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Exercise. RP" is orientable <= n s odd.

Solution. e Consider R"*! with its standard orientation. Then the linear
map A: R — R given by x — A(x) = —z is orientation preserving
< det A= (-1)""! >0 <= nis odd.

e Now consider S C R™*!. Note that v(r) = x defines a global unit
normal vector field for S® € R™t!, which in turn determines an orientation
on S™ as follows: a basis ((1,(a,...,(,) of T, S™ is positively oriented
< (v(x),(1,Ca,...,Cn) is positively oriented basis of T, R*H1 = R +L,
Let us fix this orientation on S™.

e Algn: S™ — S™ is orientation preserving <= n is odd.
e Consider the projection
m: 8" — S/ 2 RP"

under which antipodal points on S™ get identified, i.e. = ~ A(z) = —x.
Then one can check that 7 is a local diffeomorphism, which implies the
isomorphism of tangent spaces

T,m: Ty S™ = Ty RP" Vo € S™ (1)

Moreover, note that m o A = m which implies T(7 0 A) = T'w. Thus we can
try to define orientation on RP™ by requiring (1) to be orientation preserving
Vo € S™. This will lead to a well-defined orientation <= A is orientation
preserving.

Exercise. Suppose (M,V) is a smooth manifold equipped with an affine con-
nection. Show that

1. the torsion T and curvature R of V are (1,2) and (1,3) tensor fields on
M

2. if V is torsion-free, then for all€,n,( € T'(T'M) the Bianchi identity holds:
R(&,m)¢ + R(n, Q)§ + R(¢,§)n =0 (2)



Recall that a connection V on a smooth manifold M is a bilinear operator
on the space of vector fields V: I'(TM) x I'(TM) — T'(TM),(&,n) — Ven
satisfying

o Vien=fVenforall feC>®(M)
o Ve(fn) =&+ fVen

Solution. 1. Torsion T of V is given by

T(§777) = V5 n-— vnf - [ga 77] ) (3)

where [—, —] is the usual bracket on vector fields. Since T(&,n) is a vector field,
it is automatically a (1,0) tensor field on M. Then showing that T is bilinear
with respect to the ring of smooth functions C*°(M) suffices to show that it is
a (1,2) tensor field. Consider arbitrary f € C*°(M) and &,n,¢ € T'(TM) and
compute

T(fE+n,Q) = ViernC—Ve(fE+n) — [fE+n,(]
=fVe(+Vy(—=Ve(fl) = Ven+[C fE — [, ¢]
=fVe(+Vy(=CNE=FVE=Ven+(f)E+ FICE — [n,¢]
= f(VeC =V &= [,C)+ V(= Ven—[n,(]
= fT(&,¢)+T(n,¢)

Similarly for the second argument.
For arbitrary £,7n,¢ € I'(T'M), the curvature R of V is given by

R(&n)¢ = VeVy(—=VyVe( — v[&,n] ¢ (4)

Observe that R(&,n)¢ is a vector field and hence a (1,0) tensor field. We pick
arbitrary f € C*(M) and &,m,¢,¢ € T(TM). It is easy to check that

R(§+ ¢,1m)¢ = R(&, )¢ + R(p, )¢

and similarly for other arguments. Now we want to show that R(f&,n)¢ =
R(&, fn)¢C = R(&n)(fC) = fR(E,n)¢. We start with the first argument and
then, since the computation for the second argument is similar, we proceed
with the third argument.

R(fE&EmC =V e VyC—=VyVie (= Vige ¢
:fvangfvnfvégfv—[mff]c
=fVeVyC— ) VeCH+ YV Vel) =V oyine—rine
=VeVyC—n(f) Ve =V Ve CH+n(f) Vel = fViem €
= f(VS Vi —=VyVe( - v[&m] <)
= fR(&,n)¢



and the computation for the third argument

R(&n)(fQ) = Ve Vy(fQ) = Vi Ve(fC) = Vign (fC)
=Ven(f)C+ FVy Q) = Vy§(f)C+ FVe) = [§n(f)C— f Ve ¢
=N+ VeC+HESf)VyC+ [ VeV, C
—EUNCHES) Vi C+n(f) Ve + fFV,Ve()
= (M) —nEfNC = fVienC
= f(vi V¢ —=VyVe( - v[im] Q)
= fR(§ )¢

Solution. 2. Let us express the left-hand side of (2) using V

R(& )¢ +R(1, O+ R0 = (Ve Vy =V, Ve = Vie )€
+ (V,, V=V, — v[n’d)f
+ (Ve Ve=VeVe=Viegn

The righ-hand side of the last equality is a sum of the following terms

Ve(Vy¢—=Ven) — Ving € (5)
Viy(Ve&—=Ve() = Viegn (6)
Ve(Ven—=Vy&) = Vien ¢ (7)

For a torsion free connection we have T'(£,7n) = 0 which is by (3) equivalent to
[€n) = Ven = Vy¢. (8)
If we apply (8) on (5), (6) and (7) and sum up we get
Ve, (] = Ving &+ V€& = Vicgn+ Vel§n = Vigy ¢

Using (8) again we obtain

R(&§;m)¢ +R(n, Q)&+ R(¢, §)n = [, [0, <]l + [0, [C, €]l + (¢, [€,m]]

Since Lie bracket satisfies Jacobi identity, the right-hand side of the last equality
is zero. We conclude

R(&n)C+R(n,O)E+R((,En=0.



