Malthusův model x(t+1)=r*x(t) Parametr: r = 1.5 t x(t) 0 0.01 1 0.015 2 0.0225 3 0.03375 4 0.050625 5 0.0759375 6 0.11390625 7 0.170859375 8 0.256289063 9 0.384433594 10 0.576650391 11 0.864975586 12 1.297463379 13 1.946195068 14 2.919292603 15 4.378938904 16 6.568408356 17 9.852612534 18 14.7789188 19 22.1683782 20 33.2525673 21 49.87885095 22 74.81827643 23 112.2274146 24 168.341122 25 252.5116829 26 378.7675244 27 568.1512866 28 852.2269299 29 1278.340395 30 1917.510592 ##### Sheet/List 2 ##### Verhulstův model x(t+1)=x(t)*(r-(r-1)/K*x(t)) Parametry: r= 1.5 t x(t) K= 10 0 0.01 1 0.014995 2 0.022481257 3 0.033696616 4 0.050488151 5 0.075604773 6 0.113121356 7 0.169042212 8 0.252134555 9 0.37502324 10 0.555502739 11 0.817824944 12 1.193295534 13 1.718745589 14 2.430414064 15 3.350275469 16 4.464195918 17 5.699841617 18 6.925352703 19 7.990003551 20 8.79299749 21 9.323655992 22 9.638955935 23 9.812960327 24 9.904730971 25 9.951911676 26 9.975840214 27 9.987890922 28 9.99393813 29 9.996967227 30 9.998483154 ##### Sheet/List 3 ##### Model Pielou x(t+1)=x(t)*x*K/(K+(r-1)*x(t)) Parametry: r= 1.5 t x(t) K= 10 0 0.01 1 0.014992504 2 0.02247191 3 0.033670034 4 0.050420168 5 0.075440067 6 0.112734864 7 0.168154453 8 0.250128667 9 0.370558634 10 0.545726762 11 0.796847104 12 1.149472947 13 1.630498712 14 2.261388515 15 3.047503322 16 3.966811432 17 4.965380701 18 5.966719387 19 6.893500058 20 7.689776389 21 8.331352641 22 8.82204893 23 9.182604212 24 9.439806138 25 9.619431011 26 9.743027482 27 9.827204868 28 9.884135887 29 9.922457779 30 9.948171222 ##### Sheet/List 4 ##### Rickerův model x(t+1)=x(t)*r^(1-x(t)/K) Parametry: r= 1.5 t x(t) K= 10 0 0.01 1 0.014993919 2 0.02247721 3 0.033685101 4 0.050458687 5 0.075533337 6 0.112953542 7 0.168656118 8 0.251260068 9 0.373069944 10 0.55120365 11 0.808531845 12 1.173683096 13 1.67870574 14 2.352368167 15 3.207549782 16 4.224570058 17 5.339281144 18 6.449914754 19 7.448483719 20 8.260338493 21 8.864041134 22 9.281859826 23 9.55610309 24 9.729655487 25 9.836894041 26 9.902164727 27 9.94152343 28 9.965122956 29 9.979225028 30 9.987634596 ##### Sheet/List 5 ##### Aritmetická posloupnost  an+1=an+d Parametry: d= 1.5 n an 0 1 1 2.5 2 4 3 5.5 4 7 5 8.5 6 10 7 11.5 8 13 9 14.5 10 16 11 17.5 12 19 13 20.5 14 22 15 23.5 16 25 17 26.5 18 28 19 29.5 20 31 21 32.5 22 34 23 35.5 24 37 25 38.5 26 40 27 41.5 28 43 29 44.5 30 46 ##### Sheet/List 6 ##### Geometrická posloupnost an+1=an*q Parametry: q= 1.2 n an 0 1 1 1.2 2 1.44 3 1.728 4 2.0736 5 2.48832 6 2.985984 7 3.5831808 8 4.29981696 9 5.159780352 10 6.191736422 11 7.430083707 12 8.916100448 13 10.69932054 14 12.83918465 15 15.40702157 16 18.48842589 17 22.18611107 18 26.62333328 19 31.94799994 20 38.33759992 21 46.00511991 22 55.20614389 23 66.24737267 24 79.4968472 25 95.39621664 26 114.47546 27 137.370552 28 164.8446624 29 197.8135948 30 237.3763138 ##### Sheet/List 7 ##### Fibonacciho posloupnost an+1=an+an-1 n an 0 1 1 1 2 2 3 3 4 5 5 8 6 13 7 21 8 34 9 55 10 89 11 144 12 233 13 377 14 610 15 987 16 1597 17 2584 18 4181 19 6765 20 10946 21 17711 22 28657 23 46368 24 75025 25 121393 26 196418 27 317811 28 514229 29 832040 30 1346269 ##### Sheet/List 8 ##### n an Δan 0 0.01 0.02997 1 0.03997 0.11943072 2 0.15940072 0.470579582 3 0.629980302 1.770878352 4 2.400858654 5.473339279 5 7.874197933 5.021695872 6 12.89589381 -11.2035417 7 1.692352109 4.217839629 8 5.910191739 7.2514653 9 13.16165704 -12.48379368 10 0.677863355 1.895740447 11 2.573603802 5.733780447 12 8.30738425 4.218362827 13 12.52574708 -9.491060721 14 3.034686356 6.341262685 15 9.375949041 1.755320998 16 11.13127004 -3.777741685 17 7.353528353 5.838271287 18 13.19179964 -12.6316744 19 0.560125236 1.586253624 20 2.14637886 5.057053916 21 7.203432776 6.043465201 22 13.24689798 -12.90339787 23 0.343500106 0.99510262 24 1.338602726 3.478251 25 4.816853726 7.489937233 26 12.30679096 -8.516758232 27 3.790032726 7.060793759 28 10.85082648 -2.769651166 29 8.081175318 4.651907597 30 12.73308292