2M3Nc8C1PfbYp+sY/PmAKYtuXsYuHICLgL1V9b2q+ilwF7Cu5556U1VfBw4dVl4HbOuWtwFX\nLmhTI6Kq9lfVt7rlFxj8sJ+D80P3R8H+u1t9TXcr4B3AF7r6opybJMuB3wb+vlsPi3BexjEczgGe\nHlrf19X0srOqaj8M/oMEzuy5n94lWQm8GXgQ5wd46dDJw8ABYAfwH8APuz++BYv3Z+vTwJ8B/9et\nv4FFOC/jGA6ZpuYlVzqiJK8Hvgh8uKp+1Hc/o6KqflZVFwDLGeyRv2m6YQvbVb+SvAs4UFW7h8vT\nDD3h52VJ3w3MwT5gxdD6cuCZnnoZVc8mObuq9ic5m8Enw0UpyWsYBMNnq+pLXdn5GVJVP0zyNQbn\nZU5LsqT7lLwYf7beDvxOkiuA1wKnMNiTWHTzMo57Dg8Bq7qrB04Grga299zTqNkOrO+W1wP39NhL\nb7pjxbcCT1TVp4YeWvTzk2RZktO65dcBv8ngnMwu4N3dsEU3N1W1qaqWV9VKBv+3/HNV/QGLcF7G\n8pfgulT/NHAScFtV/WXPLfUmyZ3AJQy+NfJZYDPwD8DdwLnAU8BVVXX4SesTXpLfAP4FeJSXjx9/\nnMF5h0U9P0l+jcGJ1ZMYfEi8u6quT/JLDC7yOB34NvCHVfWT/jrtT5JLgI9W1bsW47yMZThIko6v\ncTysJEk6zgwHSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAkNQwHSVLj/wH72n2RXy2C2gAAAABJRU5E\nrkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "normsb=[ig.quad(lambda x:tefun(x,0.7,n),-0.99,0.99)[0] for n in Ns]#gaussova kvadratura\n", "ints05b=[ig.quad(lambda x:tefun(x,0.7,n),-0.99,0.5)[0] for n in Ns]\n", "pl.plot(Ns,1/np.r_[normsb]**2,'+')\n", "zz1b=np.polyfit(Ns,1/np.r_[normsb]**2,1)\n", "pl.plot(Ns,1/np.r_[ints05b]**2,'+')\n", "np.array(ints05b)/np.array(normsb)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0.49238729, 0.43973428, 0.45102028, 0.45945963, 0.46479238,\n", " 0.47233256, 0.47647905, 0.47919075, 0.48114018, 0.48262816,\n", " 0.48381192, 0.48478272])" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array(ints05)/np.array(norms)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0.54827236, 0.54827236, 0.54827236, 0.54827236, 0.54827236,\n", " 0.54827236, 0.54827236, 0.54827236, 0.54827236, 0.54827236,\n", " 0.54827236, 0.54827236])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sqrt(np.polyval(zz1[1:],Ns)/np.polyval(zz05[1:],Ns))" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "ename": "NameError", "evalue": "name 'np' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mrsmul\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mr_\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m0.99\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m0.05\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mintsmul\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mr_\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mquad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mtefun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m0.99\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mr\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrsmul\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnorms\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;31m#integral po r1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mpl\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrsmul\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m0.025\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mintsmul\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mintsmul\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'x'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mpol1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpolyfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrsmul\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m0.025\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mintsmul\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mintsmul\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'np' is not defined" ] } ], "source": [ "rsmul=np.r_[0:0.99:0.05]\n", "intsmul=np.r_[[ig.quad(lambda x:tefun(x,0.5,10),-0.99,r)[0] for r in rsmul],norms[4]] #integral po r1\n", "\n", "pl.plot(rsmul+0.025,intsmul[1:]-intsmul[:-1],'x')\n", "pol1=np.polyfit(rsmul+0.025,intsmul[1:]-intsmul[:-1],6)\n", "pl.plot(rsmul,np.polyval(pol1,rsmul))\n", "pl.xlabel(\"horni mez kvantilu\")\n", "#pl.plot(rsmul+0.025,intsmul[1:]-intsmul[:-1],'+')\n", "pl.title(\"hustota prsti pro N=10,rho=0.5\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VFX+//HXh4QQOlKlSlBQQUEgUhSCFF1AUVcFQUQi\nzbIqq+uyfm3rqrv7U3fFsljpVkDRRXRFkSYKJKEXAUMPNRBagPTz+2MGjSEkAySZkvfz8cjDzMyZ\nO5+TwfecOffec805h4iIhJYy/i5ARESKnsJdRCQEKdxFREKQwl1EJAQp3EVEQpDCXUQkBCncg5CZ\nbTWzHqWpDjOLNbOFuW6nmlmTItr242Y21vt7YzNzZhbu43PrmNkCMztqZv8uinpEioLCXUqENzAv\nKqrtOecqOec2F/Ka15hZkg/b+odzbthZljIC2A9Ucc796Sy3UeK878dqMyuT677nzWziWWzrHTPb\nYGY5Zhabz+MPm9keMztsZuPNrNy5VS++ULhLqebrCL0AFwDrnB/PBjyHPtQD+hdBCSuB+4FleR8w\ns98BjwHdgcZAE+BvRfCaUgiFe5Azs0vMbIuZ9ffe/s0I2cwmmtnz3t+vMbMkMxtlZvvMbLeZ3Wxm\nvc1so5mlmNnj+T039/NPU0c7M1tkZoe82/2PmUV4H1vgbbbSO51yuw/9qmFmM8zsiJnFARfmefyX\nfnrrX+edGtlpZo+aWUXgf0A972ummlk9M3vGzD4xs/fN7AgQ673v/TwlDDGzXd6+5Dsi945yBwOj\nvNvvYWZh3mmeTd56lppZQ2/7S8zsW+/feYOZ9Sug//PM7J9mFucd8f7XzKp7Hzs5dTTUzLYDc7z3\n32hma73vwTwzu7SQP/OLwN/O9QPOOTfGOfcdkJbPw4OBcc65tc65g8BzQOy5vJ74RuEexMysDfAN\n8KBz7mMfn3Y+EAnUB54G3gXuBNoCnYGnz3IuOxt4GKgJdMQzUrsfwDkX423TyjudMsWH7Y3BExZ1\ngSHen9MZB9zjnKsMXAbMcc4dA3oBu7yvWck5t8vb/ibgE6Aa8MFpttkVaApcBzyW374F51ys9/kv\nerc/G3gEGAD0Bqp46z7u/bD5FvgQqO1t84aZtSigX3d5n18PyAJey/N4F+BS4Hdm1gz4CPgjUAv4\nCvji5AfsaUwHjnCasPV+SJzu57ECtptbCzwj+5NWAnXMrIaPz5ezpHAPXp2BGcBg59zMM3heJvB3\n51wm8DGeMH7VOXfUObcWWAu0PNNinHNLnXOLnXNZzrmtwNt4wueMmVkYcCvwtHPumHNuDTCpgKdk\nAs3NrIpz7qBz7pTpgTwWOec+d87lOOdOnKbN37yvvRqYgCeMfTEMeNI5t8F5rHTOHQBuALY65yZ4\n/0bLgE+B2wrY1nvOuTXeD6qngH7ev81Jz3hrPAHcDnzpnPvW+97+CygPXFXA9p13u0/nNw/unKtW\nwM//8/HvUQk4nOv2yd8r+/h8OUsK9+B1L/Cjc27uGT7vgHMu2/v7yWDbm+vxE3j+hzwjZtbMzGZ6\nd5wdAf6B54PjbNQCwoEdue7bVkD7W/GMlLeZ2Xwz61jI9ncU8njeNtvwjJ590RDYlM/9FwDtc49+\ngYF4vkn5WkNZfvs3zf14PXL9jZxzOd7H6xdUrHPuK2A7nh3DxSEVzzeYk07+frSYXk+8FO7B616g\nkZmNznP/caBCrtsFhUdhjp3Btt4E1gNNnXNVgMcBO8vXTcYzDdEw132NTtfYORfvnLsJz3TH58DU\nkw+d7ik+1JD3tXedrmEeO8izfyDX/fPzjH4rOefuO4MaMvEcmXNS7n7swvMBAoCZmff5O32o+Ung\nCX77Xp883PR0P4/nv6lTrAVa5brdCtjr/TYjxUjhHryOAj2BGDPL/RV5BXCHd8deT85yaiTXtnqb\nWXUzOx/PfO7pVMYzf5tqZpcAeUNrL54jJQrl/WYxHXjGzCqYWXM8O+ZOYWYRZjbQzKp6pyOO4Jn/\nP/maNcysqi+vm8dT3tduAdwN+LKfAGAs8JyZNTWPlt755ZlAMzMbZGZlvT9XFrLT804za25mFYBn\ngU9yfevKaypwvZl1N7OywJ+AdODHwgp2zs0DVpPnb5xrX0V+P/842c77HkTi+TAva2aR9ushlpOB\nod5+nIfng2RiYTXJuVO4BzHn3CHgWqCXmT3nvXsk0Ac4+bX/83N4iffw7ADbimfHbUEB9yhwB54P\nnXfzafsMMMk7JdHPzBp5R4CnG5E/gGd6aA+eMJhQwGsPArZ6p4PuxbODGOfcejw7GTd7X9fXqRWA\n+UAi8B3wL+fcNwDeD5K1BTzvZTxB+w2eD5pxQHnn3FE8O2f74xll7wFeAAo65vs9PH3fg2cn+EOn\na+ic24Cn36/jGd33Afo45zIK66jXk0B1H9vm9Q2e6byrgHe8v8d46/oaz1E5c/FMG20D/nqWryNn\nwHSxDpHAY2bzgPedc2P9XYsEJ43cRURCkMJdRCQEaVpGRCQEaeQuIhKCznXRpLNWs2ZN17hxY3+9\nvIhIUFq6dOl+51ytwtr5LdwbN25MQkKCv15eRCQomVlBZ2v/QtMyIiIhSOEuIhKCFO4iIiFI4S4i\nEoIU7iIiIUjhLiJSFBa+AlsW/Pa+LQs89/uBwl1EpCjUbwPTYn8N+C0LPLfrt/FLOX47zl1EJKAs\nfMUTxFExv963ZQHsXAadCrqUgVdUDNm3TsCmxpLa8i4qrJzEpmv+w+6MS0hdtYvUtCxS07M4mpZF\n90tr07JBteLrCwp3ERGPkyPvvhM9AX9y5N13IgApxzJI2JpCwraDbD9w3BPU6VmkpmWSmp5FaloW\nxzKyeTg8hpFLRvNq1u8Z/TlA/CkvVatyOYW7iEiJiIrxBPm0WFz0EHLixvFDm3/xv+XViP9sPon7\nUgGICCvDBTUqUDkynKrly9KgWnkqR4ZTqVw4l6St4PoNc1l7wT3cu30q13S+haxGnX95vFJkOBUj\nwgkrc7ZXoPSdwl1ESr3sHMeGPUdJ2NOIWpG96bXgJf6T9XtGz4mkcuRuoi84j9+3rs+VjavTskFV\nIsuGnbqRLQtg2pNwx3u0iIqBLTfQalosNJgIdWJObV/MFO4iUuqkZWazKukw8VtTiN+awtJtBzma\nlkXHMmt5I+K//K/GXdxz5Atu/l1/GrS5zreR9s5lv07pwK/fBHYu++08fgnx23ru0dHRTguHiUhJ\n2nbgGG/N38Sny3aSkZUDQNPalYhuXJ3elTZy1bJHKdNvItaky2/n3P0QzqdjZkudc9GFtdPIXURC\nx2mOeEnesIjnD13HFyt3ER5Whlvb1KfbJXWIvuA8zqsY4X3ud3D7pIAZeZ8rhbuIhI48R7xsivuK\n2l/fy0NpD7AyfC9DO0UxvHMTaleJPPW5+R3uGBUTlMEOCncRCSVRMbjbJpD18WBmlutFzOEZ/NEe\n5squfXjjqsa/jtJLAYW7iIQE5xzzNiYzZk5ZOh/rwsj0D0hoPJxXBjxE5ciy/i6vxCncRSSo5eQ4\nZq3dw5h5iazZeYQbKv/MPeXnkdX+UaKXTYDdNwbt1Mq5ULiLSFDKzM5hxopdvDEvkU3Jx4iqWZEJ\nXdK4ZvVrWN/JnkC/sEtAHvFSEhTuIhJUnHNMS0jitTk/k3TwBJecX5nXB7Sm9+V1Cfvx1YA61tyf\nFO4iEjQOpKYz6pNVfLd+H60aVuOZPi3ofmltzLwnGYXYES/nQuEuIkFhwcZk/jRtJYePZ/LXPs2J\nvarxr6Eup1C4i0jgyOckpIzEeXw/7xuGJl5N09qVmDykHZfWreLHIoODLtYhIoEjzwUvdi6fxYkP\nBjF2czUGdbiALx7spGD3kUbuIhI4vDtA3bRY1ta7jXo/f8ijZR5hyJ0DubZ5HX9XF1QU7iISUA7V\n6cAP5XpzfeLbfFZlIM8Pv586+S0XIAXStIyIBIxFmw7w+Mtv0DHlc5Y2Hs7N2V9T50Ccv8sKShq5\ni4jfZWbnMPrbjSxfMIM3I14n5fp3aduuF2y5sdSehHSuFO4i4ldb9x9j5JQVrNxxiDcaHyCy22Sa\nNOvqebAUn4R0rhTuIuIXzjmmL9vJ0/9dQ1gZ442Bbeh9+fWnNiylJyGdK4W7iJS4I2mZPPnZGmas\n3EW7qOq8cvsV1KtW3t9lhRSFu4iUqL1H0hg8Po6f96Xy599dzL1dLvTtGqVyRhTuIlJiNienMmhc\nHIeOZzB5SDuuvqimv0sKWQp3ESkRq5IOETshHgM+HtGRyxtU9XdJIc2n49zNrKeZbTCzRDN7LJ/H\nG5nZXDNbbmarzKx30ZcqIsHq+5+TGfDOYipEhPHJfVcp2EtAoeFuZmHAGKAX0BwYYGbN8zR7Epjq\nnGsN9AfeKOpCRSQILHzll3VhTvph9mcsmvwUDatXYPp9VxFVs6KfiitdfBm5twMSnXObnXMZwMfA\nTXnaOODkaj5VgV1FV6KIBI08C399/cVULvn+QU7UuoIp93SktpYRKDG+zLnXB3bkup0EtM/T5hng\nGzN7EKgI9MhvQ2Y2AhgB0KhRozOtVUQCXa6FvxZXv5krd0xlYr2/8pchQ4gsG+bv6koVX0bu+R2j\n5PLcHgBMdM41AHoD75nZKdt2zr3jnIt2zkXXqlXrzKsVkYCX1agTcyrdQMekcSyvfQsjhw1VsPuB\nL+GeBDTMdbsBp067DAWmAjjnFgGRgI5xEill0jKzeXXsOK7YO51F9YfS/dhMwrcv9HdZpZIv4R4P\nNDWzKDOLwLPDdEaeNtuB7gBmdimecE8uykJFJLAdPpHJC2++S+yuvxEf/TIdh7+M9Z34mzl4KTmF\nhrtzLgt4AJgF/ITnqJi1Zvasmd3obfYnYLiZrQQ+AmKdc3mnbkQkRO07ksbtby+ifPIK1nd6jZ59\n+nkeyL3wl5Qo81cGR0dHu4SEBL+8togUnS37j3HX+CUcSM3grTvbEtNM+9OKk5ktdc5FF9ZOZ6iK\nyFlbnXSY2Alx5DjHh8M7cEXDav4uSbwU7iJyVn5I3M+IyQlUqxDB5KHtuLBWJX+XJLko3EXkjM3b\nsI8Rk5cSVbMik4a04/yqOjkp0CjcReSM/Ji4n3veW8pFtSvx4fD2VKsQ4e+SJB+6QLaI+CxhawrD\nJifQqHoF3h+mYA9kCncR8cmqpEPcPSGeOlUi+WB4e6pXVLAHMoW7iBTqp91HGDQujqoVyvLBsPbU\nrqw59kCncBeRAiXuS+XOsUsoXzaMj4Z30LVOg4TCXUR+K9ea7NsOHGPg2MVEuzV82XYpDatX8HNx\n4iuFu4j8lndN9uTV33LHu0tombmKMRGvUaNZB39XJmdAh0KKyG9FxZDS+x3KfnI3g7iWYZFzCb99\nkmedGAkaGrmLyG/sT02n3zdl+chdy718Sni7YQr2IKRwF5FfHDqewaBxcdQ/GM+wyLkQMwoSxmnJ\n3iCkcBcRAI6kZTJ4fBw1k5fwboX/ULb/JOj2hGfJXq3JHnQU7iLC8YwshkyIZ+2uIzzdJo2I/pN/\nnYrRmuxBSTtURUq5tMxshk1KYNn2g7w+oA1NW/Y+tVFUjObdg4zCXaQUy8jK4b73l7Jo8wH+3bcV\n17es6++SpIhoWkaklMrKzuHBj5Yxd0Myf7/5cm5p08DfJUkRUriLlEI5OY5Hp61k1tq9PH1Dc+5o\n38jfJUkRU7iLlDLOOZ7/8ic+X7GLR69rxpBOUf4uSYqBwl2klHlr/mbG/7CFu69uzB+6XuTvcqSY\nKNxFSpGpCTt44ev13NiqHk9d3xwz83dJUkwU7iKlxOx1e/m/6avp3LQm/+rbijJlFOyhTOEuUgok\nbE3hDx8uo0W9Krx5Z1siwvW/fqjTOywS4jbuPcqQifHUr1aeCbFXUqmcTm8pDRTuIqEm18U2dh46\nwV3j4rg6bB3TW8VTo1I5PxcnJUXhLhJqvBfbOPLTHAaNW0LzjBW8XvY1ql3U3t+VSQnS9zORUBMV\nQ9rN43Af3cUt2T24p/w8XWyjFFK4i4SYzOwc7llYkbaZ3XkofDq0H6VgL4U0LSMSQnJyHKM+WUVG\n4jxGVJini22UYhq5i4QI5xz/+Oon9qz8hvEVxxA54D3vUr2dPRfb6DtRI/hSRCN3kRDxzoLNjF24\nhSGNDxI5QBfbKO00chcJAZ8sTeKf/1vPDS3r0r3/P7C8Z5/qYhuljkbuIkFuzvq9/OXTVXS6qCb/\n7qdlBcRD4S4SxJZuS+H+DzzLCrw1qC3lwsP8XZIECIW7SJD6ee9RhkxMoG7V8ozXsgKSh0/hbmY9\nzWyDmSWa2WOnadPPzNaZ2Voz+7BoyxSR3HYdOsFd4+OICC/D5CHtqKllBSSPQj/qzSwMGANcCyQB\n8WY2wzm3LlebpsD/AVc75w6aWe3iKliktDt0PIO7xseRmpbF1Hs70rB6BX+XJAHIl5F7OyDRObfZ\nOZcBfAzclKfNcGCMc+4ggHNuX9GWKSIAJzKyGTIxnu0px3l3cDSX1q3i75IkQPkS7vWBHbluJ3nv\ny60Z0MzMfjCzxWbWM78NmdkIM0sws4Tk5OSzq1iklMrMzuEPHy5jxY5DvNb/Cjo0qeHvkiSA+RLu\n+R1X5fLcDgeaAtcAA4CxZlbtlCc5945zLto5F12rVq0zrVWk1HLO8dinq5mzfh/P3XwZPS+r6++S\nJMD5Eu5JQMNctxsAu/Jp81/nXKZzbguwAU/Yi0gReOHrDXy6LImHezRjYPsL/F2OBAFfwj0eaGpm\nUWYWAfQHZuRp8znQFcDMauKZptlclIWKlCq5Lrgx9vvNvDV/E0+12M9DkV/6uTAJFoWGu3MuC3gA\nmAX8BEx1zq01s2fN7EZvs1nAATNbB8wF/uycO1BcRYuEPO8FNxZ+M53nv/yJkU12M2T337D6bfxd\nmQQJcy7v9HnJiI6OdgkJCX55bZFgsPL7GTScfT9zK/fhlpxZmFZ1FMDMljrnogtrpzNURQLQyh2H\nGPBtBF+Xv55bUz/Eoocq2OWMKNxFAszm5FTunhhPj/Ib6G/f6oIbcla0GIVIANl7JI1B4+K40q1h\ntL1GmX6TdMENOSsauYsEiMMnMhk8Po5DxzN4pm06Ybkvaq0LbsgZ0shdJACkZWYzfHICm5JTmRDb\njrpN8znJWxfckDOgcBfxs+wcx8iPlxO/NYXX+remU9Oa/i5JQoCmZUT8yDnHk5+vYdbavfz1hub0\naVXP3yVJiFC4i/jR6Nk/81Hcdv7Q9UJir47ydzkSQhTuIn4ybuEWXvvuZ/pFN+DR6y72dzkSYhTu\nIn4wJX47z81cR6/Lzucfv78cM13UWoqWwl2khH2xchePTV9Nl2a1eKX/FYSH6X9DKXr6VyVSguas\n38vDU1Zw5QXVeevOtpQLD/N3SRKiFO4iJWTRpgPc9/4yLq1bhXGx0ZSPULBL8VG4i5SAFTsOMWxS\nPI2qV2DSkHZUjizr75IkxCncRYpDrottrN9zhMHj4+hRfiPTW8VTvWKEn4uT0kDhLlIcvBfb2L3i\nG+4cG8fVYet42UZTuUk7f1cmpYSWHxApDlEx7O/1NpGfDmGEXcfQcnN+uxCYSDHTyF2kGCQfTaff\nrLJM4VpGuE8IazdMwS4lSuEuUsQOH89k0LglNDycwNByc3WxDfELhbtIETqWnkXsxDhq7Y9jbIX/\nULb/JOj2hGct9mmxCngpMQp3kSJyck32VUmHebL1Ccr2n6yLbYjfaIeqSBHIzM7hgQ+X8eOmA4y+\nvRUXt+59aiNdbENKkEbuIucoO8fx6LSVzP5pH8/d1ILft27g75JEFO4i5+LkxTb+u2IXf+l5CYM6\nNvZ3SSKAwl3krDnneG7mT79cbOO+ay70d0kiv9Ccu8hZcM7xty/WMfHHrdx9dWNdbEMCjsJd5Azl\n5DienrGG9xdvZ1inKJ64/lJdbEMCjsJd5Azk5Die+Hw1H8Xt4N4uF/KXnhcr2CUgKdxFfJSd43js\n01VMW5rEA10v4k/XNVOwS8BSuIv4IDvH8edpK5m+fCcjuzfljz2aKtgloOloGZH85FqPPSs7h0em\nrmD3ym94/5JFPHytRuwS+DRyF8mPdz32rFsnMHJJZVLWzGZ8xTGU7/KevysT8YnCXSQ/UTFk3TqB\nEx8MollGN0ZUnEv5O97T8gESNBTuIvnIyMrhgR8q0iKjGyPDP4OOoxTsElQ05y6SR3pWNve9v5Sj\n6+dwT/l5Wo9dgpJG7iK5pGVmc+/7S0n/eR4TKr5B5B3eZXujOnvWY+87USN4CQo+jdzNrKeZbTCz\nRDN7rIB2t5mZM7PooitRpGScXI99/sZk/nL58V+DHbQeuwSdQkfuZhYGjAGuBZKAeDOb4Zxbl6dd\nZeAhYElxFCpSnE5kZDNscjw/bjrAC7e25Iro609tpPXYJYj4MnJvByQ65zY75zKAj4Gb8mn3HPAi\nkFaE9YkUu2PpWdw9MY5Fmw7w776t6Bfd0N8liZwzX8K9PrAj1+0k732/MLPWQEPn3MwirE2k2B1J\ny+TuCfHEbUlh9O1XcEsbXWhDQoMvO1TzOxXP/fKgWRlgNBBb6IbMRgAjABo1auRbhSLFZO+RNAaP\njyNxXyqv9m9Nn1b1/F2SSJHxZeSeBOT+ntoA2JXrdmXgMmCemW0FOgAz8tup6px7xzkX7ZyLrlWr\n1tlXLXKOEvcd5ZY3fmRHynHGx16pYJeQ48vIPR5oamZRwE6gP3DHyQedc4eBmidvm9k84FHnXELR\nlipSNBK2pjB0UgJlw8ow5Z6OXFa/qr9LEilyhY7cnXNZwAPALOAnYKpzbq2ZPWtmNxZ3gSJF6es1\nexg4dgnVK0Yw/b6rFOwSsnw6ick59xXwVZ77nj5N22vOvSyRIrDwFc8CYN7DF99btJWvvpjK4+ft\nos99L1K9YoR/6xMpRjpDVUKXd2VHd9sEXtpYh+ULZvBO5H+IuGky5RTsEuIU7hK6vCs7pn0wiHLp\n3Xi3/BzK3/EeYRd28XdlIsVO4S4hKzU9i/vnl6dtumdlR3f1nzEFu5QSWhVSQlLy0XQGvLOY7E3z\nuafCPIgZhSWM18qOUmoo3CXkbE5O5ZY3f6D6vsVMqDSGyAGTodsTnoW/psUq4KVUULhLSFm+/SC3\nvbWIY+nZ/LNDFhH9tbKjlE6ac5eQ8d1Pe/nDh8uoXTmSSUPaUa/mtac20sqOUkoo3CUkfBy3ncc/\nW02LelUZH3sltSqX83dJIn6lcJeglpPjeGX2Rl6bk0iXZrV4Y2AbKpbTP2sR/V8gQetIWiaPTFnB\n7J/20bdtA/5xy+WUDdNuJBFQuEuQ2rj3KPe8t5QdKcd5pk9zBl/VGLP8VqcWKZ0U7hJ0vlq9m0en\nraRCRDgfDu9Au6jq/i5JJOAo3CVoZOc4Xpq1gbfmb6J1o2q8ObAt51eN9HdZIgFJ4S6BK9eqjgeP\nZfDQx8vJ2jSfN6NS6Db075QLD/N3hSIBS+Eugcu7quOWrmMYNKccUUeXMaHSG0ReNxkU7CIFUrhL\n4IqK4fsrXqLFzOHcHdaTwZW+I/z2yToJScQHOm5MAlJmdg7PzFjLoDmRzKnch6E50whvN0zBLuIj\nhbsEnOSj6Qwcu4SJP27l2ZYp3JozC2JGQcI4Lfol4iNNy0hAWb79IPe9v4xDJzJ4v1s6nVb81bPY\nV1QMRHX2rOp48raInJZG7hIwPorbzu1vL6ZsuPHpfVfRqcL23wa5VnUU8ZlG7uJ36VnZPDNjLR/F\n7aBz05q8PqA11SpEQL0/ntpYqzqK+EThLn61fs8R/vjxCtbvOcp911zIo9ddTFgZLSMgcq4U7uIX\nOTmOcQu38NKsDVQpX5bxsdF0u6SOv8sSCRkKdylxSQeP8+i0lSzenMJ1zevwz1sup0Ylrb8uUpQU\n7lK8ci0h4Jzj8xU7+eLzKVzpErnltsfp27aBVnMUKQYKdyle3iUEUvuM5S/LqpGydjZvlXudtJvH\nU6dVQ39XJxKyFO5SvKJiWNXxFRpOGcyl2T0YWnEOEf3fp+qFXfxdmUhI03HuUmzSMj2HON74ZRgz\nI3rxQNh0ynccQZiCXaTYaeQuxWLNzsOM/Hg5m5KP8beWB7gzaTZ08C4hENVZx6qLFDOFuxSp7BzH\nW/M3MfrbjdSoFMGM67NpuegZLSEgUsI0LSNFZvuB4/R7exEvzdpAz8vOZ9YfY2hpm7WEgIgfaOQu\n58w5x5T4HTw3cx1lyhiv9r+CG1vV8xzi2ElLCIj4g8Jdzsn6PUd46vM1xG89SMcmNfhXv1bUr1be\n32WJlHoKdzkrqelZvPLtRib8uJUqkeG8cOvl9G3bkDJaF0YkICjcpWC5zjAFzxTM4jmfk/Djd4w9\n1osB7Roy6neXcF7FCD8XKiK5aYeqFMx7hilbFrA5OZV/vvEOzRY8yK4KlzL9/qv45y0tFewiAUgj\ndylYVAzpN48n+4NBfJXejXvLfEv8lS/zfO++WppXJID5NHI3s55mtsHMEs3ssXwef8TM1pnZKjP7\nzswuKPpSxR9mr9tL989yeDetKw+ETadcx+H87oZ+CnaRAFdouJtZGDAG6AU0BwaYWfM8zZYD0c65\nlsAnwItFXaiUrB0pxxk2KYFhkxPoYGu5v+J8iBlFxVWTdJFqkSDgy7RMOyDRObcZwMw+Bm4C1p1s\n4Jybm6v9YuDOoixSSk56VjZjv9/C63N+xjBe73CUGzaOxvpP0hmmIkHEl2mZ+sCOXLeTvPedzlDg\nf/k9YGYjzCzBzBKSk5N9r1JKxMKf99Prle95adYGul5cm+/+1IU+NfdgOsNUJOj4MnLPb3LV5dvQ\n7E4gGsh32T/n3DvAOwDR0dH5bkNK3sa9R/nXrA18s24vF9SowMS7r+Sai2t7HtQZpiJByZdwTwJy\nX1WhAbArbyMz6wE8AXRxzqUXTXlSnLYfOM4rszfy2YqdVIwI55FrmzEipgmRZcP8XZqInCNfwj0e\naGpmUcBOoD9wR+4GZtYaeBvo6ZzbV+RVytnLcxISQMqa2cT9MJsHtsUQVsYY0bkJ93a5UMeri4SQ\nQsPdOZdlZg8As4AwYLxzbq2ZPQskOOdmAC8BlYBp3uthbnfO3ViMdYuvTp6E1HciB2t34KsvptLr\np8d4P2vDJ/fnAAAJdUlEQVQk/ds15MFuTalTJdLfVYpIETPn/DP1HR0d7RISEvzy2qXNiY1zcVNj\nmZTZnX58w5QLnuWGm/rTqEYFf5cmImfIzJY656ILa6czVENYWmY27y/exhvzshic3pWR4Z9yoO1I\n7u8zxN+liUgxU7iHoMzsHKYm7OD17xLZcySNEQ2T+MPR+dBuFDUSxsFlPXS0i0iIU7iHkOwcxxcr\ndzF69ka2HThOm0bVGNflBC1+eAFu10lIIqWJwj0EZGTlMHPVLt6ev5kNe49yad0qjI+NpuvFtbEf\nXj39Ze4U7iIhS+EexA4ey+DDuO1M+nEr+46mc1HtSrw+oDXXX17314tm6CQkkVJJ4R4M8hyrvik5\nlblff8rBnxczJuMGOjetyYu3taRLs1p4D0UVkVJO4R4M6rfBTYtl7VWv8nLi+ZzYOJcxZV9jWpPn\nmdUzhovPr+zvCkUkwCjcA1x6VjZfpDQhvsyfGPXtfXQs8zsGVphN5i2TuKd5d3+XJyIBSuEeoFKO\nZfDhkm1MWrSN5KPpNKtzGXua3sHwxLfhqlGgYBeRAijcA0zivlTG/7CFT5cmkZ6VQ5dmtRjaN4rO\n4euwTz6BmFGQMM5zSKN2iorIaSjcA8CJjGy+WbeHT5Ym8f3P+4kIL8MtreszpFMUzepU9lz5aNrd\nvx7SqGPVRaQQCveSkM/KjDmb5rNj7Q+Mybier1bvITU9i/rVyvNwj2YM7NCImpXK/fr8nct0rLqI\nnBGFe0nItTLjlsptSZj7OT3WPsZjGQ+yKnw3vS+vyy1tGtA+qvqvx6fnpmPVReQMKdxLwOE6HYlr\n8QLtJg9kRmZ37gybzZu1n+L2q25gfIvzKR+hi2OISNFSuBeTzOwc5m9IZvryJGav20dGdgWer9qL\nkW4Kqe0f4fFe9/i7RBEJYQr3IuScY+2uI3yyNIkvVu7iwLEMalSMYGCHRtx1/nYaz50NMaOolDAO\nLumqaRURKTYKd1/ls1OULQvI2rGUH8+/kznr9/Hd+r3sSDlBRFgZejSvza1tGhDTrBZlty+EaX/Q\n0S4iUmIU7r7KtVN0f632rF44k+i4h3ko6yHmZsRRLrwMnS6qyf3XXETvy+pStULZX5+ro11EpITp\nMns+cM7x0+6jrF/0Jd3XjGJSZncGhs3mqbKPUq1Fd3pcWpuOTWpqx6iIFDtdZu8cpWVms2jTAWb/\ntJc56/ex+3AaUIUXql/PQ+4j9rUeyZgbR2oVRhEJSKUn3E8zZ87OZdDpjzjn2Lz/GIs3H2Du+n0s\nTNxPWmYOFSLC6HRRTR7u0YxrK2zgvC+/gZhR1E4YB1t1uToRCUylJ9xzzZkTFUPOpvnkTIvlu8te\nYMYHy1iyJYX9qemeptXKc3t0Q7pdWof2UdWJLBvmXQJghHaKikhQKDXhnn1BZ7Z3HcP5H97FdxWv\n5+pD/+X+jIdYtLAidasepNNFNWgXVYP2TarTpGbFU6dbtFNURIJIyO5QzczOYc3OwyzZkkLclhTi\nt6ZwNC2Lh8OnMTL8M76tNZhD7f9MhyY1aHBeec2di0hQCL0dqoXMmZ80JX47M1ftZum2gxzPyAbg\nwloVuaFlPW6o/DMdls2HK0dxbcI4qHEbVG9Y0j0RESl2wRPueebMPXPg3tu5rN55mOSj6fRt24B2\nUTVoF1WdWpXLeds/Cv0mac5cREJecE3LnAz06KGeC1bkE8w5OS7/lRV9HPmLiASy0JuWAU8wRw+F\nBS96rkiUz4g732AHLZsrIqVKGX8XcEa2LPCM2E9eam7LAn9XJCISkIIn3HPPsXd7wvPfabEKeBGR\nfARPuBd0nLmIiPxG8My5a85cRMRnwTNyFxERnyncRURCkMJdRCQEKdxFREKQwl1EJAT5bfkBM0sG\ntp3l02sC+4uwnGBSWvteWvsNpbfv6nf+LnDO1SpsI34L93NhZgm+rK0Qikpr30trv6H09l39Pjea\nlhERCUEKdxGREBSs4f6Ovwvwo9La99Labyi9fVe/z0FQzrmLiEjBgnXkLiIiBVC4i4iEoIAOdzPr\naWYbzCzRzB7L5/FyZjbF+/gSM2tc8lUWPR/6/YiZrTOzVWb2nZld4I86i0Nhfc/V7jYzc2YWEofK\n+dJvM+vnfd/XmtmHJV1jcfHh33sjM5trZsu9/+Z7+6POomZm481sn5mtOc3jZmavef8uq8yszRm9\ngHMuIH+AMGAT0ASIAFYCzfO0uR94y/t7f2CKv+suoX53BSp4f78vFPrta9+97SoDC4DFQLS/6y6h\n97wpsBw4z3u7tr/rLsG+vwPc5/29ObDV33UXUd9jgDbAmtM83hv4H2BAB2DJmWw/kEfu7YBE59xm\n51wG8DFwU542NwGTvL9/AnQ3s9NcRDVoFNpv59xc59xx783FQIMSrrG4+PKeAzwHvAiklWRxxciX\nfg8HxjjnDgI45/aVcI3FxZe+O6CK9/eqwK4SrK/YOOcWACkFNLkJmOw8FgPVzKyur9sP5HCvD+zI\ndTvJe1++bZxzWcBhoEaJVFd8fOl3bkPxfLqHgkL7bmatgYbOuZklWVgx8+U9bwY0M7MfzGyxmfUs\nseqKly99fwa408ySgK+AB0umNL870yz4jUC+ElN+I/C8x2360ibY+NwnM7sTiAa6FGtFJafAvptZ\nGWA0EFtSBZUQX97zcDxTM9fg+ab2vZld5pw7VMy1FTdf+j4AmOic+7eZdQTe8/Y9p/jL86tzyrdA\nHrknAQ1z3W7AqV/HfmljZuF4vrIV9DUnGPjSb8ysB/AEcKNzLr2EaituhfW9MnAZMM/MtuKZh5wR\nAjtVff23/l/nXKZzbguwAU/YBztf+j4UmArgnFsEROJZXCvU+ZQFpxPI4R4PNDWzKDOLwLPDdEae\nNjOAwd7fbwPmOO+eiCBWaL+9UxNv4wn2UJl7hUL67pw77Jyr6Zxr7JxrjGd/w43OuQT/lFtkfPm3\n/jmeHemYWU080zSbS7TK4uFL37cD3QHM7FI84Z5colX6xwzgLu9RMx2Aw8653T4/2997jAvZm9wb\n2Ihnb/oT3vuexfM/NHje5GlAIhAHNPF3zSXU79nAXmCF92eGv2suqb7naTuPEDhaxsf33ICXgXXA\naqC/v2suwb43B37AcyTNCuA6f9dcRP3+CNgNZOIZpQ8F7gXuzfWej/H+XVaf6b91LT8gIhKCAnla\nRkREzpLCXUQkBCncRURCkMJdRCQEKdxFREKQwl1EJAQp3EVEQtD/BwXev1V6llwWAAAAAElFTkSu\nQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pl.plot(rsmul+0.025,np.polyval(np.polyint(pol1),rsmul+0.025)/0.05+intsmul[0])\n", "pl.plot(rsmul,intsmul[:-1],'x')\n", "levs=[0.8,0.9,0.95,0.98]\n", "pl.title(\"kumulat. distrib.fce pro N=10\")" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [], "source": [ "levs=[0.01,0.05,0.1,0.9,0.95,0.99]\n", "def polygon(rho=0.25,n=10,step=0.05,infit=False):\n", " #nafituje hustotu prsti polynomem 6.radu\n", " #spocte kumulativ. distrib. fci\n", " #najde polohu kvantilu\n", " rsmul=np.r_[0:1.001:step]\n", " intsmul=np.r_[[ig.quad(lambda x:tefun(x,rho,n),-0.99,r)[0] for r in rsmul]]\n", " rsmul=rsmul[:-1]\n", " pol1=np.polyfit(rsmul+step/2.,intsmul[1:]-intsmul[:-1],6)\n", " resid=np.polyval(pol1,rsmul+step/2.)-intsmul[1:]+intsmul[:-1]\n", " ipol1=np.polyint(pol1)/step #kumulativ. fce\n", " ipol1[-1]=intsmul[0]\n", " ipol1/=intsmul[-1]\n", " if infit:\n", " lop1=np.polyfit(np.polyval(ipol1,rsmul),rsmul,7)\n", " return np.polyval(lop1,levs)\n", " arot=[np.roots(np.polyadd(ipol1,[-l])) for l in levs] # kdy polynom ipol1 dosahne hodnoty l\n", " arot=[a[a.imag==0] for a in arot]\n", " brot=[]\n", " for a in arot:\n", " sel=(a.real>0)*(a.real<1)\n", " if sum(sel)==0:brot.append(0)\n", " else:brot.append(a[sel][0].real)\n", " #pos=[a[sel][0].real for a in arot]\n", " #if len(pos)]" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOXd//H3l0DYhLAFhCysYUe2CO6IgKI+Sl1awa1U\nLdoWtbXyPFr9WXetS60+ahURXGqLSl3QgqiIsoklgEASCIQQIOxrIITs9/NH0F8aQU5gZs7M5PO6\nLq5rJnMy87mZ5MPhnHvuY845REQketXxO4CIiASXil5EJMqp6EVEopyKXkQkyqnoRUSinIpeRCTK\nqehFRKKcil5EJMqp6EVEolxdv164VatWrkOHDn69vIhIRFqyZMku51x8Tb7Ht6Lv0KEDaWlpfr28\niEhEMrMNNf0eHboREYlyKnoRkSinohcRiXIqehGRKKeiFxGJcip6EZEop6IXEYlyKnoRkRApLCnj\nsZmryNtbGNLX9e0DUyIitcncNTv5w/srydt7iMTmjbjutPYhe20VvYhIEO05WMLDH2fy3rLNdIpv\nzDs3n86gji1CmkFFLyISBM45Pvx2Cw9+nMn+Q6Xcel4XfjO0Cw3qxYQ8i4peRCTANu0p5N4P0vlq\nzU76JTXj8Sv60P3kpr7lUdGLiARIeYXjtYW5PDUrCzO4/5KeXHd6B2LqmK+5VPQiIgGwaut+7vrn\nCpbn5TO0WzwPX9aHhGYN/Y4FqOhFRE5IUWk5z81ey8S5OcQ1rMdzY/pzySltMfN3L74qFb2IyHFa\nlLObu99byfpdB7lyYCL3XNSD5o1j/Y71Ayp6EZEayi8s5bGZq5i6eBPJLRrxtxsHc1ZKK79jHZWK\nXkTEI+ccM9O38cfpGewuKObmczrx2+FdaRgb+imTNaGiFxHxIL+wlDunLeezzO30ateUKWNPpXdC\nnN+xPFHRi4gcQ35hKde8uog12wq4+8Lu3HhWR+rGRM5SYSp6EZEfUbXkX75uIEO7t/Y7Uo1Fzj9J\nIiIhFg0lDyp6EZEjipaSBxW9iMgPRFPJg4peROQ/RFvJg4peROR70VjyoKIXEQGit+TBY9Gb2Ugz\nyzKzbDO76wiPJ5vZHDNbZmYrzOyiwEcVEQmOaC558FD0ZhYDvABcCPQExphZz2qb3Qu845zrD4wG\nXgx0UBGRYIj2kgdve/SDgGznXI5zrgSYCoyqto0Dvrt8ShywJXARRUSCY+/BkqgvefD2ydgEYFOV\n+3nA4Grb3A98ama3Ao2B4Ud6IjMbB4wDSE5OrmlWEZGA2bi7kLFT/k3evkNRXfLgbY/+SKvnu2r3\nxwCvOecSgYuAN83sB8/tnJvonEt1zqXGx8fXPK2ISACsyNvH5X9dwO6DJbx10+CoLnnwtkefByRV\nuZ/IDw/N3AiMBHDOfW1mDYBWwI5AhBQRCZQ5q3fwm78vpXmjWKaOO5UurZv4HSnovOzRLwZSzKyj\nmcVSebJ1erVtNgLDAMysB9AA2BnIoCIiJ+rtxRu56Y00OrZqzPu/PqNWlDx42KN3zpWZ2XhgFhAD\nTHbOZZjZg0Cac2468HvgFTP7HZWHdcY656of3hER8YVzjmc+X8tzs9dyTtd4XrxmACfVrz2L93oa\nqXNuBjCj2tfuq3I7EzgzsNFERE5caXkFf3hvJe8uyeOnAxN59PI+1IugteQDofb8kyYitU5BcRm/\nfmspc9fs5PZhKfx2eApmR5pfEt1U9CISlXYcKOKG1xazausBHr+8D6MH1d4p3Sp6EYk62TsKGDvl\n3+wuKGHS9alRP33yWFT0IhJV0nL3cNMbadStY7x982mcktjM70i+U9GLSNT48NvNTJi2goRmDXn9\nF4NIbtnI70hhQUUvIhFvf1Epf/wwg/eXbSa1fXMmXp9Ki8axfscKGyp6EYlo3+Ts5o53lrNtfxG3\nDUvh1vO61Lrpk8eioheRiFRcVs6fP1vDxLk5JLdoxLu3nM6A5OZ+xwpLKnoRiThrth/g9qnfsmrr\nfsYMSuLei3vSuBZ90rWm9DcjIhGjosIxZWEuf/pkNU3q1+WV61MZ0bON37HCnopeRCLC1vxD3Pnu\nchZk72ZY99Y8fsUpxDep73esiKCiF5Gw99HyLdzz/kpKyx2PXtaHMYOSauVSBsdLRS8iYSv/UCl/\n/DCdD77dQt+kZvzlqn50bNXY71gRR0UvImHp63W7+f0737L9QDG3D0thvKZNHjcVvYiEleKycv78\n6RomzsuhfYtGTLvldPpr2uQJUdGLSNjI2naA37793bTJZO69uIemTQaA/gZFxHfVp01Ouj6V4Zo2\nGTAqehHxlaZNBp+KXkR88/GKLdzzfjolZRWaNhlEKnoRCbmqq01q2mTwqehFJKSqrjapaZOhoaIX\nkZAoKavgz5+t4eW567TaZIip6EUk6NYeXm0yU6tN+kJ/0yISNBUVjje+zuWxmatprNUmfaOiF5Gg\n2L6/iDvfXc68tbsY2i2eP115Cq2bNPA7Vq2koheRgJu5cit3v7+SotJyHv5Jb64ZnKxpkz5S0YtI\nwBSWlHHfhxlMW5LHKYlxPHNVPzrHn+R3rFpPRS8iAbFh90FufnMJWdsPcOt5XbhtWIqmTYYJFb2I\nnLAvVm/nt1O/pU4d47VfDGJI13i/I0kVKnoROW4VFY5nZ6/l2dlr6dWuKS9dO5CkFo38jiXVqOhF\n5LjkF5by27eXMSdrJ1cMSOSRy3rToF6M37HkCFT0IlJjq7bu5+Y3l7A1/xAP/aQ312pWTVhT0YtI\njXywbDN3vbeCuIb1mDrudAa21zIG4U5FLyKelJZX8Mi/VvHawlwGdWzBC1cP0LrxEcLT3CczG2lm\nWWaWbWZ3HWWbn5lZppllmNnfAxtTRPy0Y38RV7+yiNcW5nLjWR1566bBKvkIcsw9ejOLAV4ARgB5\nwGIzm+6cy6yyTQpwN3Cmc26vmbUOVmARCa203D386q2lFBSV8dyY/lzat53fkaSGvBy6GQRkO+dy\nAMxsKjAKyKyyzS+BF5xzewGcczsCHVREQss5x+sLc3n4X6tIbN6QN28cRPeTm/odS46Dl6JPADZV\nuZ8HDK62TVcAM1sAxAD3O+c+CUhCEQm5otJy7n5vJe8v28zwHq15+mf9iGtYz+9Ycpy8FP2R5ky5\nIzxPCnAukAjMM7Pezrl9//FEZuOAcQDJyck1Disiwbdl3yFufnMJ6VvyuWNEV8YP7UKdOpo6Gcm8\nFH0ekFTlfiKw5QjbLHLOlQLrzSyLyuJfXHUj59xEYCJAampq9X8sRMRni3P38Ku/LaGotIJXrktl\nuNaOjwpeZt0sBlLMrKOZxQKjgenVtvkAGApgZq2oPJSTE8igIhJcf/9mI1e/sogmDerxwW/OUMlH\nkWPu0TvnysxsPDCLyuPvk51zGWb2IJDmnJt++LHzzSwTKAcmOOd2BzO4iARGSVkFD3yUwVvfbGRI\n13ieG9Nfx+OjjDnnzxGU1NRUl5aW5stri0ilXQXF/PpvS/l37h5uHtKJ/76gOzE6Hh/WzGyJcy61\nJt+jT8aK1FLpm/MZ90Yauw+W8Ozofozql+B3JAkSFb1ILfTht5v5n3+uoHmjWKbdcgZ9EuP8jiRB\npKIXqUXKKxxPzsripa/WcWqH5rx4zUAtZVALqOhFaon8Q6XcPnUZX2bt5OrBydx/SS9i6+pSf7WB\nil6kFsjeUcAv30hj055CHv5Jb649rb3fkSSEVPQiUe6zzO3c8fa3xNatw99/eRqDOrbwO5KEmIpe\nJEqVlFXwxCermTR/Pb0TmvLydakkNGvodyzxgYpeJApt2lPI+H8sY/mmffz89Pb84eIe1K+r67nW\nVip6kSjzacY27nx3Oc7Bi9cM4KI+bf2OJD5T0YtEiZKyCh6fuZrJC9bTJyGO56/uT/uWjf2OJWFA\nRS8SBTbtKWT835eyPC+fsWd04O6LuutQjXxPRS8S4T5J38aEacsBeOnaAYzsrUM18p9U9CIRqqSs\ngsdmrmLKglxOSYzj+TEDSG7ZyO9YEoZU9CIRaOPuQsb/Yykr8vL5xZkduOtCHaqRo1PRi0SYT9K3\nMmHaCkCHasQbFb1IhCguK+exGat5bWEufRPjeP7qASS10KEaOTYVvUgEyN5RwO/e/paVm/O54cyO\n3HVhdy1IJp6p6EXCWHmF49X5OTz16Roa1ovh5esGckGvk/2OJRFGRS8SptbtLGDCu8tZunEfI3q2\n4ZHLetO6SQO/Y0kEUtGLhJnyCsfk+et56tMsGtSL4Zmr+vKTfgmY6VqucnxU9CJhJGdnAROmrWDJ\nhr0M79GaRy/rQ+um2ouXE6OiFwkD5RWOKQvW8+SsLOrXrcOff9aXy/prL14CQ0Uv4rP1uw4y4d3l\npG3Yy7DurXn08j600V68BJCKXsQnFRWOKQtzeXLWamJj6vD0T/ty+QDtxUvgqehFfJC76yATpi1n\nce5ezuteeSz+5DjtxUtwqOhFQqiiwvHawlyemLWaejF1ePLKU7hyYKL24iWoVPQiIbJh90EmTFvB\nv9fv4dxu8Tx2eR/axukarhJ8KnqRICuvcLy+MJcnZ2VRt47xxBWn8NNU7cVL6KjoRYIofXM+d7+3\nkpWb8xnStXIvvl0z7cVLaKnoRYLgYHEZz3y2hskL1tOicX2eG9OfS05pq7148YWKXiTAPs/czn0f\nprMlv4irByfzPxd0J65RPb9jSS2mohcJkG35RTzwUQYz07eR0vokpt1yOqkdWvgdS0RFL3Kiyisc\nf1u0gSdnZVFaXsGEC7rxy7M7ab14CRsqepETkLllP3e/v5Llm/ZxdkorHhrVmw6tGvsdS+Q/qOhF\njkNhSRnPfr6WSfPX06xhPf5yVT9G9Wunk60SljwVvZmNBJ4FYoBJzrnHj7LdlcC7wKnOubSApRQJ\nI3NW7+DeD9LZvO8Qo09N4q4Lu9OsUazfsUSO6phFb2YxwAvACCAPWGxm051zmdW2awLcBnwTjKAi\nftuxv4gHPs7kXyu20jm+MW+PO43BnVr6HUvkmLzs0Q8Csp1zOQBmNhUYBWRW2+4h4AngzoAmFPFZ\nRYXjrX9v5ImZqykur+COEV25eUgn6teN8TuaiCdeij4B2FTlfh4wuOoGZtYfSHLOfWxmKnqJGqu3\n7ecP761k6cZ9nNG5JQ//pDed4k/yO5ZIjXgp+iOdXXLfP2hWB3gGGHvMJzIbB4wDSE5O9pZQxAdV\nT7Y2bVBXa8VLRPNS9HlAUpX7icCWKvebAL2BLw//EpwMTDezS6ufkHXOTQQmAqSmpjpEwtDsVdu5\n78MMNu87xM9SE7n7wh40b6yTrRK5vBT9YiDFzDoCm4HRwNXfPeicywdafXffzL4E7tSsG4k0VT/Z\n2qX1Sbxz8+kM6qhPtkrkO2bRO+fKzGw8MIvK6ZWTnXMZZvYgkOacmx7skCLB9N0ywk9/mkVZhdMn\nWyXqeJpH75ybAcyo9rX7jrLtuSceSyQ0VuTt4w/vryR9837O6RrPQ6N60b6lPtkq0UWfjJVa6UBR\nKU9/uoY3vs6l5Un1+d8x/fkvLSMsUUpFL7WKc46Z6dt44KMMdhwo5trB7bnzgm7ENdQywhK9VPRS\na2zaU8h9H6YzJ2snPds25eXrUumX1MzvWCJBp6KXqFdaXsGr89fzl8/XUMeMey/uwdgzOlA3Ridb\npXZQ0UtUW7JhD/e8n87qbQcY0bMN91/aiwRds1VqGRW9RKX8wlIe/2Q1//j3RtrFNWDidQM5v9fJ\nfscS8YWKXqKKc47py7fw0MeZ7C0s5aazOvK7EV1pXF8/6lJ76adfokburoPc+0E687N30TepGa/f\n0Jte7eL8jiXiOxW9RLzisnImfpXD/87Jpn5MHR4c1YtrBrcnpo7mxIuAil4i3Dc5u/nD+ytZt/Mg\nF/dpy32X9KRN0wZ+xxIJKyp6iUh7D5bw6IxVvLskj8TmDZky9lSGdm/tdyyRsKSil4jinOOfSzfz\n6IxV7D9Uyi1DOnP7sBQaxupqTyJHo6KXiLFuZwH3vL+SRTl7GJDcjEcv70P3k5v6HUsk7KnoJewV\nlZbz1y/X8dcv19GgXh0euaw3Y05Npo5Otop4oqKXsLYwexf3fJDO+l0HGdWvHfde3JP4JvX9jiUS\nUVT0EpZ2FxTzyL9W8d6yzbRv2Yg3bhjEOV3j/Y4lEpFU9BJWKioc76Rt4vFPVnOwuIzxQ7sw/rwu\nNKink60ix0tFL2EjY0s+936QzrKN+xjUoQWPXNablDZN/I4lEvFU9OK7A0Wl/PmzNby+MJfmjWJ5\n+qd9uXxAgq72JBIgKnrxjXOOj1ds5aGPM9lZUMzVg5KZcEE3mjWK9TuaSFRR0YsvcnYWcN+HGczP\n3kXvhKZMvF5XexIJFhW9hFRRaTkvzMnm5a9yqF9PC5CJhIKKXkLmi9Xb+eP0DDbtOcRl/RO4+6Lu\ntG6iBchEgk1FL0G3ed8hHpiewaeZ2+nS+iT+8cvTOL1zS79jidQaKnoJmpKyyotyPzd7LQ7Hf4/s\nxk1ndSK2ri7KLRJKKnoJikU5u/l/H6SzdkcBI3q24Y+X9CSxeSO/Y4nUSip6CaidB4p5bEbl0gWJ\nzRsy6fpUhvds43cskVpNRS8BUVZewd8WbeDpz9ZQVFrO+KFd+M3QLlonXiQMqOjlhC3I3sUDH2Ww\nZnsBZ3ZpyYOjetM5/iS/Y4nIYSp6OW6b9hTy8L8ymZWxnaQWDXnp2oFc0KuNli4QCTMqeqmxwpIy\nXpyzjonzcogx487zu3LT2Z20wqRImFLRi2fOOaYv38JjM1azbX8Ro/q1464Lu9M2rqHf0UTkR6jo\nxZP0zfncPz2DtA176Z3QlOev7k9qhxZ+xxIRD1T08qN2FRTz1Kws3k7bRItGsfzpij5cOTBJa9OI\nRBAVvRxRaXkFry/M5dnZazlUUs4NZ3bktmEpxDWs53c0EakhT0VvZiOBZ4EYYJJz7vFqj98B3ASU\nATuBG5xzGwKcVULkqzU7efCjDNbtPMg5XeO577960KW1rvQkEqmOWfRmFgO8AIwA8oDFZjbdOZdZ\nZbNlQKpzrtDMfgU8AVwVjMASPLm7DvLwvzL5fNUO2rdsxKTrUxnWo7WmS4pEOC979IOAbOdcDoCZ\nTQVGAd8XvXNuTpXtFwHXBjKkBFdBcRnPf5HN5PnrqRdj/M/I7txwVgfq19V0SZFo4KXoE4BNVe7n\nAYN/ZPsbgZknEkpCo7zC8c+leTw1K4sdB4q5fEACd43sTuumWiNeJJp4Kfoj/b/dHXFDs2uBVGDI\nUR4fB4wDSE5O9hhRgmHump08OmMVq7cdoF9SM16+biD9k5v7HUtEgsBL0ecBSVXuJwJbqm9kZsOB\ne4AhzrniIz2Rc24iMBEgNTX1iP9YSHCt2rqfR2esYt7aXSS1aMjzV/fn4j5tdRxeJIp5KfrFQIqZ\ndQQ2A6OBq6tuYGb9gZeBkc65HQFPKSdsW34RT3+axbSleTRtUI97L+7Bdae313F4kVrgmEXvnCsz\ns/HALCqnV052zmWY2YNAmnNuOvAkcBLw7uE9w43OuUuDmFs8Kigu4+Wv1vHKvBwqKuCmszoyfmgK\ncY00H16ktvA0j945NwOYUe1r91W5PTzAueQElZVXMHXxJv7y+Rp2FZRwSd92/PcF3Uhqoas8idQ2\n+mRslHHO8cXqHTw2czXZOwoY1KEFk37eg35JzfyOJiI+UdFHkZV5+TwyI5NFOXvo1KoxE68byIie\nWh9epLZT0UeBvL2FPDUriw++3UKLxrE8NKoXowclUy+mjt/RRCQMqOgjWP6hUl78MpspC3Ix4Nfn\nduaWczvTtIFOtIrI/6eij0AlZRW89c0Gnpu9ln2HSrmsfwJ3nt+Nds10ARAR+SEVfQSpqHDMSN/K\nU7OyyN1dyJldWnL3hT3onRDndzQRCWMq+gjgnGPu2l08OWs16Zv3061NE6b84lTO7RqvE60ickwq\n+jC3dONenvhkNYty9pDYvCHPXNWXS/sm6ApPIuKZij5Mrdl+gKdmZfFp5nZanRTLA5f2YsygZGLr\naiaNiNSMij7M5O0t5C+fr+W9pXk0jq3Lned35RdndqRxfb1VInJ81B5hYldBMS/MyeatRRvB4Kaz\nO/GrIZ1p3jjW72giEuFU9D47UFTKpHnrmTQvh0Ol5fwsNYnbh6fQNk5TJUUkMFT0PikqLeetbzby\nwpxs9hws4eI+bbnj/K50jj/J72giEmVU9CFWVl7Be8s285fP1rAlv4izU1ox4YJunJKoRcdEJDhU\n9CHinGNWxnae+jSL7B0F9E2M48mf9uXMLq38jiYiUU5FHwIL1+3iT59ksXzTPjrHN+alawdyQS+t\nKikioaGiD6JvN+3j6U+zmLd2F+3iGvDEladwef8E6mpVSREJIRV9EKRvzueZz9Ywe/UOWjSO5d6L\ne3Dtae1pUE/XZxWR0FPRB9Ca7Qd45rM1zEzfRlzDeky4oBtjz+igDzuJiK/UQAGQs7OAZ2evZfry\nLTSOrcvtw1K48eyOWhdeRMKCiv4EbNpTyHOz1/Less3ExtThliGdGXd2J32aVUTCior+OGzNP8Tz\nX2TzTtomzIyxZ3TgliGdiW9S3+9oIiI/oKKvgR0Hivjrl+t465uNOOcYfWoyvxnahZPjGvgdTUTk\nqFT0Huw5WMLLc9fx+sJcSssdVw5I5NZhXUhs3sjvaCIix6Si/xH5h0qZNC+HyfPXU1hazk/6JXD7\nsBQ6tGrsdzQREc9U9EdQUFzGlPnreWVeDvuLyri4T1t+OzyFlDZN/I4mIlJjKvoqDpWU88bXubz0\n1Tr2FpYyvEcbfjcihV7tdPFtEYlcKnoqC/6tbzbw8twcdh4o5pyu8dwxoiv9krSipIhEvlpd9IUl\nZby1aCMvz81hV0Exp3dqyYvXDODUDi38jiYiEjC1sugLS8p48+sNTJybw+6DJZzZpSUvDhvAoI4q\neBGJPrWq6A8Wl/HG1xt4ZV4Oew6WcHZKK24flkKq9uBFJIrViqIvKC7j9YW5TJqXw97CUs7pGs/t\nw1IY2L6539FERIIuqov+QFEpry3I5dUF69lXWMrQbvHcNiyF/skqeBGpPaKy6PcXlTJlfi6vzq+c\nBz+se2tuG5ZCX82iEZFaKKqKPv9QKZPnr2fygvUcKCpjeI823D4shT6JmgcvIrWXp6I3s5HAs0AM\nMMk593i1x+sDbwADgd3AVc653MBGPbp9hSVMnr+eKQtyOVBcxvk923DbsBR6J6jgRUSOWfRmFgO8\nAIwA8oDFZjbdOZdZZbMbgb3OuS5mNhr4E3BVMAJXtfdgCa/OX89rC3MpKC5jZK+TuW1YCj3bNQ32\nS4uIRAwve/SDgGznXA6AmU0FRgFVi34UcP/h29OA583MnHMugFm/t+dgCZPm5fD6wlwOlpRzUZ+T\nufW8FHq0VcGLiFTnpegTgE1V7ucBg4+2jXOuzMzygZbArkCErOqdxZu4/6MMDpWWc3Gfttx6Xgrd\nTtZiYyIiR+Ol6O0IX6u+p+5lG8xsHDAOIDk52cNL/1Bii4YM79GGW8/rotUkRUQ88FL0eUBSlfuJ\nwJajbJNnZnWBOGBP9Sdyzk0EJgKkpqYe12GdMzq34ozOrY7nW0VEaqU6HrZZDKSYWUcziwVGA9Or\nbTMd+Pnh21cCXwTr+LyIiNTMMffoDx9zHw/MonJ65WTnXIaZPQikOeemA68Cb5pZNpV78qODGVpE\nRLzzNI/eOTcDmFHta/dVuV0E/DSw0UREJBC8HLoREZEIpqIXEYlyKnoRkSinohcRiXIqehGRKGd+\nTXc3s53AhhC8VCuCsBSDTzSW8BRNY4HoGk80jqW9cy6+Jt/oW9GHipmlOedS/c4RCBpLeIqmsUB0\njUdjqaRDNyIiUU5FLyIS5WpD0U/0O0AAaSzhKZrGAtE1Ho2FWnCMXkSktqsNe/QiIrVa1BS9mY00\nsywzyzazu35kuyvNzJlZ2J6JP9ZYzGysme00s28P/7nJj5xeeHlfzOxnZpZpZhlm9vdQZ/TKw/vy\nTJX3ZI2Z7fMjpxcexpJsZnPMbJmZrTCzi/zI6ZWH8bQ3s9mHx/KlmSX6kfNYzGyyme0ws/SjPG5m\n9tzhca4wswGentg5F/F/qFw+eR3QCYgFlgM9j7BdE2AusAhI9Tv38Y4FGAs873fWAI0lBVgGND98\nv7XfuU/kZ6zK9rdSuaS379mP832ZCPzq8O2eQK7fuU9wPO8CPz98+zzgTb9zH2Us5wADgPSjPH4R\nMJPKq/qdBnzj5XmjZY/++wuYO+dKgO8uYF7dQ8ATQFEow9WQ17FEAi9j+SXwgnNuL4BzbkeIM3pV\n0/dlDPCPkCSrOS9jcUDTw7fj+OFV5cKJl/H0BGYfvj3nCI+HBefcXI5wdb4qRgFvuEqLgGZm1vZY\nzxstRX+kC5gnVN3AzPoDSc65j0MZ7DgccyyHXXH4v27TzCzpCI+HAy9j6Qp0NbMFZrbIzEaGLF3N\neH1fMLP2QEfgixDkOh5exnI/cK2Z5VF5LYpbQxPtuHgZz3LgisO3LwOamFnLEGQLNM8/h1VFS9H/\n6MXJzawO8Azw+5AlOn5eLrT+EdDBOXcK8DnwetBTHR8vY6lL5eGbc6ncC55kZs2CnOt4eBnLd0YD\n05xz5UHMcyK8jGUM8JpzLpHKwwVvHv49CkdexnMnMMTMlgFDgM1AWbCDBUFNfg6/F65vXE0d6wLm\nTYDewJdmlkvlsa3pYXpC9pgXY3fO7XbOFR+++wowMETZasrrheU/dM6VOufWA1lUFn+48TKW74wm\nfA/bgLex3Ai8A+Cc+xpoQOVaK+HIy+/MFufc5c65/sA9h7+WH7qIAVOTn8PvRUvR/+gFzJ1z+c65\nVs65Ds65DlSejL3UOZfmT9wfdcyLsVc7JncpsCqE+WrCy4XlPwCGAphZKyoP5eSENKU3XsaCmXUD\nmgNfhzhfTXgZy0ZgGICZ9aCy6HeGNKV3Xn5nWlX5H8ndwOQQZwyU6cD1h2ffnAbkO+e2HuubPF0z\nNtw5bxcwjwgex3KbmV1K5X8991A5CyfseBzLLOB8M8sEyoEJzrnd/qU+shr8jI0BprrDUyTCkcex\n/B54xcwMqxsSAAAAc0lEQVR+R+WhgbHhOiaP4zkXeMzMHJUz737jW+AfYWb/oDJrq8PnR/4I1ANw\nzr1E5fmSi4BsoBD4hafnDdP3TkREAiRaDt2IiMhRqOhFRKKcil5EJMqp6EVEopyKXkQkyqnoRUSi\nnIpeRCTKqehFRKLc/wEEb90dWlJ8CwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rlev=np.r_[0:0.95:0.05]\n", "komplet=np.array([polygon(rho,20,infit=False) for rho in rlev])\n", "pl.plot(komplet[:,4],rlev)" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "x and y arrays must be equal in length along interpolation axis.", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mscipy\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0minterpolate\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mip\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mfu1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mip\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minterp1d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkomplet\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mzval\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mscipy\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0moptimize\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfsolve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mfu1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0.2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/lib64/python3.6/site-packages/scipy/interpolate/interpolate.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, x, y, kind, axis, copy, bounds_error, fill_value, assume_sorted)\u001b[0m\n\u001b[1;32m 429\u001b[0m assume_sorted=False):\n\u001b[1;32m 430\u001b[0m \u001b[0;34m\"\"\" Initialize a 1D linear interpolation class.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 431\u001b[0;31m \u001b[0m_Interpolator1D\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 432\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 433\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbounds_error\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbounds_error\u001b[0m \u001b[0;31m# used by fill_value setter\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/lib64/python3.6/site-packages/scipy/interpolate/polyint.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, xi, yi, axis)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0myi\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 60\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_set_yi\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxi\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 61\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/lib64/python3.6/site-packages/scipy/interpolate/polyint.py\u001b[0m in \u001b[0;36m_set_yi\u001b[0;34m(self, yi, xi, axis)\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[0mshape\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mxi\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 125\u001b[0;31m raise ValueError(\"x and y arrays must be equal in length along \"\n\u001b[0m\u001b[1;32m 126\u001b[0m \"interpolation axis.\")\n\u001b[1;32m 127\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mValueError\u001b[0m: x and y arrays must be equal in length along interpolation axis." ] } ], "source": [ "from scipy import interpolate as ip\n", "fu1=ip.interp1d(komplet[:,4],zval)\n", "from scipy import optimize as op\n", "op.fsolve(lambda x:fu1(x)-0.5,0.2)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.81747944, 0.81557469, 0.82099054])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "z1=polygon(n=10)\n", "z2=polygon(n=20)\n", "z2/z1" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAFkCAYAAACThxm6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xucl3P+//HHS8LmkHM5JWc5d7CMMzERfdAiOZe1dhU2\nFMumWLuZ1uGr0jqUw/7UlGNYh9ISpRIN4qvBF5VTMeSQEdW8f3+8Z5iZ5nj1ua7r87mu5/12u27V\nNdf1mdf17HNrXl2f9/V+m3MOERERkWxZK+4CREREJFnUXIiIiEhWqbkQERGRrFJzISIiIlml5kJE\nRESySs2FiIiIZJWaCxEREckqNRciIiKSVWouREREJKvUXIiIiEhWRdJcmFk/M/vIzH40s9lmtn8T\nzzvYzFaYWUnYNYqIiEh2hN5cmFkv4GZgCNAReBOYbGabN3Jea+B+YGrYNYqIiEj2WNgLl5nZbOAV\n59yllX824GNghHNueAPnFQPvARXAic65TqEWKiIiIlkR6p0LM2sJdAb+W7XP+W5mKlDQwHl9gB2A\n68KsT0RERLJv7ZBff3OgBbCk1v4lwG51nWBmuwD/AA5xzlX4Gx31M7PNgG7AAmD5GtYrIiKSJusB\n7YHJzrmvsvWiYTcXzWJmawHjgCHOuQ+qdjdyWrfKc0RERCSYM4Hx2XqxsJuLMmAV0KbW/jbA4jqO\n3xDoAuxnZrdX7lsLP1TjZ6DQOTet1jkLAB544AE6dOiQpbKlMQMGDODWW2+Nu4xUUebRU+bRU+bR\nmj9/PmeddRZU/izNllCbC+fcCjObC3QFnoBfBnR2BUbUccp3wF619vUDjgR+R90XvxygQ4cOdOqk\nMZ9Rad26tfKOmDKPnjKPnjKPTVaHFUTxscgtwH2VTcYcYADQCrgPwMyGAVs7586tHOz5TvWTzewL\nYLlzbn4EtUoTLV5c140nCZMyj54yj54yT4bQmwvn3IOVc1pcj/845A2gm3Puy8pD2gLbhV2HZNen\nn34adwmpo8yjp8yjp8yTIZIBnc650cDoer7Wp5Fzr0OPpOaczp07x11C6ijz6Cnz6CnzZNDaIhJI\n79694y4hdZR59JR59JR5MoQ+Q2fYzKwTMHfu3LkaBCQiItIMJSUlVXeLOjvnsraOl+5ciIiISFap\nuZBA+vRpcKiMhECZR0+ZR0+ZJ4OaCwmksLAw7hJSR5lHT5lHT5kng8ZciIiIpJTGXIiIiEheUHMh\nIiIiWaXmQgKZMWNG3CWkjjKPnjKPnjJPBjUXEsjw4cPjLiF1lHn0lHn0lHkyqLmQQCZMmBB3Camj\nzKOnzKOnzJNBzYUE0qpVq7hLSB1lHj1lHj1lngxqLkRERCSr1FyIiIhIVqm5kEAGDhwYdwmpo8yj\np8yjp8yTQc2FBNKuXbu4S0gdZR49ZR49ZZ4Mmv5bREQkpTT9t4iIiOQFNRciIiKSVWouJJDS0tK4\nS0gdZR49ZR49ZZ4Mai4kkEGDBsVdQuoo8+gp8+gp82RQcyGBjBo1Ku4SUkeZR0+ZR0+ZJ4OaCwlE\nj4tFT5lHT5lHT5kng5oLERERySo1FyIiIpJVai4kkKKiorhLSB1lHj1lHj1lngxqLiSQ8vLyuEtI\nHWUePWUePWWeDJr+W0REJKU0/beIiIjkBTUXIiIiklVqLiSQsrKyuEtIHWUePWUePWWeDGouJJC+\nffvGXULqKPPoKfPoKfNkUHMhgQwdOjTuElJHmUdPmUdPmSeDmgsJRE/mRE+ZR0+ZR0+ZJ4OaCxER\nEckqNRciIiKSVWouJJCxY8fGXULqKPPoKfPoKfNkUHMhgZSUZG0iN2kiZR49ZR49ZZ4Mmv5bREQk\npTT9t4iIiOQFNRciIiKSVZE0F2bWz8w+MrMfzWy2me3fwLEnm9kUM/vCzL41s5lmVhhFnSIiIrLm\nQm8uzKwXcDMwBOgIvAlMNrPN6znlMGAKcBzQCXgBeNLM9g27Vmm6TCYTdwmpo8yjp8yjp8yTIYo7\nFwOAO51z/3bOlQJ/BMqBOieQd84NcM7d5Jyb65z7wDl3DfA+0COCWqWJ+vfvH3cJqaPMo6fMo6fM\nkyHU5sLMWgKdgf9W7XP+8ZSpQEETX8OADYGvw6hRgiks1CdVUVPm0VPm0VPmybB2yK+/OdACWFJr\n/xJgtya+xkBgfeDBLNYlIiKSsyoqYMkSWLQIvv8eVq6EFSsa/rUpx9T+9csvQ7oA51xoG7AVUAEc\nUGt/ETCrCeefAXwPHNnAMZ0A16ZNG9ejR48a24EHHugee+wxV93kyZNdjx49XG0XXXSRGzNmTI19\nc+fOdT169HBffvlljf3XXnutu/HGG2vsW7hwoevRo4ebP39+jf0jRoxwV1xxRY19P/zwg+vRo4eb\nPn16jf3jx49355133mq1nXbaaboOXYeuQ9eh60jQdaxY4dxHHzk3bZpzt9yy0O22Ww/Xs+d817Wr\nczvv7Nw66zgHIxxc4cBV235w0MPB9F/2tWjh3Nprj3drr32e23hj57bYwrmttnKuXTvn1l//NLf1\n1o+5Pfd0bvvtx7vWrXu4DTY40LVs2cZtvnkPt8kmhznAAZ1cFn/+hzqJVuXHIuXA75xzT1Tbfx/Q\n2jl3cgPnng6MAU5xzj3bwHGaRCsGkyZN4qSTToq7jFRR5tFT5tFLSuY//ujvOixc+Ou2YMGvv//0\nU393osoWW0D79rD99qtvrVtDy5aw9tp+q/p9y5bQogWstQYDHMKaRCvUj0WccyvMbC7QFXgCfhlD\n0RUYUd95ZtYb31j0aqixkPgUFxcn4h+AfKLMo6fMo5dPmX/zDbz8Mnz00eoNxBdf/HrcWmvB1lv7\nRqF9ezjssJrNQ7t20KpVXFcRjtCn/zaz04D78E+JzME/PXIKsLtz7kszGwZs7Zw7t/L4MyqPvwR4\nrNpL/eic+66O19edCxERicSSJfD44/Doo/D8837sQsuWvkGoahZq34HYdlt/TC7KyzsXAM65Byvn\ntLgeaAO8AXRzzlUNI2kLbFftlAvwg0Bvr9yq3E89j6+KiIiEZeFCeOwx31DMmAFmcPjhcMstcPzx\nvoFYk48mkij05gLAOTcaGF3P1/rU+vORUdQkIiJSn9JS30w8+ijMnQvrrAPHHANjxkAmA5vXNw2k\nABE1FyIiIrnMOXj99V8bivnzYf31/Z2JK66A7t1ho43irjJ/6EaOBNKnT5/GD5KsUubRU+bRizLz\nVav8xxyXXQY77ACdO8Po0XDAAfDEE34OiIkT4fTT1Vg0l+5cSCCaRS96yjx6yjx6YWf+888wbZq/\nOzFpkh+gudVWcPLJ0LOnf5IjVwdf5pPQnxYJm54WERGRhpSXw+TJflDmk0/6R0h33NE3Ez17+jsV\naR2QmbdPi4iIiETNOf/I6P/7f/DMM35Sq733hksu8Q3FPvv4pz4kHGouREQkUaZOhauu8k957L8/\nDB3qP/bYZZe4K0uPlN4IkjU1Y8aMuEtIHWUePWUevTXJ/LXX/OOixxzjx01MmwZz5sCgQWosoqbm\nQgIZPnx43CWkjjKPnjKPXpDM33sPTjvN36X47DM/UHPmTD/RlcRDzYUEMmHChLhLSB1lHj1lHr3m\nZP7pp3DhhbDHHjB7Ntx7L8ybByeeqPEUcdOYCwmkVdJW2ckDyjx6yjx6Tcl86VIoKoLbbvMTXf3z\nn/CnP8F660VQoDSJmgsREckL5eUwciTceKNfMGzgQLj8cr8kueQWNRciIpLTVq6Ee+6B667zS5lf\neCEMHgxt2sRdmdRHYy4kkIEDB8ZdQuoo8+gp8+hVz9w5ePhh2HNP31AccQS8+y6MGqXGItepuZBA\n2rVrF3cJqaPMo6fMo1eV+X//C7/9LZx6Kuy0k19UbNw4P7Om5D5N/y0iIjlj7lw/AdbUqXDggX58\nhR4pDU9Y03/rzoWIiMSuaq6KLl38I6aPPaa5KvKZmgsREYnNZ5/VnKvinnvgrbfgpJM0V0U+U3Mh\ngZSWlsZdQuoo8+gp8/AsW+Y//th5Zz9oc/hwf/eioKCUFi3irk7WlJoLCWTQoEFxl5A6yjx6yjwc\nr74KHTv6OSsuvxw+/BAuu8xPgqXMk0HNhQQyatSouEtIHWUePWWeXatWwbBhcNBBsPHG8MYb8Le/\n1ZwES5kng5oLCUSP6EVPmUdPmWfPxx9D165wzTV+Zs2ZM+teqVSZJ4Nm6BQRkVA9/DD84Q9+HZDn\nn/eTYUmy6c6FiIiEYtkyOP98PxFW167w5ptqLNJCzYUEUlRUFHcJqaPMo6fMg6satDlxon+89MEH\nYdNNGz9PmSeDmgsJpLy8PO4SUkeZR0+ZN9+qVX5WzapBm6+/Dn36NH3OCmWeDJr+W0REsuLjj+Gc\nc+DFF/0cFtddBy1bxl2VNCSs6b81oFNERNaYBm1KdfpYREREAtOgTamLmgsJpKysLO4SUkeZR0+Z\nN+zVV6FTJz9oc+zYpg/abIgyTwY1FxJI37594y4hdZR59JR53aoP2mzd2g/a7Ns3OwuNKfNkUHMh\ngQwdOjTuElJHmUdPma/uk0/g6KPh6qsbnmkzKGWeDBrQKYHoyZzoKfPoKfOaHnkELrgAWrUKb9Cm\nMk8G3bkQEZEGVQ3aPOUUP2hz3jwN2pSG6c6FiIjU67XX4Iwz4LPP/KDN5kyIJemlOxcSyNixY+Mu\nIXWUefTSnHnVoM2CguwP2mxImjNPEjUXEkhJSdYmcpMmUubRS2vmS5fCccf5QZtXXAEvv5zdQZsN\nSWvmSaPpv0VE5Bfvvw8nnABlZX7eiq5d465IwhTW9N+6cyEiIgC88AIccACstRa88ooaCwlOzYWI\niHD33VBYCF26wKxZsPPOcVck+UzNhYhIiq1aBZdd5hcd+8Mf4Kmn/FLpImsikubCzPqZ2Udm9qOZ\nzTaz/Rs5/ggzm2tmy83sPTM7N4o6pekymUzcJaSOMo9e0jP//ns48US47TYYORJuvz3+JdKTnnla\nhN5cmFkv4GZgCNAReBOYbGab13N8e+A/wH+BfYHbgDFmdkzYtUrT9e/fP+4SUkeZRy/JmS9cCAcf\nDNOnw9NPQ65capIzT5PQnxYxs9nAK865Syv/bMDHwAjn3PA6ji8CjnPO7VNtXzHQ2jnXvY7j9bSI\niEgzzJwJJ58MG2wATz4Je+wRd0USl7x8WsTMWgKd8XchAHC+m5kKFNRz2oGVX69ucgPHi4hIE40b\nB0ceCbvt5p8IUWMhYQj7Y5HNgRbAklr7lwBt6zmnbT3Hb2Rm62a3PBGRdKiogMGD4ayzoHdveO45\n2LzOD6dF1pyeFpFAJk2aFHcJqaPMo5eUzMvLoVcv+PvfoagI7r0X1s3R/6olJfO0C7u5KANWAW1q\n7W8DLK7nnMX1HP+dc+6n+r5R9+7dyWQyNbaCgoLV3qhTpkypczRyv379VpvTvqSkhEwmQ1lZWY39\nQ4YMoaioqMa+RYsWkclkKC0trbF/5MiRDBw4sMa+8vJyMpkMM2bMqLG/uLiYPn36rFZbr169cu46\niouLE3EdkD9/H8XFxYm4jupy/TquvfbavL+Oyy4bwq67FvH00/DoozBoEHz8ce5ex+jRoxP/vorr\nOoqLi3/52di2bVsymQwDBgxY7ZxsiGtA5yL8gM5/1nH8jfgBnftW2zce2FgDOkVEmq6kBHr08DNu\nPvkk7Ldf3BVJrsnLAZ2VbgEuMLNzzGx34A6gFXAfgJkNM7P7qx1/B7CjmRWZ2W5mdhFwSuXriIhI\nEzz6KBxyCGyzDcyZo8ZCohV6c+GcexC4ArgeeB3YB+jmnPuy8pC2wHbVjl8AHA8cDbwBDADOd87V\nfoJERERqcQ6GDYPf/c7ftXjxRdhqq7irkrRZO4pv4pwbDYyu52urfUjknHsJ/wiriIg00U8/+Sm8\n//1vGDLEb2ZxVyVppKdFJJC6Bg5JuJR59PIp8y+/9KuYTpwIxcUwdGh+Nhb5lLnUL5I7F5I8hYWF\ncZeQOso8evmS+dtv+49AfvzRfwxywAFxVxRcvmQuDQv9aZGw6WkREUmzp5+G00+HHXbwT4S0axd3\nRZJP8vlpERERyTLn/GqmPXrAEUfAjBlqLCR3qLkQEckzK1bARRfBn/8Ml18Ojz0GG24Yd1Uiv1Jz\nIYHUnh1OwqfMo5eLmZeX+xVNx4yBsWNh+HBo0SLuqrInFzOX5lNzIYEMHz487hJSR5lHL9cy/+or\n/0TItGnw1FPQt2/cFWVfrmUuwehpEQlkwoQJcZeQOso8ermU+aJF0K2bbzCmTYMuXeKuKBy5lLkE\np+ZCAmnVqlXcJaSOMo9ermT+9tu+sVh3XXj5Zdhll7grCk+uZC5rRh+LiIjksOnT4dBDYcstYebM\nZDcWkhxqLkREctTjj0NhIXTs6CfHats27opEmkbNhQQycODAuEtIHWUevTgzv/tu6NnTz2PxzDOw\n0UaxlRIpvc+TQc2FBNJOs/VETplHL47MnYPrr/cLkP3pT36dkHXXjbyM2Oh9ngya/ltEJEesWgUX\nXwz/+hfccANcfXV+Lj4m+SOs6b/1tIiISA5YvhzOOsvPtjlmDJx/ftwViQSn5kJEJGbffgsnngiv\nvOKbi0wm7opE1ozGXEggpaWlcZeQOso8elFk/tlncNhhMG8eTJ2qxkLv82RQcyGBDBo0KO4SUkeZ\nRy/szN97Dw46CL7+2s9ncfDBoX67vKD3eTKouZBARo0aFXcJqaPMoxdm5nPm+GaiVSs/Odaee4b2\nrfKK3ufJoOZCAtHjYtFT5tELK/PJk+Goo/xsmzNmwHbbhfJt8pLe58mg5kJEJEIPPAAnnABHHunH\nWGy6adwViWSfmgsRkYjcfDOcfTacc45/KkRrdElSqbmQQIqKiuIuIXWUefSylXlFBVxxhd+uvtrP\nY7G2JgKok97nyaC3twRSXl4edwmpo8yjl43MV6yAvn1h3DgYMcLPwCn10/s8GTT9t4hISJYtg1NO\ngeef92MtTjst7opEatL03yIieeTLL+H446G0FJ591j8dIpIWai5ERLJswQIoLITvvoMXX4SOHeOu\nSCRaGtApgZSVlcVdQuoo8+gFyXzePCgo8IM4X35ZjUVz6X2eDGouJJC+ffvGXULqKPPoNTfz6dP9\nOiFbbeUbi512CqmwBNP7PBnUXEggQ4cOjbuE1FHm0WtO5k884T8K6dQJpk2DNm1CKyvR9D5PBjUX\nEoiezImeMo9eUzO/917o2dMP4Hz6adhoo5ALSzC9z5NBzYWISEDOwfDhfh6L3/8eJk6E9daLuyqR\n+Km5EBEJoGrWzSuvhGuvhX/9C1q0iLsqkdyg5kICGTt2bNwlpI4yj159ma9YAeedB7feCiNHwnXX\ngVm0tSWV3ufJoOZCAikpydpEbtJEyjx6dWX+ww9w0kkwYQIUF0P//jEUlmB6nyeDpv8WEWmir7/2\ny6XPm+dXNT3mmLgrElkzmv5bRCRGn3wC3brBF1/ACy/A/vvHXZFI7lJzISLSiNJSP4eFGcyYAbvt\nFndFIrlNYy5ERBowZw4ccoifu2LmTDUWIk2h5kICyWQycZeQOso8egUFGY46yjcUL70E22wTd0XJ\np/d5Mqi5kED6a4h85JR5tIqL4dVX+3PEEfDcc7DppnFXlA56nydDaM2FmW1iZuPM7FszW2pmY8xs\n/QaOX9vMisxsnpktM7NPzex+M9sqrBoluMLCwrhLSB1lHp0RI+CMM+DMMwt57DFo1SruitJD7/Nk\nCPPOxXigA9AVOB44DLizgeNbAfsB1wEdgZOB3YDHQ6xRROQXzsHgwXDppX72zXvvhZYt465KJP+E\n8rSIme0OdMM/N/t65b6LgafM7Arn3OLa5zjnvqs8p/rr9AdeMbNtnXOfhFGriAjAqlVw0UVw111+\nvZCBA+OuSCR/hXXnogBYWtVYVJoKOOCAZrzOxpXnfJPF2iQLJk2aFHcJqaPMw7N8OZx2Gowd6+9W\nVDUWyjx6yjwZwmou2gJfVN/hnFsFfF35tUaZ2brAjcB459yyrFcoa6S4uDjuElJHmYfj22/huOP8\nUumPPebXDKmizKOnzJOhWc2FmQ0zs4oGtlVmtuuaFmVmawMP4e9aXNSUc7p3704mk6mxFRQUrNYF\nT5kypc5Hnfr167fagjklJSVkMhnKyspq7B8yZAhFRUU19i1atIhMJkNpaWmN/SNHjmRgrfur5eXl\nZDIZZsyYUWN/cXExffr0Wa22Xr165dx1TJw4MRHXAfnz9zFx4sREXEd1cV/HkiXw29+WMGNGhoce\nKqNHj5rXUXtJgVy9DkjG3wfAlVdemYjryMW/j+Li4l9+NrZt25ZMJsOAAQNWOycbmrW2iJltBmzW\nyGEfAmcDNznnfjnWzFoAy4FTnHP1DtKs1li0B45yzi1tpCatLSIizfbhh37WzR9/hGefhb33jrsi\nkejlxNoizrmvgK8aO87MZgEbm1nHauMuugIGvNLAeVWNxY7AkY01FiIiQbzxBhx7rJ918+WXoX37\nuCsSSZZQxlw450qBycDdZra/mR0MjASKqz8pYmalZnZi5e/XBh4BOgFnAS3NrE3lpofBRCQrnn8e\nDj8ctt3WrxOixkIk+8Kc5+IMoBT/lMh/gJeAC2sdswvQuvL32wAnANsCbwCfAZ9X/loQYp0SQF2f\n7Um4lPmae+ABf8fiwAP9yqZbbtnw8co8eso8GUJbFdU59w3+DkRDx7So9vuFQIsGDpccoln0oqfM\ng3MO/vEP+OtfoU8fuPPOpk2Opcyjp8yToVkDOnORBnSKSENWrvSTY919N1x3nZ+B0yzuqkRyQ04M\n6BQRySfLlvnJsZ57zk+OVX0OCxEJj5oLEUmkzz+HE06A99+Hp57yj52KSDS05LoEUnsCFwmfMm+6\nd96BggJYvBimTw/eWCjz6CnzZFBzIYEMHz487hJSR5k3zYsvwsEHw4YbwuzZsO++wV9LmUdPmSeD\nmgsJZMKECXGXkDrKvHETJvi7FJ07+zkstttuTV9PmUdNmSeDmgsJpFWrVnGXkDrKvH7O+WXSe/eG\n00/3i5C1bt34eY1R5tFT5smg5kJE8trKldCvH1x5pZ/H4r77YJ114q5KJN30tIiI5K0ffvB3K55+\nGu66Cy64IO6KRAR050ICqr0MsIRPmde0ZAkceaRfK+TJJ8NpLJR59JR5MujOhQTSrl27uEtIHWX+\nq3ffheOO88ulv/QShDU5rzKPnjJPBk3/LSJ5ZcYMOPFEaNMGnnkGtt8+7opE8ldY03/rYxERyRsP\nPQRHHw177w0vv6zGQiRXqbkQkZznHNxyi18npGdPmDwZNtkk7qpEpD5qLiSQ0tLSuEtInbRmvmoV\n/PnPcPnlcNVV8MADsO660XzvtGYeJ2WeDGouJJBBgwbFXULqpDHz8nI49VQYNQpGj4Zhw2CtCP/V\nSmPmcVPmyaCnRSSQUaNGxV1C6qQt8y+/hEwG5s2Dxx/3K5xGLW2Z5wJlngxqLiQQPS4WvTRl/v77\n/lHT77+HadNg//3jqSNNmecKZZ4M+lhERHLKrFlw0EGw9tp+VdO4GgsRCU7NhYjkjHvvhSOOgN13\n94+a7rBD3BWJSBBqLiSQoqKiuEtInSRnvnKlfyKkb184+2yYOhU22yzuqpKdea5S5smgMRcSSHl5\nedwlpE5SM//qKz9/xUsv+adCLroIzOKuyktq5rlMmSeDpv8Wkdi89Zafyvv77/3sm0ccEXdFIumi\n6b9FJFEeeQQKCmCjjeDVV9VYiCSJmgsRiVRFBQwZAqecAt27+4Gb7dvHXZWIZJOaCwmkrKws7hJS\nJwmZf/+9Xxvkb3+Dv/8dJk6E9dePu6r6JSHzfKPMk0HNhQTSt2/fuEtInXzP/IMP/Mcgzz/vZ9y8\n+urcGbhZn3zPPB8p82RQcyGBDB06NO4SUiefM3/uOT8Z1s8/wyuvQI8ecVfUNPmceb5S5smg5kIC\n0ZM50cvHzJ2DW2+FY4+F3/7WNxYdOsRdVdPlY+b5Tpkng5oLEQnF8uVw3nlw2WV+ufSnnoJNNom7\nKhGJgibREpGs+/RTOPlkP4/FAw/AmWfGXZGIREl3LiSQsWPHxl1C6uRL5rNmQZcu8PnnMGNGfjcW\n+ZJ5kijzZFBzIYGUlGRtIjdponzIvGrhsZ12gtdeAz/xX/7Kh8yTRpkng6b/FpE1tmIFXHEFjBgB\nF1zg1whZZ524qxKRxoQ1/bfGXIjIGikr8wuPTZ8Oo0fDH/+Y+/NXiEi41FyISGDz5vmFx5Yt88uk\nH3543BWJSC7QmAsRCaRq4bGNN/bjK9RYiEgVNRcSSCaTibuE1MmVzCsq4Npr/cJjJ5zgnwjZfvu4\nqwpHrmSeJso8GfSxiATSv3//uEtInVzI/Jtv/MRYTzwB//gHXHVVssdX5ELmaaPMk0HNhQRSWFgY\ndwmpE3fms2ZB796+wXjiCX/XIunizjyNlHky6GMREWlQRQUMGwaHHgpbbw1vvJGOxkJEggutuTCz\nTcxsnJl9a2ZLzWyMma3fjPPvMLMKM7skrBpFpGGffw6FhXDNNXDllfDii9C+fdxViUiuC/POxXig\nA9AVOB44DLizKSea2cnAAcCnoVUna2TSpElxl5A6UWf+7LOw777wv//rl0z/+9+hZctIS4id3ufR\nU+bJEEpzYWa7A92A851zrznnZgIXA6ebWdtGzt0GuA04A1gZRn2y5oqLi+MuIXWiyvznn/1sm8cd\n59cIefNN6No1km+dc/Q+j54yT4aw7lwUAEudc69X2zcVcPg7EnUyMwP+DQx3zs0PqTbJgokTJ8Zd\nQupEkfkHH8DBB/tpvG+6Cf7zH9hyy9C/bc7S+zx6yjwZwnpapC3wRfUdzrlVZvZ15dfqcxXws3Nu\nVEh1iUg9iovhwgt9MzFzpr9rISISRLPuXJjZsMpBlvVtq8xs1yCFmFln4BKgT5Dzu3fvTiaTqbEV\nFBSs9vndlClT6pykpV+/fqst9VtSUkImk6GsrKzG/iFDhlBUVFRj36JFi8hkMpSWltbYP3LkSAYO\nHFhjX3l5OZlMhhkzZtTYX1xcTJ8+q19+r169dB26jtCu44cfoG9fOOMM6NJlCrvumlmtsciH66gu\nn/8+dB10nbFHAAAXnUlEQVS6jrCuo7i4+JefjW3btiWTyTBgwIDVzsmGZq2KamabAZs1ctiHwNnA\nTc65X441sxbAcuAU59zjdbz2pcDN+I9OqrQAKoBFzrkd66lJq6KKBPTGG3D66fDxx3D77XDuucme\nFEtEagprVdRm3blwzn3lnHuvkW0lMAvY2Mw6Vju9K2DAK/W8/L+BfYB9q22fAcPxg0Mlh9TVIUu4\nspm5c35Z9AMOgN/8BkpK/Mybaixq0vs8eso8GUIZ0OmcKwUmA3eb2f5mdjAwEih2zi2uOs7MSs3s\nxMpzljrn3qm+ASuAxc6598OoU4LTLHrRy1bmX30FJ58MF1/sx1jMmgW77ZaVl04cvc+jp8yTIczp\nv88ARuGfEqkAHgYurXXMLkDrBl6j6Z/ZSKR69+4ddwmpk43MX3oJzjwTysth0iS/XLrUT+/z6Cnz\nZAituXDOfQOc1cgxLRr5ep3jLESkeVatghtugOuvh0MOgXHjYNtt465KRJJKC5eJJNwnn/i7FTNm\n+KXS//pXaNFgWy8isma0cJkEUvsxKAlfkMyfeMJP4f3BB/DCCzBkiBqL5tD7PHrKPBnUXEggw4cP\nj7uE1GlO5suXwyWX+DEVhxzip/A+7LAQi0sovc+jp8yTQR+LSCATJkyIu4TUaWrm777r56545x0Y\nORL69dMjpkHpfR49ZZ4MunMhgbRq1SruElKnscydg7vvhs6d4ccf4ZVXoH9/NRZrQu/z6CnzZFBz\nIZIA//d/fuXSP/zB37V47TXYb7+4qxKRtFJzIZLHVq70q5fusw989BFMngxjxsAGG8RdmYikmZoL\nCaT2YjoSvtqZz5sHBQUwaJCfafOtt0CTG2aX3ufRU+bJoOZCAmnXrl3cJaROVeY//QSDB/uxFeXl\nfnn0W2/V3Yow6H0ePWWeDM1aFTUXaVVUSZOZM+H3v/djLK6+Gv7yF1h33birEpF8lROroopIPJYt\n8/NWHHIIbLihX8V06FA1FiKSmzTPhUiOe/ZZP6airAxuucWvZqpZNkUkl+nOhQRSWloadwmJ99VX\ncM45cNxxsOuu8Pjjpfz5z2osoqT3efSUeTKouZBABg0aFHcJieUcTJwIHTrAk0/CPffAlCkwYoQy\nj5re59FT5smg5kICGTVqVNwlJNKnn8JJJ/mJsA47DObPhz59/Cybyjx6yjx6yjwZ1FxIIHpcLLsq\nKuCuu2CPPWDOHHjkEXj4YWjb9tdjlHn0lHn0lHkyqLkQidn778NRR/lBm6ee6hcc69kz7qpERIJT\ncyESk5UrYfhwP3X3xx/D1Kl+6u5NNom7MhGRNaPmQgIpKiqKu4S89sYbcMABfhKsiy7yU3l37drw\nOco8eso8eso8GdRcSCDl5eVxl5CXli+Ha66BLl3g559h1iy4+WZYf/3Gz1Xm0VPm0VPmyaDpv0Ui\n4Bw88wwMGOBXLx08GK68EtZZJ+7KRCTNNP23SJ566y3o1g2OPx623tp/JDJ4sBoLEUkuNRciIVmy\nxD8Bst9+sGABPP44PP+8f9xURCTJ1FxIIGVlZXGXkLOWL4dhw2DnneGhh/x6IG+/DZmMnwwrKGUe\nPWUePWWeDGouJJC+ffvGXULOcQ4mTIDdd4drr/11afRLL83ORyDKPHrKPHrKPBm0KqoEMnTo0LhL\nyCmzZ/vBmrNnw4kn+rVAdt01u99DmUdPmUdPmSeD7lxIIHoyx1u4EHr3hoIC/3HI88/DpEnZbyxA\nmcdBmUdPmSeDmguRAL77Dq6+GnbbDV580a9c+tprcOSRcVcmIhI/fSwi0gwrV/pGYvBg+P57P1fF\nwIGwwQZxVyYikjt050ICGTt2bNwlRO6556BjR/94abdu8O67cN110TUWacw8bso8eso8GdRcSCAl\nJVmbyC3nzZ/vJ8AqLPSLir36Kvz737DddtHWkabMc4Uyj54yTwZN/y1Sj7IyGDoU7rgDtt/er2Da\ns+eazVUhIpJLwpr+W2MuRGr56ScYORJuuMH/uagI+veHddeNty4RkXyh5kKkknPwyCMwaBAsWgR/\n/CMMGQJbbBF3ZSIi+UVjLiT1nIMnn4QDD4RTT4UOHfxiY6NGqbEQEQlCzYUEkslk4i5hjVVUwMMP\n+ydAMhk/Rfdzz8FTT/kGI9ckIfN8o8yjp8yTQc2FBNK/f/+4Swhs5UoYNw722svfqdhiC5g2DaZP\nh6OPjru6+uVz5vlKmUdPmSeDmgsJpLCwMO4Smm3FCj8BVocOcNZZsOOOMHOmv1tx+OFxV9e4fMw8\n3ynz6CnzZNCATkm85cvh3nvhxhv9QM2TT4aJE0FPLouIhEPNhSRWeTncdRf885+weDH06uXHU+y1\nV9yViYgkW2gfi5jZJmY2zsy+NbOlZjbGzNZvwnkdzOxxM/vGzJaZ2Stmtm1YdUowkyZNiruEen3/\nvZ+bon17uOIKP7Pm/Pkwfnx+Nxa5nHlSKfPoKfNkCHPMxXigA9AVOB44DLizoRPMbCdgOvBO5fF7\nA38DlodYpwRQXFwcdwmr+eYb+NvffFMxeLD/+OP99/1HImEsgR61XMw86ZR59JR5MoQy/beZ7Y5v\nEDo7516v3NcNeArY1jm3uJ7zioGfnXPnNuN7afrvlCsrg//5Hz+r5s8/wwUX+ImwttX9LhGRBoU1\n/XdYdy4KgKVVjUWlqYADDqjrBDMz/B2O983sWTNbYmazzezEkGqUPLd4sf/YY/vtfXPxhz/ARx/B\niBFqLERE4hRWc9EW+KL6DufcKuDryq/VZUtgA+BK4GngGOAx4FEzOzSkOiUPffwxXHIJ7LAD3H03\nDBgACxb4gZtt63t3iYhIZJr1tIiZDcP/8K+Pw4+zCKKq0ZnknBtR+ft5ZnYQ8Ef8WAxJsY8+8o+T\n3nsvbLghXH01XHwxbLxx3JWJiEh1zb1zcROwewNbB+BDYDH+TsQvzKwFsGnl1+pSBqwE5tfaPx9o\n11hh3bt3J5PJ1NgKCgpWG3k8ZcqUOqeX7devH2PHjq2xr6SkhEwmQ1lZWY39Q4YMoaioqMa+RYsW\nkclkKC0trbF/5MiRDBw4sMa+8vJyMpkMM2bMqLG/uLiYPn36rFZbr169cu46+vTpE8l1VFTAlClw\n0kmw004l3Hdfhr/8pYwFC/ygzY03Ts/fR/Va8vk6qsv16+jSpUsiriOf/j6q/v3O9+vIxb+P4uLi\nX342tm3blkwmw4ABA1Y7Jyucc1nf8I3GKqBjtX2F+OahbQPnvQzcX2vfo8ADDZzTCXBz5851Ep3x\n48eH+vpffeXczTc7t/POzoFz++zj3B13OPfDD6F+25wWduayOmUePWUerblz5zr8pw6dXBb7gFCe\nFgEws6fxdy/+BKwD3APMcc6dXe2YUuBK59zjlX8+CZgA9AdeAI4DbgEOd87Nquf76GmRBHntNRg9\nGoqL/cJip54KF10EBQVgFnd1IiLJEtbTImHO0HkGMAr/lEgF8DBwaa1jdgFaV/3BOTfJzP4IXA3c\nBrwL9KyvsZBk+PFHPx336NHw6qvQrh1cey2cfz5suWXj54uISG4Jrblwzn0DnNXIMS3q2HcfcF84\nVUku+b//gzvu8IuJLV0Kxx4LTzwB3btDi9XeGSIiki+0KqoEUnswUVOtWuUbiGOPhV128U9+nH++\nn0nzmWegRw81FvUJmrkEp8yjp8yTQc2FBDJ8+PBmHf/FFzBsmF/m/MQT4euv4b774JNP/PwUO+8c\nTp1J0tzMZc0p8+gp82TQqqgSyIQJExo9xjmYOdOPpXjoIX9Hondv+NOfYP/9IygyYZqSuWSXMo+e\nMk8GNRcSSKtWrer92rJlMG6cbyrmzfN3JW68Ec47DzbdNLoak6ahzCUcyjx6yjwZ1FxI1rzzDvzr\nX3D//fDDD378xD//CUcfDWvpAzgRkdRQcyFrZPFiePBBPy/F7Nn+0dFLLvGLiLVrdF5VERFJIv1/\nUppt6VLo1m0gXbvCNtv4lUk339w3GIsWwQ03qLEIQ+1pgCV8yjx6yjwZdOdCmmTZMv8IaXExTJ4M\nK1e246ij4M47oWdPjaWIQjt1bJFT5tFT5skQ2vTfUdH03+H56Sc/90RxMTz5pJ9Js6AATj8dTjtN\ny5uLiOS7fJz+W/LQypXw/PMwYQI8+ih8+y3su6+fjvv006F9+7grFBGRXKfmQqio8PNRTJjg56P4\n4gv/+Ogll/iGYo894q5QRETyiQZ0ppRzUFICgwb5uxGHHgqPPw5nn+1XJn3vPbj++vobi9LS0kjr\nFWUeB2UePWWeDGouUqa0FIYOhd13h86d/RTcPXrASy/BwoVw001+f2PLmw8aNCiKcqUaZR49ZR49\nZZ4M+lgk4ZyDt96Cp5/2y5q/8QZstBGcfDKMGAFdu8LaAd4Fo0aNyn6x0iBlHj1lHj1lngxqLhJo\n6VJ47jl49lm/ff45tGoFxx/vB2Yedxyst96afQ89LhY9ZR49ZR49ZZ4Mai4SoKIC5s79tZmYPdvv\n22svOPNMv7z5IYfAuuvGXamIiKSBmos8tWQJTJnim4kpU6CszH/cccwxfmKrbt1gu+3irlJERNJI\nAzrzxMqVMGMG/PWv0KWLn8DqnHP8AM0LL4Tp032D8fDD8Pvfh99YFBUVhfsNZDXKPHrKPHrKPBl0\n5yKHffLJrx91TJ3qJ7TabDN/V+LSS6GwENq0iae28vLyeL5xiinz6Cnz6CnzZND03znkp5/83Ymq\nhuLtt/1S5Qcc4AdhHnssdOoELVrEXamIiCSBpv9OoJ9+8hNZzZwJ06b5abfLy2GrrXwjMXgwHH20\nFgUTEZH8ouYiQp9/7huJmTNh1iz/hMfPP8NvfgMHHvjrY6J77934JFYiIiK5Ss1FSFauhHnzfm0m\nZs70M2ACbL+9X120d2846CDYZx9o2TLeepurrKyMzTffPO4yUkWZR0+ZR0+ZJ4OeFsmSr76C//wH\nrrkGjjwSWrf202hfdhl89BH87nd+UbBPPoEFC/wy5hdf7I/Jt8YCoG/fvnGXkDrKPHrKPHrKPBl0\n5yKAigqYP7/mRxzvvuu/1qaNvxtx3XX+106d1nw2zFw0dOjQuEtIHWUePWUePWWeDGoumuC772DO\nnF+bidmz/WOha60F++7r1+cYPNg3E+3bp2O8RL4/mZOPlHn0lHn0lHkyqLmoZfFieP31mtsHH/iv\nbbKJHysxcKBvJPbfHzbYIN56RUREck1qm4uKCj8WonYjsXix/3rr1rDffn458v3283NN7Lqrv1sh\nIiIi9UvFj8oVK+DNN+G++/zMlocf7u9C7LwznHoq3Huv/yjj/PP99NkffOBXFp02DW69Fc49F3bf\nXY1FdWPHjo27hNRR5tFT5tFT5smQuB+Xy5b5cRG33+7X2Ojc2X90sd9+0KcPPPOMX5fjqqv87xcv\nhs8+g6eeghtu8E917LhjOsZNrImSkqxN5CZNpMyjp8yjp8yTITHTfxcWzmXhwk689x445x/v3HNP\n6Njx123ffWHDDeOuWEREJDdo+u9GLFnilxsfNMg3EnvuCeusE3dVIiIi6ZOY5uKee/ycEiIiIhKv\nxI25EBERkXipuZBAMplM3CWkjjKPnjKPnjJPBjUXEkj//v3jLiF1lHn0lHn0lHkyJOZpkblz52ra\nWBERkWYI62kR3bkQERGRrFJzISIiIlml5kICmTRpUtwlpI4yj54yj54yTwY1FxJIUVFR3CWkjjKP\nnjKPnjJPhtCaCzPbxMzGmdm3ZrbUzMaY2fqNnLO+mY0ys4/NrNzM/tfMLgyrRgluiy22iLuE1FHm\n0VPm0VPmyRDmnYvxQAegK3A8cBhwZyPn3AoUAmcAu1f+eZSZnRBinSIiIpJFoTQXZrY70A043zn3\nmnNuJnAxcLqZtW3g1ALgfufcdOfcIufcGOBN4Ldh1CkiIiLZF9adiwJgqXPu9Wr7pgIOOKCB82YC\nGTPbGsDMjgR2ASaHVKeIiIhkWVgLl7UFvqi+wzm3ysy+rvxafS4G7gI+MbOVwCrgAufcyw2csx7A\n/Pnz16xiaZY5c+ZQUpK1+VakCZR59JR59JR5tKr97Fwvqy/snGvyBgwDKhrYVgG7An8B5tdx/hLg\nwgZe/wpgPtAd2Au4CPgOOKqBc87A3xHRpk2bNm3atAXbzmhOP9DY1qzpv81sM2CzRg77EDgbuMk5\n98uxZtYCWA6c4px7vI7XXg/4FjjJOfdMtf13A9s457o3UFM3YEHl64uIiEjTrAe0ByY7577K1os2\n62ORym/c6Dc3s1nAxmbWsdq4i66AAa/Uc1rLym1Vrf2raGBsSGVN4xurSUREROo0M9svGMqATudc\nKX4Q5t1mtr+ZHQyMBIqdc4urjjOzUjM7sfKc74EXgZvM7HAza29m5wHnAI+GUaeIiIhkX1gDOsGP\nhRiFf0qkAngYuLTWMbsArav9uRd+XMcDwKbAQuAvzrm7QqxTREREsijvl1wXERGR3KK1RURERCSr\n1FyIiIhIVuVFc2Fm/czsIzP70cxmm9n+jRx/hJnNNbPlZvaemZ0bVa1J0ZzMzexkM5tiZl9ULlQ3\n08wKo6w3CZr7Pq923sFmtsLMNPNQMwX4t2UdM/u7mS2o/Pflw8qB59JEATI/08zeMLMfzOwzMxtr\nZptGVW++M7NDzewJM/vUzCrMLNOEc9b4Z2jONxdm1gu4GRgCdMSvNTLZzDav5/j2wH+A/wL7ArcB\nY8zsmCjqTYLmZo5flG4KcBzQCXgBeNLM9o2g3EQIkHnVea2B+/EDp6UZAmb+EHAk0Ac/YWBv4N2Q\nS02MAP+eH4x/f98N7AGcgl9rSoP8m2594A38pJSNDrLM2s/QbM7IFcYGzAZuq/ZnAz4BBtVzfBEw\nr9a+YuDpuK8lX7bmZl7Pa7wN/DXua8mXLWjmle/t6/D/WJfEfR35tAX4t+VY4Gtg47hrz9ctQOaX\nA+/X2tcfWBT3teTjhn9yM9PIMVn5GZrTdy7MrCXQGd9BAeD8lU7FL45WlwNZ/X9xkxs4XqoJmHnt\n1zBgQ/w/xNKIoJmbWR9gB3xzIc0QMPMewGvAlWb2iZm9a2b/rJxdWBoRMPNZwHZmdlzla7QBTgWe\nCrfaVMvKz9Ccbi6AzYEW+DVJqltC/Qugta3n+I3MbN3slpdIQTKvbSD+VtyDWawryZqduZntAvwD\nONM5VxFueYkU5H2+I3AosCdwEn7enlOA20OqMWmanblzbiZwFjDRzH4GPgeW4u9eSDiy8jM015sL\nyTNmdgYwGDjVOVcWdz1JZGZrAeOAIc65D6p2x1hSWqyFv618hnPuNefcs8BlwLn6j0s4zGwP/Gf+\nQ/Hjubrh79bdGWNZ0gRhztCZDWX4tUXa1NrfBli8+uFQub+u479zzv2U3fISKUjmAJjZ6fiBVqc4\n514Ip7xEam7mGwJdgP3MrOp/zWvhP5H6GSh0zk0LqdakCPI+/xz41Dm3rNq++fjGblvggzrPkipB\nMr8KeNk5d0vln982s4uA6WZ2jXOu9v+wZc1l5WdoTt+5cM6tAObiFz0Dfvk8vyv1L7Qyq/rxlQor\n90sjAmaOmfUGxgKnV/6PTpooQObfAXsB++FHc+8L3AGUVv6+vsUBpVLA9/nLwNZm1qravt3wdzM+\nCanUxAiYeStgZa19FfinHnS3LhzZ+Rka9+jVJoxuPQ0oxy9gtjv+dthXwBaVXx8G3F/t+PbA9/gR\nr7vhH7/5GTg67mvJly1A5mdUZvxHfIdbtW0U97Xky9bczOs4X0+LhJw5fhzRQmAi0AH/CPa7wB1x\nX0u+bAEyPxf4qfLflh2Ag4E5wMy4ryVftsr37b74/4xUAH+u/PN29WSelZ+hsV94E8O5CFgA/Ijv\nnrpU+9q9wPO1jj8M3yH/CLwPnB33NeTb1pzM8fNarKpjuyfu68inrbnv81rnqrmIIHP83BaTgWWV\njcZwYN24ryOftgCZ9wPeqsz8E/y8F1vFfR35sgGHVzYVdf77HNbPUC1cJiIiIlmV02MuREREJP+o\nuRAREZGsUnMhIiIiWaXmQkRERLJKzYWIiIhklZoLERERySo1FyIiIpJVai5EREQkq9RciIiISFap\nuRAREZGsUnMhIiIiWfX/Af2m7hp3gSabAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from scipy import optimize as op\n", "step=0.05\n", "ipol1=np.polyint(pol1)/step\n", "ipol1[-1]=intsmul[0]\n", "ipol1/=intsmul[-1]\n", "zk=op.root(lambda x:np.polyval(np.polyadd(ipol1,[-levs[2]]),x),0.8)\n", "#op.root?\n", "zx=np.r_[:1:20j]\n", "pl.plot(zx,np.polyval(np.polyadd(ipol1,[-0.8]),zx))\n", "pl.grid()" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [], "source": [ "alquant=np.array([polygon(rho,n=10) for rho in np.arange(0.05,1,0.05)])" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAFkCAYAAACuFXjcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XmYnfP9//HnW2yNJapaQfMr2iKhlgxaSlt7U21RKR0i\nsdYSRdCEalFqKWL7llK1FkOKEq0KUUWRpGYSlARF7GJPLQlZPr8/PpNvY77JMedk5txzzjwf13Uu\nzj33fc57buPMaz5rpJSQJElamMWKLkCSJHVthgVJklSSYUGSJJVkWJAkSSUZFiRJUkmGBUmSVJJh\nQZIklWRYkCRJJRkWJElSSYYFSZJUUtlhISK2jIjREfFSRMyNiO+345pvRURzRMyMiCcjYkhl5UqS\npGqrpGVhGWAScAjwiRtLRMTqwJ+Bu4ANgPOA30fEdhW8tyRJqrJYlI2kImIusHNKaXSJc34NDEgp\nrT/fsSagV0rpOxW/uSRJqopqjFn4GjC2zbExwGZVeG9JkrSIFq/Ce/QGprU5Ng1YPiKWSil92PaC\niPgMsAMwFZjZ6RVKklQ/lgZWB8aklN7siBesRlioxA7ANUUXIUlSDdsTuLYjXqgaYeFVYOU2x1YG\n/rOgVoVWUwGuvvpq+vbt24mlaX7Dhg3jnHPOKbqMbsV7Xn3e8+rznlfX5MmTGTRoELT+Lu0I1QgL\nDwID2hzbvvX4wswE6Nu3L/379++sutRGr169vN9V5j2vPu959XnPC9Nh3fiVrLOwTERsEBEbth5a\ns/V5n9avnxYRV853yUWt5/w6ItaOiEOAgcDZi1y9JEk1JiV47LGiqyhPJbMhNgYmAs3kdRZGAi3A\nL1u/3hvoM+/klNJUYEdgW/L6DMOA/VJKbWdISJJUl1KCf/4TRoyAL30J1lsPnnqq6Krar+xuiJTS\nPZQIGSmlfRZw7F6godz3kiSpVs2dC+PHww035Mfzz8NnPws/+AEMHAirr150he3XVWdDqACNjY1F\nl9DteM+rz3tefd3pns+ZAw88kMPBjTfCSy9B796w6645IGy5JfToUXSV5VukFRw7S0T0B5qbm5sd\nFCNJ6tJmz4b77ssB4aab4NVXYbXVcjgYOBA226y6AaGlpYWGhgaAhpRSS0e8pi0LkiSVadYs+Pvf\nc0D405/g9dfhC1+APffMAWHTTWGxOtrX2bAgSVI7fPQRjB2bA8Itt8Bbb8Gaa8K+++aA0NAAEUVX\n2TkMC5IkLcTMmXDHHTkgjB4N06fDWmvBwQfngLDBBvUbEOZnWJAkqY3x4+G88+DWW+G996BfPzji\niBwQ1l23ewSE+RkWJElq9dZbcOyxcMklsPbaMHx4nsnQr1/RlRXLsCBJ6vZSgquvhqOOgg8/hPPP\nz10NtTjNsTPU0VhNSZLKN2UKbL01DB4M22yTnx96qEFhfoYFSVK3NGMG/PznsP768MILMGYMNDXB\nKqsUXVnXYzeEJKnbue223Hrw0kvws5/BMcfA0ksXXVXXZViQJHUbL76YZzXceCNsuy3cfnueCqnS\n7IaQJNW92bPhnHOgb1/4xz/g2mvz+gkGhfYxLEiS6tr48bDxxnmmw5AheQBjY2P3WythURgWJEl1\n6e238/THeRs5jR8Pv/kNrLBC0ZXVHscsSJLqSkpwzTW5JWHGjLwS4yGHOBVyUdiyIEmqG1Om5LUS\n9toLttoqP//JTwwKi8qwIEmqefOvmfD883nNhOuug1VXLbqy+mA3hCSppv31r3nNhBdfdM2EzmLL\ngiSpJr34Ivzwh/Cd78Caa8Kjj8KJJxoUOoNhQZJUU156CQ47DL70JbjvPtdMqAa7ISRJNeGFF+D0\n0+H3v4dlloHjjsuhoVevoiurf4YFSVKX9txzOSRceikstxyccEIeo7D88kVX1n0YFiRJXdKzz8Jp\np8EVV+TWg5NPzuslLLdc0ZV1P4YFSVKX8vTTcOqpcNVVsOKK+d8PPjh3PagYhgVJUpfw1FNwyilw\n9dXw2c/CGWfAgQdCz55FVybDgiSpUFOm5JBw7bXQuzecfTYccAB86lNFV6Z5DAuSpEI8/jj86ld5\npcXVVoPzz4f99nOdhK7IdRYkSVX1r3/B7rvDeuvB/ffDhRfCv/8NQ4caFLoqw4IkqSoeeQQGDoSv\nfAUmTICLL87jFA46CJZaqujqVIphQZLUqSZOhF12gQ02yP9+6aXw5JN5XMKSSxZdndrDsCBJ6nAp\nwT/+Ad//PvTvn7serrgiD2bcd19YYomiK1Q5DAuSpA4zZw7ceCNsthlsuWUei3DVVTB5MgwZYkio\nVYYFSdIie/99uOCCvJnTwIF52uNf/pJbFPbaCxZ37l1N8z+fJKli06blkHDBBTB9et4y+vrrYeON\ni65MHcmwIEkq2xNPwMiRuYth8cVh//3hiCNg9dWLrkydwbAgSWqXeYMWzzoLRo/Oqy2ecEKe+vjp\nTxddnTqTYUGSVNKcOfCnP+WQMH489OsHl10Ge+zh+gjdhWFBkrRA77+fpzuefTY88wxstVUetPjt\nb8NiDo/vVgwLkqSPmTYNfvObvAyzgxYFhgVJUqspU3IrgoMW1VZFDUkRMTQino2IGRExLiI2acf5\nj0fEBxExOSL2qqxcSVJHSgnuuy+vtNi3L9x6K5x4IrzwApx7rkFBWdlhISJ2B0YCJwAbAQ8DYyJi\npYWcfzBwCnA80A84EbggInassGZJ0iJKCW6/Pa+y+I1vwNNP50GLU6fCMcc4u0EfV0nLwjDg4pTS\nVSmlKcBBwAfAvgs5f1Dr+TeklKamlK4HfgeMqKhiSVLF5s6Fm2+GTTaBAQNg9uzcmvDoo7DPPs5u\n0IKVFRYiYgmgAbhr3rGUUgLGApst5LKlgJltjs0ENo2IHuW8vySpMnPmwHXX5Z0fd9kFllsOxo6F\nBx+E737X2Q0qrdwfj5WAHsC0NsenAb0Xcs0YYP+I6A8QERsD+wFLtL6eJKmTzJqVpz/26weNjfD5\nz+cxCnffDdtsAxFFV6haUI3ZECcDKwMPRsRiwKvAFcBwYG6pC4cNG0avXr0+dqyxsZHGxsbOqVSS\n6sTMmTkknH46PPcc7LwzXHON0x/rTVNTE01NTR87Nn369A5/n8i9CO08OXdDfADsmlIaPd/xK4Be\nKaVdSlzbgxwaXgEOBE5PKa2wkHP7A83Nzc3079+/3fVJUnf3wQfwu9/BmWfCK6/A7rvDz34GX/lK\n0ZWpWlpaWmhoaABoSCm1dMRrltUNkVKaBTQD28w7FhHR+vyBT7h2Tkrp5dYxDj8Cbi2/XEnSgvzn\nP7kVYfXV4eijYfvtYfJkaGoyKGjRVdINcTZwRUQ0AxPIsyN6krsWiIjTgFVTSkNan38Z2BQYD6wI\nHAmsCwxe1OIlqbt76y04/3w477zcqrDvvjB8OKyxRtGVqZ6UHRZSSqNa11Q4idytMAnYIaX0eusp\nvYE+813SAzgKWAuYBdwNbJ5Sen5RCpek7uy11/JqixdckGc6HHhgblFYbbWiK1M9qmiAY0rpQuDC\nhXxtnzbPpwAOPJCkDvDii3n3x9/9Dnr0gEMPhWHD4HOfK7oy1TP3hpCkGvDss/DrX8Pll8Myy8CI\nEfCTn8CKKxZdmboDw4IkdWEvvAC//GWeBrniinDSSXDwwbD88kVXpu7EsCBJXdAbb8Bpp+UxCcsv\nn6dCHngg9OxZdGXqjgwLktSFvPtuHrg4cmR+/rOf5TEJyy1XbF3q3gwLktQFzJwJF10Ep5ySA8Oh\nh+bdH1dyUXx1AYYFSSrQ7Nlw1VVw4onw0kt5nYTjj4c+fT7xUqlq3GdMkgqQEtx4Y15dcb/94Gtf\ng8cfh0suMSio6zEsSFKVjR0LX/0qDBwI/+//wUMPwahRsPbaRVcmLZhhQZKqZMKEvC30dtvlBZXu\nvhvGjIG854/UdRkWJKmTPf44/OAHuTVh2jS4+WZ44AH41reKrkxqH8OCJHWS556DffbJ4xImTswD\nGR9+GHbaCSKKrk5qP2dDSFIHe+01OPVU+O1vYYUV8o6QBxwASy1VdGVSZQwLktRBpk/Piymdcw4s\ntlieAnn44bDsskVXJi0aw4IkLaIPP4QLL8wLKr3/ft7gacQI+Mxniq5M6hiGBUmq0Ly1EkaMyOMT\n9tsvtyastlrRlUkdywGOklSB8eNhyy3hhz+Evn3hkUfg4osNCqpPhgVJKsPUqfCjH+UVF999F+68\nE/78Z+jXr+jKpM5jWJCkdnjnHRg+PK+yeO+9cNll0NIC225bdGVS53PMgiSVMGtW7l448USYMSNv\nGX300bDMMkVXJlWPYUGSFiAluPXW3Jrw5JOw997wq1/BqqsWXZlUfXZDSFIbLS15D4eddoLPfz4/\nv+wyg4K6L8OCJLV68UUYMgQ23hhefTUPXLzzTthww6Irk4plN4Skbu/dd+GMM/Lqi8sumxdY2n9/\nWNxPSAkwLEjqxubMyd0Lv/hFnu0wbBgceywsv3zRlUldi90QkrqlMWNy98KPf5ynPz7xBJx2mkFB\nWhDDgqRu5V//gm9/Oz8+/WmYMAGuvhq+8IWiK5O6LsOCpG5h2rTcirDBBvD003lPh3vugU02Kboy\nqetzzIKkuvbhh3D++XDyyXnA4siRcMghsOSSRVcm1Q7DgqS6lBLccktebXHqVDj44LwKo9tGS+Wz\nG0JS3Xn0UdhuO9hlF/jiF+Hhh+F//segIFXKsCCpbrz+em5B2HBDeOGFvKjS7bfDuusWXZlU2+yG\nkFTzPvoIfvMbOOmk/Pyss2DoUMclSB3FsCCpZqUEf/kLHHUU/PvfcOCBOTCstFLRlUn1xW4ISTXp\nscdghx3ge9+DPn1g0qS8TLNBQep4hgVJNeXNN+HQQ/N6Cc8+m2c83HknfOUrRVcm1S+7ISTVhFmz\ncsvBiSfC3Llw+unwk5/AUksVXZlU/wwLkrq8v/4Vjjwy799wwAF5gaXPfa7oqqTuw24ISV3W5Mnw\nne/kR+/eMHEiXHyxQUGqNsOCpC7nrbfg8MPzOIQpU/I+Dn/7Wx6nIKn67IaQ1GXMnp1bDo4/Pq+d\ncMopOTQsvXTRlUndW0UtCxExNCKejYgZETEuIkru2xYRe0bEpIh4PyJejohLI2LFykqWVI/uvhs2\n2igPWtx5Z3jqKRgxwqAgdQVlh4WI2B0YCZwAbAQ8DIyJiAXObo6IrwNXApcA/YCBwKbA7yqsWVId\nee452G032HprWG45+Oc/4dJL8xgFSV1DJS0Lw4CLU0pXpZSmAAcBHwD7LuT8rwHPppQuSCk9l1J6\nALiYHBgkdVMzZuTVFvv2hX/8A/7wB7j/fmhoKLoySW2VFRYiYgmgAbhr3rGUUgLGApst5LIHgT4R\nMaD1NVYGfgj8pZKCJdW2lPKAxb594Ve/gsMOy1MiBw2CiKKrk7Qg5bYsrAT0AKa1OT4NWGCjYWtL\nwiDg+oj4CHgFeBs4tMz3llTjHnsMtt0WBg6E9dbLz08/PXc/SOq6On3qZET0A84DTgT6AzsAa5C7\nIiR1A++8k2c1bLDBf7eO/vOf4ctfLroySe1R7tTJN4A5wMptjq8MvLqQa44B7k8pnd36/F8RcQhw\nX0Qcl1Jq20rxv4YNG0avXr0+dqyxsZHGxsYyy5ZUhDlz4PLL4dhjYeZMOPXUHBpcolnqGE1NTTQ1\nNX3s2PTp0zv8fSIPOSjjgohxwPiU0uGtzwN4Hjg/pXTmAs6/AfgopbTHfMc2A/4BrJZS+j8hIyL6\nA83Nzc3079+/rPokdQ0PPJDHIzQ3w1575e6GVVctuiqp/rW0tNCQRwo3pJRaOuI1K+mGOBs4ICIG\nR8Q6wEVAT+AKgIg4LSKunO/8W4FdI+KgiFijdSrleeTAsbDWCEk16uWXYfBg+PrX82DG+++Hq64y\nKEi1rOwVHFNKo1rXVDiJ3P0wCdghpfR66ym9gT7znX9lRCwLDAXOAt4hz6Y4ZhFrl9SFfPghnHde\n3uRp6aXhkktgn32gR4+iK5O0qCpa7jmldCFw4UK+ts8Cjl0AXFDJe0nq+m67DY44Ap55Bg49FE44\nAT796aKrktRR3EhKUsWeegq++13YcUfo0wcefhjOPdegINUbw4Kksr37LhxzDKy7LvzrX3mRpbFj\n83NJ9cddJyW1W0pw7bXw05/C22/Dccflf+/Zs+jKJHUmWxYktcvjj+fNngYNgs03hylT8tgEg4JU\n/wwLkkp67z0YPjyvvvjSS3D77XDDDfCFLxRdmaRqsRtC0gKlBDfdlGc5vPFGbkX46U9dfVHqjmxZ\nkPR/PPUUDBiQN3zacMPcBfHznxsUpO7KsCDpf82YAccfn3eEfOIJGD0abr0V1lij6MokFcluCElA\n3gXysMPyuIThw/PmTw5elASGBanbmzo17wQ5ejRsv30ewLjWWkVXJakrsRtC6qY+/BBOOQX69cs7\nQ44aZVCQtGC2LEjd0J135j0cnnkmz3Y4/nhYbrmiq5LUVdmyIHUjL70Eu++euxt694ZJk+DMMw0K\nkkozLEjdwKxZMHIkrLMO3HMP/OEP8Pe/u5eDpPaxG0Kqc/feC4ccApMnw9ChcNJJsMIKRVclqZbY\nsiDVqWnTYPBg+OY3czfDQw/B+ecbFCSVz7Ag1Zk5c+DCC2HtteG22+D3v4f774eNNiq6Mkm1yrAg\n1ZFHH4UttsjdDbvtlldh3G8/WMz/0yUtAj9CpDowYwYcdxz07w/Tp8N998Hvfgef+UzRlUmqBw5w\nlGrc3/4GBx4Izz8Pv/gFjBjhhk+SOpYtC1KNevNN2Gcf2GYbWGUVePjhvLiSQUFSR7NlQaoxKcG1\n1+aVF2fPhksugX33dVyCpM7jx4tUQ559FgYMgEGDcovC5Mmw//4GBUmdy48YqQbMng1nnZVXXJw8\nOW8nfd11eclmSepshgWpi3voIdhkkzxw8aCD4LHHYMcdi65KUndiWJC6qPfegyOPhK9+NT8fPx7O\nPhuWXbbYuiR1Pw5wlLqg226Dgw+G11+H00/PgxmXWKLoqiR1V4YFqQt59dUcDK6/HrbbDu6+G9Zc\ns+iqJHV3hgWpC0gJLrsMjj4aFl8crr4a9tgDIoquTJIcsyAV7oknYKut8hTInXeGKVNgzz0NCpK6\nDsOCVJCPPoKTT4b114cXX4SxY+Hyy93PQVLXYzeEVIAJE/JSzU8+CT/9ad7T4VOfKroqSVowWxak\nKpo5E445BjbbDHr2hOZmOPVUg4Kkrs2WBalKxo/PrQlPPw2/+lVuUVjc/wMl1QBbFqRONnNmXn1x\n881hmWVya8KxxxoUJNUOP66kTmRrgqR6YMuC1Anmb01YdlloabE1QVLt8qNL6mDjx8Pee8Mzz8Ap\np/x3oSVJqlW2LEgdZP7WhOWWg4kT88wHg4KkWufHmNQBxo3LYxOeeSZPhTzqKEOCpPphy4K0CGbO\nhOHD4etfh+WXz60JI0YYFCTVl4rCQkQMjYhnI2JGRIyLiE1KnHt5RMyNiDmt/5z3eLTysqXijRsH\nG20E552XWxPuvx/69Su6KknqeGWHhYjYHRgJnABsBDwMjImIlRZyyWFAb2CV1n9+HngLGFVJwVLR\nZszIUyBtTZDUXVTSsjAMuDildFVKaQpwEPABsO+CTk4pvZtSem3eA9gUWAG4osKapcLMa034n/+B\n006zNUFS91BWWIiIJYAG4K55x1JKCRgLbNbOl9kXGJtSeqGc95aKNH9rwgor5NaE4cNtTZDUPZT7\nUbcS0AOY1ub4NGDtT7o4IlYBBgA/KvN9pcI8+GCe6TB1Kpx+Ohx5JPToUXRVklQ91f67aG/gbeCW\n9pw8bNgwevXq9bFjjY2NNDY2dnxlUhszZsDxx8PZZ8Mmm+TWhL59i65Kkv6rqamJpqamjx2bPn16\nh79P5F6Edp6cuyE+AHZNKY2e7/gVQK+U0i6fcP2TwOiU0tGfcF5/oLm5uZn+/fu3uz6po0yaBHvu\nmfd0OPlkWxMk1Y6WlhYaGhoAGlJKLR3xmmWNWUgpzQKagW3mHYuIaH3+QKlrI+JbwBeBS8uuUqqS\nOXPgjDNg001hySXzDpE//alBQVL3VslsiLOBAyJicESsA1wE9KR1dkNEnBYRVy7guv2A8SmlyZUW\nK3Wm556DrbfOSzQfeWSe+bDuukVXJUnFK3vMQkppVOuaCicBKwOTgB1SSq+3ntIb6DP/NRGxPLAL\nec0FqUtJCa65BoYOzTMd7r4bvvnNoquSpK6jogGOKaULgQsX8rV9FnDsP8CylbyX1JneegsOPhhG\njYK99srrJ7QZUytJ3Z6zxNVtjR2bt5L+4AO4/nrYbbeiK5KkrsmNpNTtzJwJw4bBdtvlqZCPPmpQ\nkKRSbFlQt/Lww3lK5L//DeecA4cdBosZmSWpJD8m1S3MmQNnnpmnRC6+ODz0EBxxhEFBktrDj0rV\nveefh222yTtDHn44jB8P661XdFWSVDvshlDdSgmuvTZPiezVyymRklQpWxZUl95+GxobYdAg+O53\n81gFg4IkVcaWBdWdu+7KUyLfew+uuw52373oiiSpttmyoLoxc2ZepnnbbWGttfKUSIOCJC06WxZU\nFx55JE+JfOqpvKX04Yc700GSOoofp6ppc+fCWWfBJpvkcPDQQ3nBJYOCJHUcP1JVs155BbbfHoYP\nz4srTZjglEhJ6gx2Q6gm3X47DB6cF1gaOzZvLS1J6hy2LKimfPRRbkkYMAA23hgmTTIoSFJns2VB\nNeOZZ/LaCS0teZyCYxMkqToMC6oJo0bBAQfASivBAw/kAY2SpOrw7zJ1aR98AD/+cV4vYcCA3Kpg\nUJCk6rJlQV3WY4/lkPDMM/D738O++0JE0VVJUvdjy4K6nJTgkkvyAMaIvHbCfvsZFCSpKIYFdSnT\np8OPfpS7HvbeO6+d0K9f0VVJUvdmN4S6jPHjc1B4++08oPGHPyy6IkkS2LKgLmDuXDjzTNhiC1h5\nZZg40aAgSV2JYUGFeu01+M538kJLRx0F990Ha6xRdFWSpPnZDaHCjB0Le+2VWxbGjMn7PEiSuh5b\nFlR1s2fDccflcLDeevDwwwYFSerKbFlQVT33HOyxRx7MeOqpufvBJZslqWszLKhqbropr5fQqxfc\ney9svnnRFUmS2sO/6dTpZs6EoUNh113zDpETJxoUJKmW2LKgTvXvf8PAgTBlClx4IRx0kCsxSlKt\nMSyo09x8MwwZAp/7XB6jsMEGRVckSaqE3RDqcLNn54GLu+wC226b93YwKEhS7bJlQR3qlVfyks33\n3w8jR8KwYXY7SFKtMyyow9xzT95SerHF4O9/z8s3S5Jqn90QWmQpwRlnwDbb5B0iJ040KEhSPTEs\naJG8804emzBiRB6ncMcdeTMoSVL9sBtCFZs0KU+LfPNNGD0avve9oiuSJHUGWxZUkUsvha99La/G\n2NxsUJCkemZYUFlmzMhLNu+/PwwenGc9rLlm0VVJkjqT3RBqt6ef/u9qjFdckRdckiTVP1sW1C43\n3wwNDfDee3k1RoOCJHUfhgWVNHt2numwyy55auRDD8H66xddlSSpmioKCxExNCKejYgZETEuIjb5\nhPOXjIhTImJqRMyMiGciYu+KKlbVvPpqXq555Eg46yy44YY8oFGS1L2UPWYhInYHRgI/BiYAw4Ax\nEbFWSumNhVz2R+CzwD7A08Aq2KrRpd1zT162OQLuvhu23LLoiiRJRankF/Yw4OKU0lUppSnAQcAH\nwL4LOjkivg1sCXwnpXR3Sun5lNL4lNKDFVetTpMSnHlm7nJYZx1oaTEoSFJ3V1ZYiIglgAbgrnnH\nUkoJGAtstpDLvgc8BIyIiBcj4omIODMilq6wZnWSd96BH/wgr8Q4fDjceSf07l10VZKkopXbDbES\n0AOY1ub4NGDthVyzJrllYSawc+tr/BZYEdivzPdXJ5m3GuMbb7gaoyTp46qxzsJiwFxgj5TSewAR\ncSTwx4g4JKX04cIuHDZsGL3ajKhrbGyksbGxM+vtdq65Ji+y1Ldv3tvBRZYkqTY0NTXR1NT0sWPT\np0/v8PeJ3IvQzpNzN8QHwK4ppdHzHb8C6JVS2mUB11wBbJ5SWmu+Y+sAjwFrpZSeXsA1/YHm5uZm\n+vfv3/7vRmWZPRuOOSbPdhgyBH77W/jUp4quSpK0KFpaWmhoaABoSCm1dMRrljVmIaU0C2gGtpl3\nLCKi9fkDC7nsfmDViOg537G1ya0NL5ZVrTrMm2/CgAFw7rlw3nlw+eUGBUnSglUyG+Js4ICIGNza\nQnAR0BO4AiAiTouIK+c7/1rgTeDyiOgbEd8AzgAuLdUFoc7zyCOwySYwcWIexHjYYXmKpCRJC1J2\nWEgpjQKOBk4CJgLrAzuklF5vPaU30Ge+898HtgNWAP4J/AG4BTh8kSpXRW64ATbbDJZfPq/GuNVW\nRVckSerqKhrgmFK6ELhwIV/bZwHHngR2qOS91DHmzIHjj4dTT82LLV16KfTs+cnXSZLkrpPdwDvv\nwJ57wu23wxlnwNFH2+0gSWo/w0KdmzwZdtoJXn8dbrsNdrB9R5JUJvdnqGO33AJf/SosuST8858G\nBUlSZQwLdWjuXDjpJNh557xr5IMPwpe+VHRVkqRaZTdEnXn3XRg8GG6+GU4+GX72M1jMSChJWgSG\nhTry1FO5NeGFF9zfQZLUcfybs0789a95oaXZs2HCBIOCJKnjGBZqXEpw+umw446wxRY5KKyzTtFV\nSZLqiWGhhr3/fl5g6dhj89iE0aOhzSadkiQtMscs1Khnn83jE55+Gv74Rxg4sOiKJEn1yrBQg+66\nC3bbDVZYIU+L/MpXiq5IklTP7IaoISnlLaV32AEaGvJCSwYFSVJnMyzUiBkzYMgQGDYMjjwyL928\n4opFVyVJ6g7shqgB06bl8QmTJsE118AeexRdkSSpOzEsdHGPPgrf/S589BHce29eS0GSpGqyG6IL\nu+022Hzz3N0wYYJBQZJUDMNCF5QSnHdeXoVx663hvvugT5+iq5IkdVeGhS5m1iw45BA44og8kPGm\nm2DZZYuuSpLUnTlmoQt55528fsLdd8Mll8D++xddkSRJhoUu4+mn80DGadPgjjtgq62KrkiSpMxu\niC7gvvuyZLVpAAALtklEQVTgq1+FOXNg3DiDgiSpazEsFOzKK2GbbfJKjOPGwVprFV2RJEkfZ1go\nyNy5eafIvfeGvfaCMWNckVGS1DU5ZqEAH3yQA8Kf/gRnnglHHQURRVclSdKCGRaq7OWX4fvfh8mT\nc1jYaaeiK5IkqTTDQhVNnJgXWgL4xz9go42KrUeSpPZwzEKV3HwzbLEFrLJKXrrZoCBJqhWGhU6W\nUh6X8IMfwIABcM89sOqqRVclSVL7GRY60Ucf5VUYhw+HY4+FUaOgZ8+iq5IkqTyOWegkb70Fu+4K\n99+f11IYPLjoiiRJqoxhoRM8+WReuvmtt+Cuu2DLLYuuSJKkytkN0cH+9jf42tegRw8YP96gIEmq\nfYaFDnTZZbDDDrDxxvDgg/DFLxZdkSRJi86w0AFSghNPhP32g333hb/8BVZYoeiqJEnqGI5ZWESz\nZsHBB8Oll8Ipp+RZDy7dLEmqJ4aFRfDee7DbbnDnnc54kCTVL8NChaZNgx13hCeeyN0O229fdEWS\nJHUOw0IFnnwSvv1tmDED7rsPNtyw6IokSeo8DnAs04MPwuabw1JLwbhxBgVJUv0zLJThlltg662h\nb9+8MuMXvlB0RZIkdb6KwkJEDI2IZyNiRkSMi4hNSpz7zYiY2+YxJyI+V3nZ1ffb3+bNoHbcMQ9o\nXHHFoiuSJKk6yg4LEbE7MBI4AdgIeBgYExErlbgsAV8Gerc+VkkpvVZ+udWXUp4OecghcOihcP31\nsPTSRVclSVL1VNKyMAy4OKV0VUppCnAQ8AGw7ydc93pK6bV5jwret+o++ihPhzz9dBg5Es49Ny/j\nLElSd1JWWIiIJYAG4K55x1JKCRgLbFbqUmBSRLwcEXdExOaVFFtN//lP7nIYNQquuw6OPNLFliRJ\n3VO5UydXAnoA09ocnwasvZBrXgEOBB4ClgIOAP4eEZumlCaV+f5V8fLLMGAAPPccjBkD3/pW0RVJ\nklScTl9nIaX0JPDkfIfGRcQXyd0ZQzr7/cv1+ON5DYWU8oyHddctuiJJkopVblh4A5gDrNzm+MrA\nq2W8zgTg65900rBhw+jVq9fHjjU2NtLY2FjGW7XfvffCTjtBnz7w17/Caqt1yttIktQhmpqaaGpq\n+tix6dOnd/j7RB5yUMYFEeOA8Smlw1ufB/A8cH5K6cx2vsYdwH9SSgMX8vX+QHNzczP9+/cvq75K\n/fGPMGgQbLEF3HQTtMkokiTVhJaWFhoaGgAaUkotHfGalXRDnA1cERHN5BaCYUBP4AqAiDgNWDWl\nNKT1+eHAs8BjwNLkMQtbAdstavEd5dxz8wDGxka4/HJYcsmiK5IkqesoOyyklEa1rqlwErn7YRKw\nQ0rp9dZTegN95rtkSfK6DKuSp1g+AmyTUrp3UQrvCHPnwtFHwznnwIgRcOqpsJhrWkqS9DEVDXBM\nKV0IXLiQr+3T5vmZQLu6J6pp5kwYMiR3P/zmNzB0aNEVSZLUNXXLXSfffht23hkmTIAbb4Rddim6\nIkmSuq5uFxaefz5PjZw2De66K+8gKUmSFq5bhYWUcivCjBnwwAOw9sKWkZIkSf+rW4WFiDzb4XOf\ng969i65GkqTa0K3CAsD66xddgSRJtcWJgpIkqSTDgiRJKsmwIEmSSjIsSJKkkgwLkiSpJMOCJEkq\nybAgSZJKMixIkqSSDAuSJKkkw4IkSSrJsCBJkkoyLEiSpJIMC5IkqSTDgiRJKsmwIEmSSjIsSJKk\nkgwLkiSpJMOCJEkqybAgSZJKMixIkqSSDAuSJKkkw4IkSSrJsCBJkkoyLEiSpJIMC5IkqSTDgiRJ\nKsmwIEmSSjIsSJKkkgwLkiSpJMOCJEkqybAgSZJKMixIkqSSDAuSJKkkw4IkSSrJsCBJkkoyLOh/\nNTU1FV1Ct+M9rz7vefV5z2tfRWEhIoZGxLMRMSMixkXEJu287usRMSsiWip5X3Uu/4euPu959XnP\nq897XvvKDgsRsTswEjgB2Ah4GBgTESt9wnW9gCuBsRXUKUmSClJJy8Iw4OKU0lUppSnAQcAHwL6f\ncN1FwDXAuAreU5IkFaSssBARSwANwF3zjqWUErm1YLMS1+0DrAH8srIyJUlSURYv8/yVgB7AtDbH\npwFrL+iCiPgycCqwRUppbkS0532WBpg8eXKZ5WlRTJ8+nZYWh5NUk/e8+rzn1ec9r675fncu3VGv\nWW5YKEtELEbuejghpfT0vMPtuHR1gEGDBnVSZVqYhoaGokvodrzn1ec9rz7veSFWBx7oiBcqNyy8\nAcwBVm5zfGXg1QWcvxywMbBhRFzQemwxICLiI2D7lNLfF3DdGGBPYCows8waJUnqzpYmB4UxHfWC\nkYcclHFBxDhgfErp8NbnATwPnJ9SOrPNuQH0bfMSQ4GtgF2BqSmlGRXWLkmSqqCSboizgSsiohmY\nQJ4d0RO4AiAiTgNWTSkNaR38+Pj8F0fEa8DMlJIDEiRJqgFlh4WU0qjWNRVOInc/TAJ2SCm93npK\nb6BPx5UoSZKKVHY3hCRJ6l7cG0KSJJVkWJAkSSUVEhbK3YgqIr4VEc0RMTMinoyIIdWqtV6Uc88j\nYpeIuCMiXouI6RHxQERsX81664EbrlVfBZ8tS0bEKRExtfXz5ZmI2LtK5daFCu75nhExKSLej4iX\nI+LSiFixWvXWuojYMiJGR8RLETE3Ir7fjmsW+Xdo1cNCuRtRRcTqwJ/JS0xvAJwH/D4itqtGvfWg\ngs2/vgHcAQwA+gN3A7dGxAZVKLcuuOFa9VV4z/9Insq9D7AW0Ag80cml1o0KPs+/Tv75vgToBwwE\nNgV+V5WC68My5IkFhwCfOOiww36HppSq+iBvJHXefM8DeBEYvpDzfw080uZYE3BbtWuv1Ue593wh\nr/Ev4OdFfy+18qj0nrf+bP+S/OHbUvT3UUuPCj5bvg28BaxQdO21+qjgnh8FPNXm2KHA80V/L7X4\nAOYC3/+Eczrkd2hVWxYq3Ijqa/zfv7LGlDhf86l08682rxHk1Tjf6owa640brlVfhff8e8BDwIiI\neDEinoiIMyOiw9bTr2cV3vMHgT4RMaD1NVYGfgj8pXOr7dY65HdotbshSm1E1Xsh1/ReyPnLR8RS\nHVteXarknrf1U3LT16gOrKuelX3P59twbc+U0tzOLa8uVfJzviawJbAusDNwOLlZ/IKFnK+PK/ue\np5QeAAYB17cu+f8K8Da5dUGdo0N+hzobQiVFxB7AL4AfppTeKLqeerQIG65p0SxGbsbdI6X0UErp\nduBIYIh/iHSOiOhH7jM/kTweagdya9rFBZaldujUXScXoNyNqGg9vqDz/5NS+rBjy6tLldxzACLi\nR+SBRwNTSnd3Tnl1qVobrum/Kvk5fwV4KaX03nzHJpOD2ueBpxd4leap5J4fA9yfUjq79fm/IuIQ\n4L6IOC6l1PYvYC26DvkdWtWWhZTSLKAZ2Gbesdb+8G1Y+DaaD85/fqvtW4/rE1R4z4mIRuBS4Eet\nf3GpnSq45/8B1gM2JI9W3gC4CJjS+u/jO7nkmlfhz/n9wKoR0XO+Y2uTWxte7KRS60aF97wnMLvN\nsbnkUf22pnWOjvkdWsDozd2AD4DBwDrk5qc3gc+2fv004Mr5zl8deJc8onNt8nSRj4Btix6JWiuP\nCu75Hq33+CByAp33WL7o76VWHuXe8wVc72yITr7n5HE4zwHXk3fH/QZ52uRFRX8vtfKo4J4PAT5s\n/WxZA/g6eUPCB4r+Xmrl0fpzuwH5j4u5wBGtz/ss5J53yO/Qor7ZQ4CpwAxyutl4vq9dDvytzfnf\nICfYGcBTwF5F/wertUc595y8rsKcBTwuK/r7qKVHuT/nba41LFThnpPXVhgDvNcaHM4Alir6+6il\nRwX3fCjwaOs9f5G87sIqRX8ftfIAvtkaEhb4+dxZv0PdSEqSJJXkbAhJklSSYUGSJJVkWJAkSSUZ\nFiRJUkmGBUmSVJJhQZIklWRYkCRJJRkWJElSSYYFSZJUkmFBkiSVZFiQJEkl/X8AqRtUplhADgAA\nAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rhos=np.arange(0.05,1,0.05)\n", "pl.plot(rhos,alquant[:,1])" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.7164207 , 0.77270202, 0.83002147, 0.89754835])" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAFkCAYAAACuFXjcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XmcjeX/x/HXZ8aWbZCYlFAhCTFJJkslZI1SDLJ+i9JX\nTXvf+LYobVq0aCUqRoqQZBhF9jJjqyxFRLJrphjMcv3+OKMvfuYwx8y5Z3k/H4/zYK6573N/zmWc\n857rvq77NuccIiIiIpkJ8boAERERyd0UFkRERMQvhQURERHxS2FBRERE/FJYEBEREb8UFkRERMQv\nhQURERHxS2FBRERE/FJYEBEREb8UFkRERMSvLIcFM2tqZtPN7HczSzezjqfYvrOZzTazXWaWaGaL\nzaxV4CWLiIhIMAUyslACWAncBZzOjSWaAbOBNkAD4BvgCzOrF8CxRUREJMjsTG4kZWbpQCfn3PQs\n7vcDMNE593TABxcREZGgCPqcBTMzoBSwL9jHFhERkawr5MExH8R3KmNSZhuY2dlAa2AzcCg4ZYmI\niOQLxYCqQKxzbm92PGFQw4KZdQeGAh2dc3v8bNoaGB+cqkRERPKlHsCE7HiioIUFM+sGvAt0cc59\nc4rNNwN8/PHH1KpVK6dLkwzR0dG88sorXpdRoKjPg099Hnzq8+Bau3YtPXv2hIzP0uwQlLBgZlHA\n+0BX59ys09jlEECtWrVo0KBBjtYm/xMWFqb+DjL1efCpz4NPfe6ZbDuNn+WwYGYlgIsBy2i6MGMZ\n5D7n3FYzexao5JzrnbF9d2AsMBj43swqZuyX7JxLOtMXICIiIjkrkNUQVwArgHh811l4CUgAnsz4\nfjhQ+ZjtbwdCgTeB7cc8Xg2sZBEREQmmLI8sOOfm4ydkOOf6nvD1tQHUJSIiIrmE7g0h/4iKivK6\nhAJHfR586vPgU5/nfWd0BcecYmYNgPj4+HhNihEREcmChIQEIiIiACKccwnZ8ZwaWRARERG/FBZE\nRETEL4UFERER8UthQURERPxSWBARERG/FBZERETEL4UFERER8UthQURERPxSWBARERG/FBZERETE\nL4UFERER8UthQURERPxSWBARERG/FBZERETEL4UFERER8UthQURERPxSWBARERG/FBZERETEL4UF\nERER8UthQURERPxSWBARERG/FBZERETEL4UFERER8UthQURERPxSWBARERG/FBZERETEL4UFERER\n8UthQURERPxSWBARERG/FBZERETEL4UFERER8UthQURERPxSWBARERG/FBZERETEL4UFERER8Uth\nQURERPxSWBARERG/FBZERETEL4UFERER8SvLYcHMmprZdDP73czSzazjaexzjZnFm9khM9tgZr0D\nK1dERESCLZCRhRLASuAuwJ1qYzOrCswA5gL1gJHA+2bWMoBji4iISJAVyuoOzrlZwCwAM7PT2OVO\nYJNz7qGMr9ebWRMgGpiT1eOLiIhIcAVjzsJVQNwJbbFA4yAcW0RERM5QlkcWAhAO7DyhbSdQ2syK\nOucOB6EGERERTyUdTmLLn1vYfXA3KWkppKankpLu+zM1PfX/tWX564w/d/+yO9trD0ZYCFh0dDRh\nYWHHtUVFRREVFeVRRSIiIv+fc469yXvZ/Odmtvy5hS2JW/73Z8bf9x/af1rPZRiFQwtTKKQQhUMy\n/szk67+W/8X+5fsJsRAMw8xIO5iW7a8vGGFhB1DxhLaKQNKpRhVeeeUVGjRokGOFiYiInI50l84f\nf/3BlsQtxweCY0LBwZSD/2xfvHBxqoRVoUqZKjQ6rxG3XnorVcpUoWqZqlQsUZEioUUyDQEhdmYz\nBBISEoiIiDjTl3ycYISFJUCbE9paZbSLiIjkCmnpaXy//XvW7VnnCwTHBIGtiVtJSU/5Z9uyxcpS\npUwVqoRVoeWFLf/5+9FAcPZZZ3N6awDyhiyHBTMrAVwMHO2FC82sHrDPObfVzJ4FKjnnjl5L4W1g\nkJk9D4wBWgBdgLZnXL2IiMgZOJJ2hG9+/YYpa6cwdf1Udh3YBUB4yfB/PvyvqHTFP38/+mfpoqU9\nrjy4AhlZuAL4Bt81FhzwUkb7OKAfvgmNlY9u7JzbbGbtgFeAwcA2oL9z7sQVEiIiIjnuYMpBYn+J\nZcq6KXyx/gsSDydyYdkL6VW3F80rdubALw0oGlqMTp28rjT3COQ6C/Pxs+TSOdf3JG3fAtl7AkVE\nROQ0/XnoT77c8CVT1k3hq5+/Ijk1mToV6tCt2j2U33UTW76vy+evGSM2+rZv0waFhWPk6tUQIiIi\ngdp1YBfT1k1jyropzN00l5T0FC4p2YirU58gOaEza+ZVZ00ShIZC/frQrh1cfTU0bgyVK5/6+QsS\nhQUREck3fkv8jc/Xfs6UtVNY8NsCwDj3SHMqrH2Z7V93Yl3i+ewsC5GR8PDDvnBwxRVQooTXledu\nCgsiIpKnrduzjk9/+JwJK6awLmk5IelFKLy1JW7l+7C+I6UvKE9kJES+5AsHNWpAiO65nCUKCyIi\nkqc451i4cQWvzZnCNzumsDdkLRwpARvaUXjT/VxZpi3NGpXm6mFw1VVw9tleV5z3KSyIiEie8N3G\nDQyd9jYL9kwhuegWSC5L8d9upMlZz3Nj3eu5pvNZ1KsHhQt7XWn+o7AgIiK51s6d8MHk33ljzVP8\nXmE0HCzPuftvps8lN3Fvz2bUuEjJIBgUFkREJFfZuhWmTIFPpu9nScjz0Ggkhc8uwc2lX+TFf91J\ntcrFvC6xwFFYEBERz23cCJMn+x7frThISOPXCWn2HEULp3B3xIMMbXE/YcXCTv1EkiMUFkRExBM/\n/fS/gLBqFRQrkUKtqA8o2+FJ/nK7GBAxgKHNhlKx5In3IpRgU1gQEZGgSU+HmTPhhRdgwQIoVQra\ntXe0GPwZX/w9hBX7N9D90u4Mu3YYF5a90OtyJYNWmoqISI47fBg++AAuuww6dIDUVPjsM/jku7n8\ncu2VvLz1Vi4++yJWDFjB+JvGKyjkMgoLIiKSYxITfaMI1apBv35QvTosXAivfxbP2wdb0vaT6ykU\nUoh5vecxs8dMLg+/3OuS5SR0GkJERLLd77/Dq6/CO+/4RhVuuw3uvx9CK2xgyNdD+DTuUy4951Km\ndp1Kx5odMTOvSxY/FBZERCTb/PgjjBgB48dD8eIwaBAMHgyu5HaenPckoz8dTaVSlfjgxg+4re5t\nhIaEel2ynAaFBREROWM7d0J0NMTEwPnnw7PPwu23Q1rh/Ty/6HleW/YaxQsX58WWL3JnwzspVkjX\nSshLFBZERCRgzvkmLj7wgO9Wz++/7zvlkGoHeX3Z6zy36DmOpB3h/sb380DkA7pWQh6lsCAiIgHZ\nsAEGDIB586BXL3jpJShTLpUxK8bw5Pwn2XXAd62EIc2GEF4y3Oty5QxoNYSIiGTJkSPwzDNQty78\n9hvMng3jxsHCPVOpPao2A2YM4Jqq17Bu0DreaPuGgkI+oJEFERE5bUuX+uYirF3rW93w+OOQGppE\nr8/v5qPVH3HDxTfwSZdPtAQyn1FYEBGRU3IOHnsMnnsOIiJg+XK4/HJYum0pPab0YPeB3XzY6UN6\n1u2pZZD5kE5DiIiIX6mp0L+/b4XD8OG+0YU6ddMYNn8YTcY0oUKJCqwcuJLb6t2moJBPaWRBREQy\ndfgwdO8O06bBxx9Djx6w5c8t9Py8J4u3LmZI0yEMbT6UQiH6OMnP9K8rIiIn9fff0KkTLFoEU6dC\n+/Yw8YeJDJwxkLBiYczvM58mFzTxukwJAoUFERH5f/btg7ZtfbeRnjUL6l/1v0mMUZdFMardKMoU\nK+N1mRIkCgsiInKc7duhVSvfVRnnzYMjFZZS/x1NYizINMFRRET+sXEjNGkCSUkwb34aX/6lSYyi\nkQUREcmwZo1vRKF0afh4xhYGLvNNYnys6WMMbTaUwqGFvS5RPKKwICIiLF3qm6NQtSoMeH0ibadr\nEqP8j05DiIgUcHPmQIsWcEm9JGo+0puBcVG0qd6GVQNXKSgIoJEFEZECbfJkiIqCKzotZUdkD37Y\nqEmM8v9pZEFEpIAaMwZu6ZrGJQOG8d1lTahYSpMY5eQ0siAiUgCNGAEPPr2F8Id78mNRTWIU/xQW\nREQKmCefhCc+m0jRewdSpEwY8zrPo2mVpl6XJbmYTkOIiBQgw174iydW9oYuUXSu45vEqKAgp6KR\nBRGRAuLBkUsZ8XsPitTbxXudxnFbXc1NkNOjsCAiks855+j5xmtM2Hc/4aUbsuDfs7n47Iu8Lkvy\nEIUFEZF8LCUthbZv3k3c/nepc+ABlj83nCKFNIlRskZhQUQkn9qXvI/r3rqFVX8uoNHuMSx6oy+h\noV5XJXmRwoKISD60Ye8GWoxuz7Z9e7l6axzfjG2moCABU1gQEclnvv71azpN6MLfOyvSZPN3xH16\nEYV15kHOQEBLJ81skJn9ambJZrbUzBqeYvseZrbSzA6Y2XYzG21m5QIrWUREMvNu/Lu0/qg1yb80\npNGaJcROvIiiRb2uSvK6LIcFM+sKvAQ8DtQHVgGxZlY+k+2vBsYB7wGXAl2AK4F3A6xZREROkJae\nRvSsaAbMGEChVQOo9+OXzJpahuLFva5M8oNARhaigXeccx8659YBA4GDQL9Mtr8K+NU596Zzbotz\nbjHwDr7AICIiZyjpcBIdJ3bk9e9eJ2zhG1y84Q1ivypEWJjXlUl+kaWwYGaFgQhg7tE255wD4oDG\nmey2BKhsZm0ynqMicAvwZSAFi4jI/2z+czNXj7maBZsXUj52JhW2DGLOHDj7bK8rk/wkqyML5YFQ\nYOcJ7TuB8JPtkDGS0BP4xMyOAH8A+4G7s3hsERE5xuKti7nyvSv569BBzp66lKLbWhEXB+EnfTcW\nCVyO3xvCzC4FRgJPAA2A1kA1fKciREQkAB+v/phrx13LRaVrUXz8Mg5trcXcuXDBBV5XJvlRVpdO\n7gHSgIontFcEdmSyzyPAIufcyxlf/2BmdwELzOwx59yJoxT/iI6OJuyEk25RUVFERUVlsWwRkfwh\n3aUz9OuhDF84nJuq9WX5E2+TnlKEuXPh4ou9rk6CLSYmhpiYmOPaEhMTs/045ptykIUdzJYCy5xz\n92R8bcBvwGvOuRdPsv1nwBHnXPdj2hoDC4HznHP/L2SYWQMgPj4+ngYNGmSpPhGR/OrAkQP0ntqb\nKWunMKjm80y4+wHCKxqzZkHlyl5XJ7lFQkICERERABHOuYTseM5ALsr0MjDWzOKB7/CtjigOjAUw\ns2eBSs653hnbfwG8a2YDgVigEvAKvsCR2WiEiIgc4/ek3+k4sSPr96xnaPWpjOjfkfr1Yfp0KKer\n1kgOy3JYcM5NyrimwlP4Tj+sBFo753ZnbBIOVD5m+3FmVhIYBIwA/sS3muKRM6xdRKRAiN8eT8eJ\nHQm1UB4qv5Cnel1Ou3YwcSKcdZbX1UlBENDlnp1zo4BRmXyv70na3gTeDORYIiIF2eSfJnPb57dR\np0IdWu6dxuP3hXP77TBqFBTSBfslSHJ8NYSIiGSdc45nvn2GLp92oWPNG2n44zyeeTSc//4X3nlH\nQUGCSz9uIiK5zKHUQ9z+xe18vPpjhjR5gg3v/ZdRk4y33oKBA72uTgoihQURkVxk14FddP6kMwl/\nJDCm7UTGP9qVhQvhs8/gppu8rk4KKoUFEZFc4oddP9B+QnsOpR5icvt5DOnbiE2bIDYWmjf3ujop\nyDRnQUQkF5j580wiR0dSplgZJl3/PXd3bsTOnbBggYKCeE9hQUTEY2NWjKFjTEeurXYtr12+kC6t\nKlOkCCxeDHXqeF2diMKCiIhnjq546D+9P3dE3MHAslNoe31JLroIFi2CKlW8rlDER2FBRMQDaelp\nDP5qMEO+GcKT1zxFnd/epGP7UK65BuLidItpyV0UFkREguxw6mGiJkcxavko3rjhHbZ+PJS77jIG\nDoTPP4cSJbyuUOR4Wg0hIhJESYeT6PxJZxZvXcy7LSbz3j2dWLkSPvgA+vTxujqRk1NYEBEJkh1/\n76DN+DZs/nMzL9WbzZAuTQkN9a14aNjQ6+pEMqfTECIiQfDz3p+JHB3JrgO7uLvEAu69qSnVq0N8\nvIKC5H4KCyIiOWz59uVcPeZqCocUoemGxTz978sYMADmzoWKFb2uTuTUdBpCRCQHzdk4h86fdKZG\nmcuwmBlM/b685idInqOwICKSQ2LWxNB7am+uKNuSjc9OorArofkJkifpNISISA54demrdJ/SnYgi\n3fn+ganUrFZC8xMkz1JYEBHJRs45Hp7zMNGx0dRLeoSlj3zAwNsLa36C5Gk6DSEikk1S0lL41xf/\n4sNVH3LB2ldYN/VezU+QfEFhQUQkGxw4coBbPr2FORvjCIubQNqvUZqfIPmGwoKIyBnac3AP7Se0\nZ+X2H3Hjv6RuxZZ8Gq/TDpJ/aM6CiMgZ2PLnFq4e3YRVv23i8NvzuLNVS81PkHxHIwsiIgFas3MN\nLcfdwP49xeCjxXzw7MWanyD5ksKCiEgAvt3yLW0/6sihHdU49+uvmD4znPr1va5KJGfoNISISBZN\n/ulzWoxtxYGfI7h283xWLVRQkPxNYUFEJAteXfAOXSZ1IfWHG3m0ykxmTStNuXJeVyWSs3QaQkTk\nNDjnuPuzYYz66XGKrPw3n/Z/lY4d9PuWFAwKCyIip5CWnsYNr91NXOLbhP8wnG9ffITq1c3rskSC\nRmFBRMSPv5IP0eDpHvxSaCpX7R7N3HH9KF7c66pEgktjaCIimfj5tyQqP9qGX2wmt5f+nMVvKihI\nwaSRBRGRk/ji653cNKUNaaU38eZVs7mrfVOvSxLxjMKCiMgxnIMnRm7iqV9bUaT0QWJ7fMt1tet6\nXZaIpxQWREQyHDwIt/57FV+WvYEyYaVY9u9F1DinmtdliXhOcxZERICNG6FO+2/5smIzqpU/j/UP\nL1RQEMmgsCAiBV5cHNTrOo1fm7Si0fkNWRX9DRVKVPC6LJFcQ2FBRAq0UaOg1SOjOdD+Jm68pCPz\n7/iSUkVLeV2WSK6isCAiBVJKCtx5l2NQzHO4Dv9iQMQAPusWQ9FCRb0uTSTX0QRHESlw9u2DLrek\nM6/o/XD9qzzR/An+2/y/mOmqjCIno7AgIgXKunXQ/sYjbG3QDy6ZwJtt3+Suhnd5XZZIrqawICIF\nxqxZ0LXnAdK7dMGdN5eJN03k1tq3el2WSK6nOQsiku85ByNHQtsuewnp2wIuWMjMHjMVFEROk0YW\nRCRfO3IEBg2C9ydtpdz9rQktuYc5Pb7hikpXeF2aSJ4R0MiCmQ0ys1/NLNnMlppZw1NsX8TMnjGz\nzWZ2yMw2mVmfgCoWETlNe/ZAy5Yw7su1lH0wklJlD7Kw30IFBZEsyvLIgpl1BV4C7gC+A6KBWDOr\n4Zzbk8lunwLnAH2BjcC56BSIiOSgH3+EDh1gf4llnHV3W84rW4nYnrFUKlXJ69JE8pxAPrCjgXec\ncx8659YBA4GDQL+TbWxmNwBNgbbOuW+cc78555Y555YEXLWIiB8zZkDjxsDFszjc7TrqhNfi2z7f\nKiiIBChLYcHMCgMRwNyjbc45B8QBjTPZrQOwHHjYzLaZ2Xoze9HMigVYs4jISTkHI0ZAx45Q4+YJ\nbG3agRYXXsfs22ZT9qyyXpcnkmdl9TREeSAU2HlC+06gZib7XIhvZOEQ0CnjOd4CygH9s3h8EZGT\nOnwYBg6EsWPh+iEjiSt0L33q9uG9Du9RKERzuUXORDD+B4UA6UB359zfAGZ2H/Cpmd3lnDuc2Y7R\n0dGEhYUd1xYVFUVUVFRO1isieUxSEnTqBIsWOzq+OoTpfw7nociHeO7653RVRsnXYmJiiImJOa4t\nMTEx249jvrMIp7mx7zTEQeBm59z0Y9rHAmHOuc4n2WcsEOmcq3FM2yXAj0AN59zGk+zTAIiPj4+n\nQYMGp/9qRKTA2bED2rSBTZtTafr8nXz5x/uMaDmC+yPv97o0EU8kJCQQEREBEOGcS8iO58zSnAXn\nXAoQD7Q42ma+2N4CWJzJbouASmZW/Ji2mvhGG7ZlqVoRkWP88gtERsLOvclc8fwtzNrxAeM6jVNQ\nEMlmgayGeBm43cx6ZYwQvA0UB8YCmNmzZjbumO0nAHuBD8yslpk1A14ARvs7BSEi4k98vC8ohJbY\nT+X/3MCS3bFM6zaNXvV6eV2aSL6T5TkLzrlJZlYeeAqoCKwEWjvndmdsEg5UPmb7A2bWEngd+B5f\ncPgEGHqGtYtIARUXB507w0URm0m+qS0bk3YR1yuOyMqRXpcmki8FNMHROTcKGJXJ9/qepG0D0DqQ\nY4mIHGviROjVC67oGM+mq9pTguIs7r+YGmfXOPXOIhIQXUVRRPKM116DqCho2m8mqxs0p0qZC1jS\nf4mCgkgOU1gQkVzPOXj0UbjnHmj16LvMr9SRFhe24Jve31ChRAWvyxPJ9xQWRCRXS02F/v3huecc\nLZ55jNlFBzDwioFMuXUKxQsXP/UTiMgZ02XNRCTXOngQunaFr2YfIXJEP+b+PZ4XW77I/Y3v18WW\nRIJIYUFEcqV9+6B9e1i1/k8ue+4mlh9YxMSbJ9L1sq5elyZS4CgsiEius3UrtG4NfxzcSvh/2vDb\nke3E3RZH0ypNvS5NpEBSWBCRXOWnn3xBIe2clRTp0470QkVY1GsRtc6p5XVpIgWWJjiKSK4RHw/N\nmkGhS2JJ6tKUymXOZUn/JQoKIh5TWBCRXGHRIrjuOijdfAxbm7ajedVmzOszj/CS4V6XJlLgKSyI\niOfi4qBlK0fZzo/za93+9K/fn2ndplGySEmvSxMRNGdBRDz2xRdw861HOKf/HWw5ZxzDrxvOI00e\n0dJIkVxEYUFEPPPJJ9CjXxJnD7qZ3WHz+fjGj+lRt4fXZYnICRQWRMQTY8ZA/+htlL2nHYdLbyG2\nayzXVrvW67JE5CQUFkQk6F57De55Zg0l7mlDybIhfNVjEbUr1Pa6LBHJhCY4ikhQDR8O97w6lyJ3\nNqH6eeew9F9LFRREcjmFBREJCufgP/+BxyZ9SEjvG7j24sZ82+dbKpWq5HVpInIKCgsikuPS02Hw\nPY5nFz0NnXvT5/JefBH1BaWKlvK6NBE5DZqzICI5Ki0N+t+ewri9d8F17/PUNU8xpNkQLY0UyUMU\nFkQkx6SkQLfeSUwJ7UpogzhG3ziW3pf39rosEckihQURyRGHDkG7237h64o3UrziNqZ2n0nLi1p6\nXZaIBEBhQUSyXWIiNOkzmx8u6cp5Zc5hTr+luhmUSB6mCY4ikq127HBc2v9lfqjbhkbnXcUP93yn\noCCSxyksiEi2+WlDMtUf7sX2OvfT75IHWXTXDMoUK+N1WSJyhnQaQkSyxZxl22j7YWfSLviBkU0n\nMPi6KK9LEpFsorAgImfsrRmLGfTtTRQqVZjYbgtpWTvC65JEJBvpNISInJHBY0dz13fXUDqlOj/d\ns1xBQSQf0siCiAQkJS2Ftq/dR1zSG1TdP4BVz71G6RJFvC5LRHKAwoKIZNmeg3u46uVb2HhkIZGJ\nbzH/lYEU0ruJSL6l/94ikiUr/1jFNW93IjH5AN0LzeXjV5uhKzeL5G+asyAip23imk9p+HYkiTvL\n8FiF7xk/XEFBpCBQWBCRU0p36Tw6eyhRU24lbW0H3r1qEU8/UMXrskQkSHQaQkT8SjqcRLdJPflq\n4wwKzXuOKfc/RIcOGk4QKUgUFkQkUz/v/Zl2H9/Ixt2/U+LLGcx6vS1NmnhdlYgEm8KCiJxU7C+x\n3PJJN5L3VKB87HfMmViTunW9rkpEvKA5CyJyHOccIxaPoM34thxYF0m975exIk5BQaQgU1gQkX8k\npyTTc8ptPDjnQdyCh+hZaDoL48pQqZLXlYmIl3QaQkQA2Ja0jQ7jO7H6j5+waTG80q8bgwejpZEi\norAgIrDot0XcOOFmEvcVocS0hUx5swHXX+91VSKSW+g0hEgB5pzjneXvcM3Ya/lzYw0umrucFTMV\nFETkeBpZECmgEg8lcscXdzDpp0nw/Z10LPIqH88rQqlSXlcmIrmNwoJIAbR021K6fRrF9v37YfIk\nHr/lFv77XwjRWKOInERAbw1mNsjMfjWzZDNbamYNT3O/q80sxcwSAjmuiJyZdJfO8wufp+mYpuze\nXJFCo1cwedgtPPGEgoKIZC7LIwtm1hV4CbgD+A6IBmLNrIZzbo+f/cKAcUAcUDGwckUkUDv+3kGv\nz3sRtymOYvEPU+HHp5g+qzB16nhdmYjkdoH8LhENvOOc+9A5tw4YCBwE+p1iv7eB8cDSAI4pImcg\n9pdY6r1dj2WbV2PjY7nq72f5fpmCgoicniyFBTMrDEQAc4+2OeccvtGCxn726wtUA54MrEwRCcSR\ntCM8NOchbhh/A0X21ifp+VXc3aYlsbFQvrzX1YlIXpHV0xDlgVBg5wntO4GaJ9vBzKoDw4Emzrl0\n0xVeRIJi0/5NRE2OImF7AlU3vMi2T+9j9Nsh9DvVGKCIyAlydDWEmYXgO/XwuHNu49Hm090/Ojqa\nsLCw49qioqKIiorKviJF8qGJP0xkwIwBFEsvT7EJizjy15XMnweRkV5XJiLZKSYmhpiYmOPaEhMT\ns/045juLcJob+05DHARuds5NP6Z9LBDmnOt8wvZhwH4glf+FhJCMv6cCrZxz805ynAZAfHx8PA0a\nNMjK6xEp0A4cOcDgrwYzZuUYqiRFseXNt+naqTSjRkG5cl5XJyLBkJCQQEREBECEcy5bVh9maWTB\nOZdiZvFAC2A6gPnOK7QAXjvJLknAZSe0DQKuBW4GNmexXhHJxOqdq+n6WVc27/uNsvPHsD+hD+PH\nGFFRur+DiJyZQE5DvAyMzQgNR5dOFgfGApjZs0Al51zvjMmPPx27s5ntAg4559aeSeEi4uOcY9T3\no7h/9v2UOlKTQ2/F07jOJYxbA5Ure12diOQHWQ4LzrlJZlYeeArf9RJWAq2dc7szNgkH9BYlEgT7\nkvfRf3p/pq6bStmfB5H0+QhefroY99yjiyyJSPYJaIKjc24UMCqT7/U9xb5PoiWUImdswZYF9JjS\ngz1JfxPVwx/1AAAU+0lEQVT66edcUKgTHy+Dy0488Scicob0u4dIHpOWnsaw+cO4Ztw1JG6pSvIr\nq3igfSeWKSiISA7RjaRE8pDfk36n55SezN/yLYWXDKHM+qHM+KIQTZt6XZmI5GcKCyJ5xIwNM+j9\neR8OJhXDjf+a7tc2Z+QkKF3a68pEJL9TWBDJ5Q6nHubhuIcZuWwkRTZ3oMScMYx/rTw33eR1ZSJS\nUCgsiORiP+z6gZ6Te7Fm548wayTXlfs3Y743zj3X68pEpCDRBEeRXOhw6mEe/+Zx6r/dgLU/H6Lw\n2KW81WcwM79UUBCR4NPIgkgus3TbUvpN7c/6PRtwCx6l3oHHmDC7KDVqeF2ZiBRUGlkQySX+PvI3\n9866l8jRkWxcX5yQ9+N5vNlTLFmgoCAi3tLIgkguMGfjHPpNvYM/knbi5rxIs1L38ObXhRQSRCRX\nUFgQ8dC+5H3c+9X9fLRmLCFbruWcJXG8Mewibr5ZN38SkdxDYUHEA845Jq+dzB1T7ybxwCFCZr/P\nfdf24/HvjZIlva5OROR4CgsiQbb9r+30mzyI2C1TYW0nGu9/k/fGVqJ2ba8rExE5OYUFkSBxzvHu\n8tHcO/MBDh8oRplFn/LGXTfTvbvplIOI5GoKCyJBsHHfRm756A5W/Pk1rOzDgKov8fzMcoSFeV2Z\niMipKSyI5KDU9FSenjOSpxcPJS2xIpduimXCsFbUq+d1ZSIip09hQSSHJPy+mk4f9GdrajzFVt/D\n6+2HMeDlkoTo6iYikscoLIhks8Ophxkw4WnGbXwO9tSgc6HFvD/6KsqV87oyEZHAKCyIZKMvVy+m\nxyf/IjH0FyptfIxPBz9KZKOiXpclInJGFBZEskFi8t90ev0/zDv4BqH7GjK0dgKPP34ZoaFeVyYi\ncuYUFkTO0Iufz2LI0gEcKbSHRgdeZuoT/ya8olKCiOQfCgsiAYr7/jd6f/QI28+OodSB6xnfeR5d\nWlTzuiwRkWynsCCSRet//Zuurz/PquIjCC0exp3nfsAbQ3sTEqIrK4lI/qSwIHKa9u5L47aXx/LV\n4SFQ4k9al7qf8Xc+zNmlSnldmohIjlJYEDmFw4fh3tfm8t6W+0g7ZzWXhXZn4u3PUvv8C7wuTUQk\nKBQWRDKRng4vjVvP4wsfJPmCL6gYFsnoTktpV6+R16WJiASVwoLISUyeuZc7P3mS3VXeonjF83kl\nchL3XN8F0x2fRKQAUlgQOcZ38Ue47fU32RD+FKEXpHFnzWd4uetgihUq5nVpIiKeUVgQAX791dH3\n+WnML/IgVNlE63PuYFyfJ6lYsoLXpYmIeE5hQQq0vXvhnucSmLD3PlyV+VxatDUTek+l3rm1vS5N\nRCTXUFiQAik5GYaN/J0RCY+RcumHnFOyFu/e/BWdLrvB69JERHIdhQUpUNLS4L2xB3h42giS6rzA\nWbVK8EzzUUQ3/xeFQvTfQUTkZPTuKAWCczDjy3TufOtjfr/kP4TU380dl93LCx3+Q1ixMK/LExHJ\n1RQWJF9zDubNg3tfnc/q8PvgygSuP/dW3r3lOaqV1X0cREROh8KC5EvOwdy58MgLvxBf7iFo8Dk1\nSjRk9C0LaVLlaq/LExHJUxQWJF9xDmbPhv+8uImE4s9ijcdxTrFwXmk3nqg63QixEK9LFBHJcxQW\nJF9wDmbNgkdGrGN12HC4egJli5bnkebPcPeVgyheuLjXJYqI5FkKC5KnOQdffgmPvLKGH8s9DU0/\npXzRSgy97hVub/Avzip8ltcliojkeQoLkic5B9Onw8Mjl7O+4tPQbBrhRavyxPVv0+fy3hQtVNTr\nEkVE8g2FBclT0tNh2jR4+I3F/HzuMGg+i/PPqs5TLT+gZ90eFA4t7HWJIiL5jsKC5Anp6TB5suOR\nt+exqfIwaPYNVYvXZvgNE7i19q2EhoR6XaKISL4V0NRwMxtkZr+aWbKZLTWzhn627Wxms81sl5kl\nmtliM2sVeMlSkKSlwcSJjmotZ3HrrKZsanYd1ev+yeRbJ7PxgdVE1YlSUBARyWFZDgtm1hV4CXgc\nqA+sAmLNrHwmuzQDZgNtgAbAN8AXZlYvoIqlQEhLgwkTHFVbTyPq6yv5rVkbLq2TyoyoGayPjuem\nWjdpGaSISJAEchoiGnjHOfchgJkNBNoB/YAXTtzYORd9QtNjZnYj0AFf0BD5R2oqTIhJ45EPJ/PH\nxc9A09XUL9uMF9rPoUW1FpiZ1yWKiBQ4WQoLZlYYiACGH21zzjkziwMan+ZzGFAK2JeVY0v+lpoK\nH41P5dEJMeysPhyarKNR+Va80P51mlVp5nV5IiIFWlZHFsoDocDOE9p3AjVP8zkeBEoAk7J4bMmH\nUlJg7EdHeGzSh+yu+SxEbqJZxQ680H4sjc5v5HV5IiJCkFdDmFl3YCjQ0Tm3J5jHltxl3z54Z/Qh\nRswdw75az0Pj32hx7s2M6DiZy8Mv97o8ERE5RlbDwh4gDah4QntFYIe/Hc2sG/Au0MU5983pHCw6\nOpqwsONvHxwVFUVUVNRpFyy5y5o18MyoX5m8+R1S647GrtpH28rdeKHDf6hdobbX5YmI5CkxMTHE\nxMQc15aYmJjtxzHnXNZ2MFsKLHPO3ZPxtQG/Aa85517MZJ8o4H2gq3NuxmkcowEQHx8fT4MGDbJU\nn+Q+qakwZWoawybE8sNZo6D6TIpZGL3r9uWB5ndxcbmLvS5RRCTfSEhIICIiAiDCOZeQHc8ZyGmI\nl4GxZhYPfIdvdURxYCyAmT0LVHLO9c74unvG9wYD35vZ0VGJZOdc0hlVL7nanj0w8r09vL5wDInV\n34Z6v1KtWAMebfE+Pep1082dRETyiCyHBefcpIxrKjyF7/TDSqC1c253xibhQOVjdrkd36TINzMe\nR43Dt9xS8pmEBMd/313GV3tGkV5rEqENoX3lrgy9YSINKzXU8kcRkTwmoAmOzrlRwKhMvtf3hK+v\nDeQYkrekpMCEzw4wbGoMG8uOgnNXUPbcagxuPIy7m/SlfPHMrtklIiK5ne4NIWdk504Y/s56Rq9+\niwPVx0KtJCJKt+OJts/QtmZrXWVRRCQfUFiQgCxZlsqjY6fzbfIoXLW5FLu0PP1q3cnQNgOoWqaq\n1+WJiEg2UliQ03bkCLwb8wfPz36fbeHvQPjvVAlpzKPXf0yfhl0oWqio1yWKiEgOUFiQU9q+3fGf\nd79l4sZRHK42hZCLitCqQg+e6XwnV5xX3+vyREQkhyksyEk5B3MXJvFIzEfEh4yCc36iTNWa3Bfx\nEg+17kWZYmW8LlFERIJEYUGOk3TgCP/9MJaPEiayr8I0OOcQdYt0YtiNr9Oh9rVa9igiUgApLAhp\n6Wl8unwez8+YyKqUybhi+ylZrja3VXuUZ7r0oXKZ87wuUUREPKSwUEA555gav5SRcRNZkjSJI0V3\nYH9dSETRO3m8TRTtr7zM6xJFRCSXUFgoQNLTHZ8vXs3Iryey7O+JHCmxGf46lyp/d6N7nSgeiW5I\n6dI6zSAiIsdTWMjn0tNh0tyfeeObiXyXHENKmbWQXI4Lj3ShxyVRRN/UlLJlQr0uU0REcjGFhXzo\n8GGYNGsbb87/hPjDMaRWiMesJBcV6cRtNUYQfeP1lCpexOsyRUQkj1BYyCeSkmDi9N28u/AzVqbF\nkHb+AqxkUS4u0Y7edR9hcJu2lCqmuzyKiEjWKSzkYTt2wCdTExm9aCo/WAyuWhxUhOohLelzxTgG\ntehEWLHSXpcpIiJ5nMJCHvPzz/Dx57uZsGw2vxSeDNVnwkVHuKhwU/o1fIM7mnTRHR5FRCRbKSzk\ncs7Bd8tTGTV9GTM3zGJP2CyoFA91HdWKNKRvw+H0vfJWzi99vteliohIPqWwkAulpMCUuN957+tY\nFu+aRfK5c+CsPylSsxxNz27NbY3/TYdLWxFeMtzrUkVEpABQWMgl9icd5vVpi5iUMIt1qbNIK78G\nShjhlRtx60X3cvu1N3DVBVcQGqJljiIiElwKCx5K+PVXRs6YxexNs9hRfC4UOUChouHULn0D3Ro8\nxu3XXU/5Emd7XaaIiBRwCgtBdDDlIJO+m88HC2bx/f5ZJBffAGmFKJ1+NW1KDGHA9TfQoWFdQizE\n61JFRET+obCQg5xzrNuznrELZzFl9Sw2ps3HhR6CxAuofKgN7c97nuhO11H9Ai1vFBGR3EthIRs5\n59i4fyNLti5h4W8Lid0Yy5bELZBalNBtzal31nB6NrqBf3W6hLAw3YNBRETyBoWFM5Cckszy7ctZ\nvHUxi7ctZsnWJew+uBuAWuVr0bFmRxqdfQPFd11D2yHFKVrU44JFREQCoLCQBVsTt7J462KWbFvC\n4q2LWbFjBanpqZQsUpJG5zViQMQAIitH0uj8RpQ7q5zX5YqIiGQLhYVMHEk7wsodK48LB9uStgFw\nYdkLiawcSd/L+9K4cmMuq3AZhULUlSIikj/pEy7DrgO7WLJ1yT+nFJZvX86h1EMUDS1Kw/MaEnVZ\nFJGVI2l8fmMqlqzodbkiIiJBUyDDQmp6Kj/u+vG4UYON+zcCcF6p84isHMmzLZ6l8fmNqX9ufYqE\n6nbOIiJScOX7sJCcksyaXWtY8ccKVuzwPVbvXM2h1EMUCilE/fD6tKvejsjKkURWjqRyWGWvSxYR\nEclV8lVY2Je8j5U7Vh4XDNbtWUe6SyfUQql1Ti3qh9enW+1uRFSK4IpKV1C8cHGvyxYREcnV8mRY\ncM6xLWkbK3as8IWDHStY8ccK3zUNgLMKnUW98Ho0r9KcexvdS/1z61P7nNqcVfgsjysXERHJe3J9\nWEhLT+PnfT8fN1qwcsdK9hzcA0C5s8pRP7w+t1x6C/XPrU/98PrUOLuGbrgkIiKSTXJ1WOgztQ8b\nZ23kYMpBAC4Iu4D64fW5u+Hd/wSD80ufj5muhigiIpJTcnVYOK/0efSK7EX98PpcHn45ZxfXHRhF\nRESCLVeHhWeue4YGDRp4XYaIiEiBpnshi4iIiF8KCyIiIuKXwoKIiIj4pbAgIiIifiksiIiIiF8K\nCyIiIuKXwoKIiIj4pbAg/4iJifG6hAJHfR586vPgU5/nfQGFBTMbZGa/mlmymS01s4an2P4aM4s3\ns0NmtsHMegdWruQk/YcOPvV58KnPg099nvdlOSyYWVfgJeBxoD6wCog1s/KZbF8VmAHMBeoBI4H3\nzaxlYCWLiIhIMAUyshANvOOc+9A5tw4YCBwE+mWy/Z3AJufcQ8659c65N4HPMp5HREREcrkshQUz\nKwxE4BslAMA554A4oHEmu12V8f1jxfrZXkRERHKRrN5IqjwQCuw8oX0nUDOTfcIz2b60mRV1zh0+\nyT7FANauXZvF8uRMJCYmkpCQ4HUZBYr6PPjU58GnPg+uYz47i2XXc+bWu05WBejZs6fHZRQ8ERER\nXpdQ4KjPg099Hnzqc09UBRZnxxNlNSzsAdKAiie0VwR2ZLLPjky2T8pkVAF8pyl6AJuBQ1msUURE\npCArhi8oxGbXE2YpLDjnUswsHmgBTAcwM8v4+rVMdlsCtDmhrVVGe2bH2QtMyEptIiIi8o9sGVE4\nKpDVEC8Dt5tZLzO7BHgbKA6MBTCzZ81s3DHbvw1caGbPm1lNM7sL6JLxPCIiIpLLZXnOgnNuUsY1\nFZ7CdzphJdDaObc7Y5NwoPIx2282s3bAK8BgYBvQ3zl34goJERERyYXMt/JRRERE5OR0bwgRERHx\nS2FBRERE/PIkLOhGVMGXlT43s85mNtvMdplZopktNrNWwaw3P8jqz/kx+11tZilmpqvYZFEA7y1F\nzOwZM9uc8f6yycz6BKncfCGAPu9hZivN7ICZbTez0WZWLlj15nVm1tTMppvZ72aWbmYdT2OfM/4M\nDXpY0I2ogi+rfQ40A2bjW/LaAPgG+MLM6gWh3HwhgD4/ul8YMI7/f4l0OYUA+/xT4FqgL1ADiALW\n53Cp+UYA7+dX4/v5fg+4FN/KuCuBd4NScP5QAt/CgruAU046zLbPUOdcUB/AUmDkMV8bvhUSD2Wy\n/fPA6hPaYoCZwa49rz6y2ueZPMcPwBCvX0teeQTa5xk/20/ie/NN8Pp15KVHAO8tNwD7gDJe155X\nHwH0+f3Azye03Q385vVryYsPIB3oeIptsuUzNKgjC7oRVfAF2OcnPocBpfC9scopBNrnZtYXqIYv\nLEgWBNjnHYDlwMNmts3M1pvZi2aWbdfTz88C7PMlQGUza5PxHBWBW4Avc7baAi1bPkODfRrC342o\nwjPZx++NqLK3vHwpkD4/0YP4hr4mZWNd+VmW+9zMqgPDgR7OufScLS9fCuTn/EKgKVAb6ATcg29Y\n/M0cqjG/yXKfO+cWAz2BT8zsCPAHsB/f6ILkjGz5DNVqCPHLzLoDQ4FbnHN7vK4nPzKzEGA88Lhz\nbuPRZg9LKihC8A3jdnfOLXfOzQLuA3rrF5GcYWaX4jtn/gS++VCt8Y2mveNhWXIagn3XyWDdiEr+\nJ5A+B8DMuuGbeNTFOfdNzpSXL2W1z0sBVwCXm9nR32pD8J0BOgK0cs7Ny6Fa84tAfs7/AH53zv19\nTNtafEHtfGDjSfeSowLp80eARc65o5f7/yHjFgALzOwx59yJvwHLmcuWz9Cgjiw451KAozeiAo67\nEVVmN71Ycuz2GfzeiEr+J8A+x8yigNFAt4zfuOQ0BdDnScBlwOX4ZivXw3dPlXUZf1+WwyXneQH+\nnC8CKplZ8WPaauIbbdiWQ6XmGwH2eXEg9YS2dHyz+jWaljOy5zPUg9mbtwIHgV7AJfiGn/YC52R8\n/1lg3DHbVwX+wjejsya+5SJHgOu9nomaVx4B9Hn3jD4eiC+BHn2U9vq15JVHVvv8JPtrNUQO9zm+\neThbgE+AWviWDK8H3vb6teSVRwB93hs4nPHeUg24GvgOWOz1a8krj4yf23r4frlIB+7N+LpyJn2e\nLZ+hXr3Yu4DNQDK+dHPFMd/7APj6hO2b4UuwycDPwG1e/4PltUdW+hzfdRXSTvIY4/XryEuPrP6c\nn7CvwkIQ+hzftRVigb8zgsMLQFGvX0deegTQ54OANRl9vg3fdRfO9fp15JUH0DwjJJz0/TmnPkN1\nIykRERHxS6shRERExC+FBREREfFLYUFERET8UlgQERERvxQWRERExC+FBREREfFLYUFERET8UlgQ\nERERvxQWRERExC+FBREREfFLYUFERET8+j+J5WktpIk0EwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "lop1=np.polyfit(np.polyval(ipol1,zx),zx,7)\n", "iy=np.r_[0.1:.9:0.05,.9:.99:0.02]\n", "pl.plot(np.polyval(lop1,iy),iy)\n", "pl.plot(zx,np.polyval(np.polyadd(ipol1,[-0]),zx))\n", "np.polyval(lop1,levs)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Admin\\Anaconda2\\lib\\site-packages\\ipykernel\\__main__.py:2: RuntimeWarning: divide by zero encountered in log\n", " from ipykernel import kernelapp as app\n" ] }, { "data": { "text/plain": [ "[]" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAFkCAYAAACuFXjcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xuc3dO9//HXR1wiJdHWaYKmxdGo4pDEtXVrnVKUqlJn\nKBqqVfHD9Edc+qMoVS1SdSkaJanKDz2l1J06KtQtI/pr61aXurSSEhIkiMz6/bH2yGTM7Mze2TPf\nvfe8no/HfmTmu7/fvT/z7Vf3e6+1vmtFSglJkqSeLFN0AZIkqb4ZFiRJUlmGBUmSVJZhQZIklWVY\nkCRJZRkWJElSWYYFSZJUlmFBkiSVZViQJEllGRYkSVJZFYeFiNg6Iq6LiBcjoj0idlvC/l+OiFsj\nYlZEzImIeyNih+pLliRJ/amaloUPADOAQ4HeLCyxDXArsBMwBrgTuD4iNqrivSVJUj+LpVlIKiLa\ngd1TStdVeNyfgf+bUjq16jeXJEn9ot/HLEREACsDs/v7vSVJUuWWLeA9jyZ3ZVzV0w4R8WFgR+BZ\n4K3+KUuSpKYwGFgTuCWl9EotXrBfw0JE7AOcAOyWUnq5zK47Ar/qn6okSWpK+wJX1OKF+i0sRMR/\nARcDe6aU7lzC7s8CXH755ay33np9XVrTaG1tZeLEiUWX0XA8b5XznFXH81Y5z1nlHn30Ub72ta9B\n6bO0FvolLERECzAJ2DuldHMvDnkLYL311mPMmDF9WlszGTZsmOerCp63ynnOquN5q5znbKnUrBu/\n4rAQER8A1gGitGnt0m2Qs1NKz0fE6cDqKaUDSvvvA1wGHA48GBHDS8fNTynNXdo/QJIk9a1q7obY\nBHgYmE6eZ+EsoA04ufT8CGBkp/0PBgYB5wP/6PT4SXUlS5Kk/lRxy0JK6S7KhIyU0rguv3+2irok\nSVKdcG2IJtLS0lJ0CQ3J81Y5z1l1PG+V85zVh6WawbGvRMQYYPr06dMd2CJJUgXa2toYO3YswNiU\nUlstXtOWBUmSVJZhQZIklWVYkCRJZRkWJElSWYYFSZJUlmFBkiSVZViQJEllGRYkSVJZhgVJklSW\nYUGSJJVlWJAkSWUZFiRJUlmGBUmSVJZhQZIklWVYkCRJZRkWJElSWYYFSZJUlmFBkiSVZViQJEll\nGRYkSVJZhgVJklSWYUGSJJVlWJAkSWUZFiRJUlmGBUmSVJZhQZIklWVYkCRJZRkWJElSWYYFSZJU\nlmFBkiSVZViQJEllGRYkSVJZhgVJklSWYUGSJJVlWJAkSWUZFiRJUlmGBUmSVJZhQZIklWVYkCRJ\nZVUcFiJi64i4LiJejIj2iNitF8dsFxHTI+KtiHgiIg6orlxJktTfqmlZ+AAwAzgUSEvaOSLWBH4H\n3AFsBJwDTIqIz1fx3pIkqZ8tW+kBKaWbgZsBIiJ6cci3gadTShNKvz8eEVsBrcBtlb6/JEnqX/0x\nZmEL4PYu224BtuyH95YkSUup4paFKowAZnbZNhMYGhErpJTe7ocaJElqeHPnwkMPwZw58Prr3T+e\ne67279sfYaFqra2tDBs2bLFtLS0ttLS0FFSRJEn96/XX4frr4aqr4Oab4e1OX7EHDZrKMstMZdll\nee8Bc2peQ3+EhZeA4V22DQfmLqlVYeLEiYwZM6bPCpMkqR698Qb87nc5INx4Yw4IW2wBp58OO+0E\nq64KK68MK6zQAiz+BbqtrY2xY8fWtJ7+CAt/BHbqsm2H0nZJkgQsXAi/+Q1ceSXccAO89RZsuimc\neirstRd8/OPF1VZxWIiIDwDrAB13QqwdERsBs1NKz0fE6cDqKaWOuRQuBMZHxBnAL4DtgT2BnZe6\nekmSmsDrr8O+++buhrFj4eSTc0BYa62iK8uqaVnYBLiTPMdCAs4qbZ8MHEge0DiyY+eU0rMRsQsw\nETgceAE4KKXU9Q4JSZIGnGefhd12y//ecAPsXIdfpauZZ+EuytxymVIa1822PwC17UCRJKnBTZsG\ne+wBK60Ef/wjrL9+0RV1z7UhJEkqwOTJsP32sN568MAD9RsUwLAgSVK/WrgQJkyAr38d9tsPbrst\n391Qz+p6ngVJkppJx0DGG26As8+GI4+EXi2cUDDDgiRJ/aDzQMbrr6/PgYw9MSxIktTH7rsvB4V6\nH8jYE8csSJLUh154AXbdFT7xifofyNgTw4IkSX1kwQL46ldh8GD47W/rfyBjT+yGkCSpjxxzDDz4\nINx9d+MGBTAsSJLUJ/77v2HiRDjnnLwIVCOzG0KSpBp78kkYNy53Qfyv/1V0NUvPsCBJUg3Nmwd7\n7gmrrw6TJjXGPApLYjeEJEk1khKMH59bFh54AFZeueiKasOwIElSjfziF3DZZTBlCmywQdHV1I7d\nEJIk1cCMGblV4ZvfzGs+NBPDgiRJS+m11/I4hfXXz3c/NBu7ISRJWgop5TsfXnklryA5eHDRFdWe\nYUGSpKVw1llw7bV5hsa11iq6mr5hN4QkSVWaNg2OPTbP1LjbbkVX03cMC5IkVWH+fDjgAPj0p+HU\nU4uupm/ZDSFJUhV++MO8ouRNN8GyTf5pasuCJEkVeuKJHBYmTIBRo4qupu8ZFiRJqkDHLI1rrAHH\nH190Nf2jyRtOJEmqrauugttvhxtugBVXLLqa/mHLgiRJvTR3LrS2wh57wM47F11N/zEsSJLUSyee\nmAPDT35SdCX9y24ISZJ64eGH4dxz4YwzYOTIoqvpX7YsSJK0BO3t8O1vw6c+BUccUXQ1/c+WBUmS\nlmDSJLj/frj7blhuuaKr6X+2LEiSVMasWXlK53HjYKutiq6mGIYFSZLKOOaY/O8ZZxRbR5HshpAk\nqQd33w2XXQYXXwz/9m9FV1McWxYkSerGggV5UOMWW8BBBxVdTbFsWZAkqRs/+Qk8+ihMnw7LDPCv\n1gP8z5ck6f2eew5OOgkOPxw23rjoaopnWJAkqYsjj4RVVoGTTy66kvpgN4QkSZ3cdBNccw1ceSUM\nHVp0NfXBlgVJkkrefRf+9/+G7baDvfYqupr6YcuCJEklkybBY4/B5ZdDRNHV1A9bFiRJIq8meeKJ\nsP/+MGZM0dXUF8OCJEnA6afDG2/AaacVXUn9qSosRMT4iHgmIuZHxH0RsekS9t83ImZExJsR8Y+I\nuCQiPlRdyZIk1dbf/w4TJ8JRR8EaaxRdTf2pOCxExN7AWcD3gNHAI8AtEbFqD/t/BpgM/Bz4FLAn\nsBlwcZU1S5JUU8cfDx/8IEyYUHQl9amaloVW4KKU0pSU0mPAIcA84MAe9t8CeCaldH5K6e8ppXuB\ni8iBQZKkQj3wAFxxBXz/+7DSSkVXU58qCgsRsRwwFrijY1tKKQG3A1v2cNgfgZERsVPpNYYDewE3\nVFOwJEm1klK+VXLDDfMS1OpepbdOrgoMAmZ22T4TWLe7A1JK90bE14ArI2Jw6T2vAw6r8L0lSaqp\na66BadPglltg0KCiq6lffX43RER8CjgHOAkYA+wIrEXuipAkqRDvvAPHHANf+ALssEPR1dS3SlsW\nXgYWAsO7bB8OvNTDMccC96SUzi79/ueIOBS4OyK+m1Lq2krxntbWVoYNG7bYtpaWFlpaWiosW5Kk\nxV1wATz9NFx7bdGVVG/q1KlMnTp1sW1z5syp+ftEHnJQwQER9wH3p5SOKP0ewHPAT1NKP+5m/18D\n76SU9um0bUtgGrBGSul9ISMixgDTp0+fzhhnxpAk1djs2bDOOnlK54uarJ27ra2NsWPHAoxNKbXV\n4jWr6YY4Gzg4IvaPiE8CFwJDgMsAIuL0iJjcaf/rga9ExCERsVbpVspzyIGjp9YISZL6zKmnwoIF\ncMopRVfSGCpeGyKldFVpToVTyN0PM4AdU0r/Ku0yAhjZaf/JEbESMB44E3iNfDfFsUtZuyRJFfvb\n3+C88+B734PhXTvV1a2qFpJKKV0AXNDDc++7+SSldD5wfjXvJUlSLR17bA4Jra1FV9I4XHVSkjRg\nTJsG//3fMGUKDBlSdDWNw4WkJEkDQnt7noBp7FjYd9+iq2kstixIkgaEK6/MUzvfdRcs41flini6\nJElN76234LjjYPfdYZttiq6m8diyIElqeuecAy++CLfeWnQljcmWBUlSU5s1C37wAzj0UBg1quhq\nGpNhQZLU1E46KY9ROPHEoitpXHZDSJKa1l//mqdz/vGP4cMfLrqaxmXLgiSpaR19NKy5JowfX3Ql\njc2WBUlSU7rtNrjxRvj1r2GFFYquprHZsiBJajoLF+YJmLbaCvbYo+hqGp8tC5KkpnPppfD//h/c\nfz9EFF1N47NlQZLUVF5/HU44IU/pvNlmRVfTHAwLkqSm8qMfwWuv5bkVVBuGBUlS03j+eTjzTPjO\nd+BjHyu6muZhWJAkNY3vfheGDoVjjy26kubiAEdJUlN46CH45S/zJEwrr1x0Nc3FlgVJUsNLKd8q\nuf76cOCBRVfTfGxZkCQ1vGuvhT/8AW6+GZb1k63mbFmQJDW0d96BCRNgxx3zQ7Vn/pIkNbQLLoCn\nn4Zrrim6kuZly4IkqWHNng2nnALf+AZssEHR1TQvw4IkqWF9//uwYEEODOo7hgVJUkN68kk47zw4\n7jgYPrzoapqbYUGS1JCOOQZWWw1aW4uupPk5wFGS1HDuuisPaLz8clhxxaKraX62LEiSGkp7e177\nYdNNoaWl6GoGBlsWJEkNZfJkaGvLkzAt41fefuFpliQ1jNmz8wRM++wDW29ddDUDh2FBktQwvvvd\nPGPjmWcWXcnAYjeEJKkhPPRQXlFy4sR8F4T6jy0LkqS6t3AhHHoobLghjB9fdDUDjy0LkqS6d8kl\n8OCDcPfdripZBFsWJEl17eWX8yyNBxwAW21VdDUDk2FBklTXjjsuz63wox8VXcnAZWOOJKlu3Xcf\nTJoE558PH/lI0dUMXLYsSJLqUsegxjFj4FvfKrqagc2WBUlSXbrwQnj44dy6MGhQ0dUMbLYsSJLq\nzsyZeQKmb3wDNt+86GpkWJAk1Z1jjsmtCaefXnQlArshJEl1Ztq0vFjUxRfDqqsWXY2gypaFiBgf\nEc9ExPyIuC8iNl3C/stHxGkR8WxEvBURT0fE16uqWJLUtN59Nw9q3GwzOOigoqtRh4pbFiJib+As\n4JvAA0ArcEtEjEopvdzDYVcD/waMA54CVsMuEElSF+edB3/+c56t0eWn60c13RCtwEUppSkAEXEI\nsAtwIPC+KTMi4gvA1sDaKaXXSpufq65cSVKz+sc/4MQT4ZBDYOzYoqtRZxXltohYDhgL3NGxLaWU\ngNuBLXs4bFfgIeCYiHghIh6PiB9HxOAqa5YkNaGjj4bBg+G004quRF1V2rKwKjAImNll+0xg3R6O\nWZvcsvAWsHvpNX4GfAiwR0qSxJ13whVXwKWXwgc/WHQ16qo/7oZYBmgH9kkpvQEQEd8Bro6IQ1NK\nb/d0YGtrK8OGDVtsW0tLCy0tLX1ZrySpH73zTl52+tOfhv33L7qaxjJ16lSmTp262LY5c+bU/H0q\nDQsvAwuB4V22Dwde6uGYfwIvdgSFkkeBAD5KHvDYrYkTJzJmzJgKS5QkNZJzzoHHH4e2Ngc1Vqq7\nL9BtbW2MrfGgj4r+Z0kpLQCmA9t3bIuIKP1+bw+H3QOsHhFDOm1bl9za8EJF1UqSmsoLL8DJJ8Nh\nh8FGGxVdjXpSTYY7Gzg4IvaPiE8CFwJDgMsAIuL0iJjcaf8rgFeASyNivYjYhnzXxCXluiAkSc0t\nJTj8cFh5ZTjllKKrUTkVj1lIKV0VEasCp5C7H2YAO6aU/lXaZQQwstP+b0bE54FzgQfJweFK4ISl\nrF2S1MB+9Su45hq4+mroMjxNdaaqAY4ppQuAC3p4blw3254AdqzmvSRJzef553PXw777wp57Fl2N\nlsShJJKkftXeDuPGwUorwbnnFl2NesOFpCRJ/eqCC+COO+DWW51ToVHYsiBJ6jePPw4TJuQuiM9/\nvuhq1FuGBUlSv3j3XdhvPxg5Es44o+hqVAm7ISRJ/eL002H6dLj3XhgyZMn7q37YsiBJ6nPTp+e5\nFI4/HjbfvOhqVCnDgiSpT82fn7sfNtwQTnCGnYZkN4QkqU9997vw9NO5dWH55YuuRtUwLEiS+syd\nd8LEiXDWWbD++kVXo2rZDSFJ6hNz58LXvw7bbgtHHll0NVoatixIkvrEkUfC7Nlw110uPd3oDAuS\npJr77W/h0kvhkktgzTWLrkZLy6wnSaqpWbPg4INh113zGhBqfIYFSVLNpATf/Gb+9+c/h4iiK1It\n2A0hSaqZKVNyF8RvfgPDhxddjWrFlgVJUk38/e9w+OGw//7w5S8XXY1qybAgSVpq7e15fMKwYXDO\nOUVXo1qzG0KStNTOPTdPwHT77bDKKkVXo1qzZUGStFQefRSOPTZ3QWy/fdHVqC8YFiRJVZszJ49P\nWGutvAS1mpPdEJKkqixcCC0tMHMm3H8/DBlSdEXqK4YFSVJVjj0WbrkFbroJRo0quhr1JcOCJKli\nU6bAmWfmFSV32KHoatTXHLMgSarIfffl6ZzHjYMjjii6GvUHw4IkqddeeCEPaNxkE/jZz5zOeaAw\nLEiSemX+fNh9d1h22Tyd8worFF2R+otjFiRJS5QSHHQQ/PWvcM89rvsw0BgWJElLdMYZMHUqXHUV\njB5ddDXqb3ZDSJLKuv56OP54OOEE2GuvoqtREQwLkqQe/eUvsM8+8KUvwUknFV2NimJYkCR165VX\nYLfd8lTOv/wlLOMnxoDlmAVJ0vssWJC7HObOhTvugJVWKroiFcmwIEl6n9ZWuPvuvOT0mmsWXY2K\nZliQJC3moovg/PPhwgth222Lrkb1wB4oSdJ77roLDjsMxo+Hb32r6GpULwwLkiQAnnkGvvIV2Hrr\nvECU1MGwIEnijTfy7ZHDhsHVV8NyyxVdkeqJYxYkaYBrb4f99sstC/fdBx/+cNEVqd4YFiRpgDvh\nBPjtb/Nj/fWLrkb1yLAgSQPYKafAD36Q137Yddeiq1G9MixI0gCUEpx4Ipx6Kpx2GkyYUHRFqmdV\nDXCMiPER8UxEzI+I+yJi014e95mIWBARbdW8ryRp6aUExx2Xg8KPfpQXiZLKqTgsRMTewFnA94DR\nwCPALRGx6hKOGwZMBm6vok5JUg2kBEcdlbsdzj4bjj666IrUCKppWWgFLkopTUkpPQYcAswDDlzC\ncRcCvwLuq+I9JUlLKSU48sgcEs49N0/pLPVGRWEhIpYDxgJ3dGxLKSVya8GWZY4bB6wFnFxdmZKk\npdHenmdl/OlP8zTOhx1WdEVqJJUOcFwVGATM7LJ9JrBudwdExCeAHwBbpZTaI6LiIiVJ1Wtvz1M3\nX3IJTJoEBx1UdEVqNH16N0RELEPuevheSumpjs29Pb61tZVhw4Yttq2lpYWWlpbaFSlJTWzhQvjG\nN2DyZLj0UjjggKIrUi1NnTqVqVOnLrZtzpw5NX+fyL0Ivdw5d0PMA76SUrqu0/bLgGEppS932X8Y\n8CrwLotCwjKln98Fdkgp/U837zMGmD59+nTGjBlTyd8jSSp5910YNw6uuAJ++UvYZ5+iK1J/aGtr\nY+zYsQBjU0o1ufuwojELKaUFwHRg+45tkfsVtgfu7eaQucAGwMbARqXHhcBjpZ/vr6pqSVJZ776b\np3CeOjWHBYOClkY13RBnA5dFxHTgAfLdEUOAywAi4nRg9ZTSAaXBj3/tfHBEzALeSik9ujSFS5K6\nt2ABtLTk6ZuvvDKvJCktjYrDQkrpqtKcCqcAw4EZwI4ppX+VdhkBjKxdiZKk3nrnHdh7b7jhBvj1\nr/NKktLSqmqAY0rpAuCCHp4bt4RjT8ZbKCWp5t5+G/bcE269FX7zG/jiF4uuSM3CtSEkqQnMnw97\n7AF33pm7H77whaIrUjMxLEhSg5s3L3c33HMP/O538J//WXRFajaGBUlqYG++mZeWvv9+uPFG2G67\noitSMzIsSFKDev112GUXePhhuPlm2HrroitSs6pqiWpJUrFmzYIdd4QZM+CWWwwK6luGBUlqMPfc\nA6NHw1NPwW23wac/XXRFanaGBUlqECnBWWfBttvC2mvn7ofNNy+6Kg0EhgVJagCvvZZnYjzqKPjO\nd+D3v4fVVy+6Kg0UDnCUpDo3Y0aebOnll+Haa52VUf3PlgVJqlMpwaRJsMUWMHQotLUZFFQMw4Ik\n1aF58/Ly0gcfDAccAPfem8cpSEWwG0KS6swTT+Ruh6eegilT8lLTUpFsWZCkOnL11bDJJnn1yAce\nMCioPhgWJKkOvPMOHHEEfPWrsPPO8OCDsP76RVclZXZDSFLBnnsuh4S2NjjvPDj0UIgouippEcOC\nJBXo5pth331hpZVg2jTYbLOiK5Lez24ISSrAwoVw4om5y2GLLXKrgkFB9cqWBUnqZ7NmwT77wJ13\nwqmnwrHHwjJ+dVMdMyxIUj+aNg323hvefRduvx0++9miK5KWzCwrSf2gYxGo7baDf//3vAiUQUGN\nwrAgSX3sb3+DL34xLwJ11FEuAqXGY1iQpD4ydy4ccwx86lPw5z/D9dfDD38Iy9oBrAbjJStJNdbe\nDpMnw3HH5cDwf/5PblEYMqToyqTq2LIgSTV0zz35FsgDD4Ttt4fHH8+3SBoU1MgMC5JUA88/n2+H\n3Gqr/Pu0afCrX8HIkcXWJdWCYUGSlsK8eXDKKbDuunng4i9+kReA+sxniq5Mqh3HLEhSFVKCq66C\no4+GmTOhtRWOPx6GDi26Mqn2bFmQpAq1tcE228B//ReMGQN/+Uu+y8GgoGZlWJCkXpo5Ew4+GDbZ\nBGbPhltvhWuvhXXWKboyqW/ZDSFJS/DOO/DTn8L3vw+DBuWfDznE+RI0cHipS1IPUoIbboDvfAee\nfhq+/W046ST48IeLrkzqX3ZDSFI3Hn0UdtoJdt0VPvYxmDEDzj3XoKCBybAgSZ28+ioccQRsuCE8\n+WQek3DbbbDBBkVXJhXHbghJIi8Z/fOfwwknwNtvw2mnwZFHwgorFF2ZVDzDgqQB7dVX4bLL4Pzz\n4amnYNy4HBRWW63oyqT6YViQNCA98kgOCJdfnlsVvvrVPMnSmDFFVybVH8OCpAFjwQK45ho47zy4\n+25YY4086+LBB8Pw4UVXJ9Uvw4KkpvfPf8LFF8NFF+Wft9sOfv1r2G03WG65oquT6p9hQVJTSikv\nF33++TkYLL887L8/jB/vnQ1SpQwLkprKvHlwxRW5q+GRR+ATn4Azz4QDDoBVVim6OqkxVTXPQkSM\nj4hnImJ+RNwXEZuW2ffLEXFrRMyKiDkRcW9E7FB9yZL0fk89BUcdBR/9KHzzm3kipVtugccey/Mm\nGBSk6lUcFiJib+As4HvAaOAR4JaIWLWHQ7YBbgV2AsYAdwLXR8RGVVUsSSXt7XDTTfDFL+YWhF/8\nAr7xjRwcrrsOdtgBlnHqOWmpVdMN0QpclFKaAhARhwC7AAcCP+q6c0qptcum70bEl4BdyUFDkirS\nMTfCBRfA3/4Go0fDpEl5yeghQ4quTmo+FYWFiFgOGAv8oGNbSilFxO3Alr18jQBWBmZX8t6S9Kc/\nLZobYcEC2GsvmDIFttgCIoquTmpelbYsrAoMAmZ22T4TWLeXr3E08AHgqgrfW9IA1DE3wvnnwx/+\nAKuvDscem+dGGDGi6OqkgaFf74aIiH2AE4DdUkov9+d7S2os//xnXqvhoovgH/+AbbfNMyzuvrtz\nI0j9rdKw8DKwEOg619lw4KVyB0bEfwEXA3umlO7szZu1trYybNiwxba1tLTQ0tLS64IlNYaU4OGH\n4YYb8uOBB2DFFWG//fLcCBtuWHSFUv2ZOnUqU6dOXWzbnDlzav4+kVKq7ICI+4D7U0pHlH4P4Dng\npymlH/dwTAswCdg7pfS7XrzHGGD69OnTGeNE7VLTev11uP32HA5uvDG3Jgwdmu9i2GWX3IrgLY9S\nZdra2hg7dizA2JRSWy1es5puiLOByyJiOvAA+e6IIcBlABFxOrB6SumA0u/7lJ47HHgwIjpaJean\nlOYuVfWSGs6TTy5qPbjrrjwm4ZOfhH32yQFhq63sZpDqTcVhIaV0VWlOhVPI3Q8zgB1TSv8q7TIC\nGNnpkIPJgyLPLz06TCbfbimpib3zTh6Y2BEQnnwyT7382c/CWWflgLD22kVXKamcqgY4ppQuAC7o\n4blxXX7/bDXvIalxvfRS7la44Qa47bbc3bDGGrDzzvDjH8P228NKKxVdpaTecm0ISUutvR0eemhR\n68H06Xnegy22gGOOya0HG23kXAhSozIsSKrKnDlw6605HNx0E8yalQcjfuELcOSR+d9Ve5oEXlJD\nMSxI6pWU8qJMHa0H06bBu+/m5Z7HjcutB1tuCcv6/ypS0/E/a0k9eust+J//WRQQnnkGBg+Gz30O\nzjknB4SPf7zoKiX1NcOCpMW88MKiwYm33w7z5uXlnnfZJT8++1kXa5IGGsOCNECllKdRnjEjz5z4\n8MP556efhkGD4NOfhhNPzAFh/fUdnCgNZIYFaQBYuDAv5dw5FDz8MPyrNDvKKqvkZZ6/9CXYbLM8\ng+KHPlRszZLqh2FBajJvvQV//vPioeBPf4I338zPjxwJG28M3/52Dggbb5zHHdhyIKknhgWpgb36\nKjzyyOItBn/9a25JWGYZWHfdHAj22COHgo039nZGSZUzLEgNICV48cX3dyM8+2x+fvBg+I//yOMM\nDj00B4QNN3QgoqTaMCxIdWbhQnjiifcPPHz55fz8Bz+Yw8BXvpL/HT0aRo1yfgNJfcf/e5EKNH/+\novEFHaHgT3/KtytCvmVx9Gg47LDchTB6dB5z4PgCSf3JsCD1k9mzF7UWdPz72GO5JWHQoLxM8+jR\nsOeeiwYeekeCpHpgWJBqaO7cPKlRx+Pvf180APG55/I+K66YF1Xaems4/PAcDDbYIG+XpHpkWJB6\nISV47bXFg8Dzzy/++wsv5KWYOxsxIgeBvfde1FowalRuSZCkRmFY0ICXErzySs8BoOPRMY4A8m2J\nq60GH/1ofuyww6KfOx6rrw7LL1/c3yVJtWJYUFNrb89LJ/cUADoeb7+96JhBg2CNNRZ96G+88fuD\nwIgRsNyreeSCAAAI1klEQVRyxf1dktSfDAtqWAsXwksvlQ8BL74ICxYsOma55Rb/0N9ss8V/HzkS\nPvIRuwkkqTPDgurSggXwz3/2HAKefz4/v3DhomMGD170ob/mmrDVVosCQMf2VVfNXQiSpN4zLKjf\nvf12Xu2wuwDQ8fNLL+WxBB2GDFn0oT9qFHzuc4uHgI9+NN9m6PwDklR7hgVV5e2388j/11/Ptwt2\n/NzdY+7cxVsJZs1a/LWGDl30gf8f/wE77/z+MQLDhhkEJKkohoUBor0d3nij/Ad6Jc91HgfQnSFD\nYOWVFz1WWw022QR2333xELDGGjksSJLql2GhjnX+9l7th3rH4403yr/XoEGLPtiHDl38g37EiJ6f\n6/zoeG6llRwgKEnNxLBQQ+3t8OabvWuW781zlX577/zhPmpUzx/q3X3oDx5sM78kqXsDPix09+29\n2m/xlXx77/rB3fnbe7kP9Y7HSiu5yqAkqX805MfN22/nGfd6O7iu3HNL+va+4ordf3iPGAGf+ETv\nPtg7nvPbuySpETVkWLjkEhg/vvvnllmm5w/u4cN73+/ut3dJkrKG/CjceWe4/vruP/RXXNFv75Ik\n1VJDhoU118wPSZLU95z4VpIklWVYkCRJZRkWJElSWYYFSZJUlmFBkiSVZViQJEllGRYkSVJZhgVJ\nklSWYUGSJJVlWJAkSWUZFiRJUlmGhSYyderUoktoSJ63ynnOquN5q5znrD5UFRYiYnxEPBMR8yPi\nvojYdAn7bxcR0yPirYh4IiIOqK5cleN/VNXxvFXOc1Ydz1vlPGf1oeKwEBF7A2cB3wNGA48At0TE\nqj3svybwO+AOYCPgHGBSRHy+upIlSVJ/qqZloRW4KKU0JaX0GHAIMA84sIf9vw08nVKakFJ6PKV0\nPvDr0utIkqQ6V1FYiIjlgLHkVgIAUkoJuB3YsofDtig939ktZfaXJEl1ZNkK918VGATM7LJ9JrBu\nD8eM6GH/oRGxQkrp7W6OGQzw6KOPVljewDZnzhza2tqKLqPheN4q5zmrjuetcp6zynX67Bxcq9es\nNCz0lzUBvva1rxVcRuMZO3Zs0SU0JM9b5Txn1fG8Vc5zVrU1gXtr8UKVhoWXgYXA8C7bhwMv9XDM\nSz3sP7eHVgXI3RT7As8Cb1VYoyRJA9lgclC4pVYvWFFYSCktiIjpwPbAdQAREaXff9rDYX8Eduqy\nbYfS9p7e5xXgikpqkyRJ76lJi0KHau6GOBs4OCL2j4hPAhcCQ4DLACLi9IiY3Gn/C4G1I+KMiFg3\nIg4F9iy9jiRJqnMVj1lIKV1VmlPhFHJ3wgxgx5TSv0q7jABGdtr/2YjYBZgIHA68AByUUup6h4Qk\nSapDke98lCRJ6p5rQ0iSpLIMC5Ikqay6CAsR8duI+HtpYap/RMSUiFitF8edUtp/XkTcFhHr9Ee9\n9SAiPh4RkyLi6dLf/2REnFSaZbPccZdGRHuXx439VXeRqj1npWMH7LUGEBHHR8Q9EfFmRMzu5TED\n9lqD6s5Z6biBfq19MCJ+FRFzIuLV0n+zH1jCMQPqWitiMce6CAvA74G9gFHAHsC/A1eXOyAijgEO\nA74JbAa8SV7Qavm+LbVufBII4GDgU+S1Ng4BTuvFsTeRB6eOKD1a+qjGelPVOfNaA2A54CrgZxUe\nN1CvNajinHmtAfm2+fXIt+TvAmwDXNSL4wbEtVbYYo4ppbp7ALsC7wKDyuzzD6C10+9DgfnAV4uu\nv8DzdhTwtyXscynwm6JrrZdHL8+Z19qiv/0AYHYv9/Vaq/ycDehrjRzo24HRnbbtWPo8GFHmuAFz\nrQH3Aed0+j3IdxlO6GH/M4A/ddk2Fbixkvetl5aF90TEh8izN96TUlrYwz5rkZNj5wWt5gL3M7AX\nqFoF6E1z53YRMTMiHouIC0rnfKAqe8681paa11ovea0B+e98NaX0cKdttwMJ2HwJxzb9tVbkYo51\nExYi4ocR8QZ5SumRwO5ldh9Bvni6W6BqRN9UWN9K/ZqHkSfBKucmYH/gc8AEYFvgxtJMnANKL8+Z\n11r1vNYq47WW/85ZnTeUvjTOpvw5GCjXWrnFHHs6P2UXc+ztG/dZWCjN5Nh1wEnnx8KIGNXpkB8B\nGwOfJ68/8cu+qq2eVXHeiIg1yP+xXJlS+kW5108pXZVS+l1K6S8ppeuAL5L7Rrfrq7+pr/X1OWtW\n1Zy3SnitqYPXWuPry1UnzyT3I5XzdMcPKaXZ5PT4t4h4DHg+IjZPKd3fzXEvkftphrN4YhoOPNzN\n/o2kovMWEauTB4hOSyl9q9I3Syk9ExEvA+sAd1Z6fJ3oy3PmtVYjA/Faq5DXWj4HH+m8MSIGAR+i\n58UK36dJrrXu9Ndiju/TZ2Eh5cWgXqny8EGlf7ttIildCC+RR8v+CSAihpL7tM6v8j3rQiXnrfTt\n+PfAg8CB1bxfRHwU+DDwz2qOrwd9ec681mpnoF1rVbz2gL/WIuKPwCoRMbrTuIXtySGquy+OPb1O\nw19r3Un9tJhjT29e9MjOzYDx5Fs6Pkbuc5oGPA4s12m/x4Avdfp9Avni2xXYELgWeBJYvui/qZ/O\n2+qlv/fW0s/DOx5d9nvvvAEfIHf3bA58vHSBPQQ82vlcN+ujmnPmtfbeORhZ+m/0RGBO6eeNgA94\nrdXmnHmtvXcObixdK5sCnyl9Fvyyyz4D9loDvgrMI4/R+CT5ttJXgH8rPX86MLnT/msCr5PvilgX\nOBR4B/jPit63Dv7wDcgjO/9VOgFPAecBq3XZbyGwf5dtJ5FvNZpHHt25TtF/Tz+etwNK56Tzox1Y\n2NN5I69xfjO5WeotcrPfzzousmZ/VHPOvNbe+/sv7ebcLQS28VqrzTnzWnvv718FuJwcsF4Ffg4M\n6bLPgL7WSh/4z5Jvq/0jsEmX6+73XfbfBphe2v9JYL9K39OFpCRJUll1c+ukJEmqT4YFSZJUlmFB\nkiSVZViQJEllGRYkSVJZhgVJklSWYUGSJJVlWJAkSWUZFiRJUlmGBUmSVJZhQZIklfX/Aa32ls8G\nx7aQAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "alquant[9]\n", "pl.plot(np.log(zx),np.polyval(ipol1,zx))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }