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Review
Traditional enzyme engineering relies on substituting
one amino acid by one of the other 19 natural amino
acids to change the functional properties of an enzyme.
However, incorporation of unnatural amino acids (UAAs)
has been harnessed to engineer efficient enzymes for
biocatalysis. Residue-specific and site-specific in vivo

incorporation methods are becoming the preferred ap-
proach for producing enzymes with altered or improved
functions. We describe the contribution of in vivo UAA
incorporation methodologies to enzyme engineering as
well as the future prospects for the field, including the
integration of UAAs with other new advances in enzyme
engineering.

Advent of novel enzyme engineering methods
Because of their eco-friendly nature, enzymes have found
widespread applications as biocatalysts [1,2]. The produc-
tion of biocatalysts has benefited from advances in protein
science and the availability of genetic engineering techni-
ques to develop new enzymes with improved or altered
properties. Traditionally, enzyme engineering methods
comprise three main strategies for improving enzyme sta-
bility and catalytic properties: rational design, directed
evolution, and a combination of both methods (‘semi-ratio-
nal’) [3–5]. Although these methods yield reliable results,
being limited to using the side chains of natural amino
acids in such engineered enzymes restricts the scope of
possible applications.

In vivo UAA incorporation has become important in the
protein engineering field as a means to confer novel
functions upon proteins targeting a variety of desired
applications [6–16]. In general, UAA incorporation can
be achieved in two ways: in a residue-specific manner,
which utilizes the misacylation of the endogenous tRNA,
or in a site-specific manner, which utilizes an exogenously
evolved orthogonal tRNA/synthetase pair (Box 1). Al-
though either residue-specific or site-specific methods
can be used to achieve the same goal, choosing the
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appropriate incorporation method depends on the nature
of the target enzyme, the nature of the UAA, and the
expected outcome. For example, the residue-specific ap-
proach allows UAA incorporation at multiple sites, and
this can have synergistic effects in the enzyme. The site-
specific method, by contrast, allows new chemical function-
alities to be precisely introduced into enzymes very easily
[17]. More recently, an increase in the diversity of UAAs
and advances in incorporation methods have made it
possible to overcome some existing challenges to engineer-
ing biocatalysts. We focus on discussing in vivo UAA
mutagenesis-based enzyme engineering for functional
applications and for improving or altering enzyme proper-
ties. We highlight the current advantages and limitations
in the state of the art, and discuss the future prospects of
UAA methodology.

Enzyme engineering via the residue-specific method
The residue-specific method has been a common approach
for protein engineers and has led to many successful
attempts at engineering enzymes for structural studies
and property enhancement. In the following text molecular
structures are referred to by number (bold font); structures
1–12 are depicted in Figure 1 and 13–32 in Figure 2.

Biophysical probes

Early implementation of the residue-specific method was
successful in substituting methionine residues by seleno-
methionine, 1, through the use of methionine auxotrophic
strains [18]. Since then 1 has become valuable in the
structural investigation of enzymes such as galactosidase,
RNase H, and others [18–21]. Unlike other heavy atom
substitution techniques for X-ray crystallography, substi-
tution with 1 does not cause structural disturbances, and
is considered advantageous for phasing studies, hence its
continued use to the present day.

19F NMR spectroscopy has been an important tool for
the biophysical characterization of proteins and enzymes
since the time of its invention [22,23]. For NMR studies,
the major advantages of using fluorinated amino acids
derive from the small atomic size of fluorine and its chemi-
cal properties, as well as from the fact that natural amino
acids do not contain fluorine. The size of fluorine is similar
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Box 1. General methodology describing the in vivo incorporation of UAAs

In general, during protein synthesis, a cognate amino acid is added to

its tRNA by a specific aminoacyl-tRNA synthetase enzyme. Once the

tRNA is charged, the ribosome transfers the amino acid from the tRNA

onto the growing polypeptide guided by an mRNA sense codon

(Figure I).

Residue-specific method

In the absence of a specific cognate amino acid, endogenous tRNA

synthetases can misacylate tRNA with isostructural analogs of the

corresponding amino acid. The misacylated tRNA with UAA is carried

to the ribosome and the UAA is then incorporated into the growing

polypeptide guided by an mRNA sense codon. To completely remove

the endogenous cognate amino acid from the host cells, auxotrophic

strains are utilized.

Site-specific method

Evolved exogenous tRNA synthetases acylate suppressor tRNAs

with UAAs, and acylated tRNAs with UAA are then carried to the

ribosome and incorporated into the growing polypeptide chain in

response to a nonsense codon (a stop codon and/or a quadruplet

codon). This method involves an orthogonal exogenous tRNA/synthe-

tase pair to minimize crosstalk with the host translational machinery,

and these are typically derived from other species such as Methano-

coccus jannaschii or Pyrococcus horikoshii.

Combination of residue-specific and site-specific methods

In this combination method, within auxotrophic cells, the expression

of an orthogonal tRNA/synthetase pair enables site-specific incorpora-

tion of UAA guided by a nonsense codon (stop codon). In addition, the

presence of an endogenous tRNA synthetase facilitates the concurrent

global incorporation of other UAA guided by sense codons in the

mRNA.
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Figure I. Each amino acid is acylated to its cognate tRNA by a specific

aminoacyl-tRNA synthetase (AARS) and then delivered to the ribosome. Based

on the codon–anticodon interaction between the mRNA and aminoacylated

tRNA, the tRNA-bound amino acid is linked to the amino acid of the adjacent

aminoacyl-tRNA, extending the growing polypeptide and releasing the free

tRNA.
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to that of hydrogen with respect to its covalent radii (1.35 Å
and 1.2 Å), and most likely does not cause any structural
perturbations, thus allowing 19F to offer sensitivity com-
parable to that of 1H [24]. With such advantages, fluori-
nated amino acids have emerged as useful structural
probes to investigate the chemical microenvironments of
residues in enzymes. For example, 6-fluorotryptophan, 2,
was incorporated into lactate dehydrogenase from Escher-
ichia coli to investigate interactions with detergent
micelles and assess enzyme stability [25]. To demonstrate
the utility of fluorinated aliphatic amino acids as 19F NMR
probes, the stereoisomer (2S,4S)-5-fluoroleucine, 3, was
incorporated into dihydrofolate reductase (DHFR) from
Lactobacillus casei. This is the first example of a fluorinat-
ed aliphatic amino acid being used as a 19F NMR probe
with overall range of chemical shift 15.2 ppm almost as
large as that found with aromatic fluorine-containing
amino acids in proteins [26]. Likewise, when incorporated
into bacteriophage l lysozyme, difluoromethionine, 4,
which is diastereotopic in nature, exhibited a significant
difference in the chemical shifts observed between the
surface-exposed methionine residues and those found in
the tightly packed core of the enzyme [27]. Similarly,
trifluoromethionine, 5, was incorporated into phage lyso-
zyme to probe the functions of methionine residues in the
protein, and has also been used as a unique probe to study
protein–ligand interactions [28]. Incorporation of 4 into
the crucial methionine-turn region of alkaline protease
was used to investigate the role of methionine in the
structural and catalytic properties of the protein [29]. Tak-
en together, the use of fluorinated amino acids as NMR
probes opens new perspectives in understanding the
importance of substituted amino acids for analyzing
enzyme structure and function.

Enhancing stability and activity

A major challenge in the use of natural enzymes as bioca-
talysts lies in the difficulty of maintaining enzyme stability
and optimum activity under harsh conditions, such as
during exposure to heat and organic solvents [30]. The
residue-specific incorporation method, and the use of fluo-
rinated amino acids in particular, have been important
in enhancing stability. This is because fluorination can
provide a unique tool for stabilizing proteins by increasing
hydrophobicity while closely protecting the shape of the
side chain [31]. Engineering enzymes for stability and
activity enhancement includes residue-specific fluorina-
tion of aromatic residues of lipase B from Candida
antarctica. Global replacement of fluorinated analogs such
as 4-fluorophenylalanine, 6, 5-fluorotryptophan, 7, and
3-fluorotyrosine, 8, into this enzyme gave reduced catalytic
activity, but nevertheless prolonged the shelf-life of the
lipase activity [32]. Likewise, global incorporation of 6 into
phosphotriesterase (PTE) led to enhanced protein refold-
ing after heating to over 708C. Around 30% of the native
structure of the enzyme was maintained in the variant
incorporating 6, whereas the wild type enzyme completely
lost its structural conformation. The calculated melting
temperature of the fluorinated variant was 1.3–2.58C
higher than that of the native enzyme. Surprisingly, the
variant incorporating 6 exhibited a 3.7-fold loss in Kcat/Km

compared to the parent enzyme [33]. Fluorination can thus
yield more thermostable PTE enzymes with enhanced
refoldability, most likely owing to stabilization of the
463
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Figure 1. Enzyme engineering by the residue-specific method. General diagram illustrating the targeted incorporation of unnatural amino acids (UAA) into enzymes for

structural studies and for improving enzyme properties such as increasing stability and catalytic activity.
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interactions along the dimer interface. In terms of catalytic
activity, introduction of 7 into M1-glutathione transferase
enhanced its catalytic performance through an increased
rate of product release. Structural analysis revealed that
several subtle changes in structure arise as a result of
steric interactions when 7 is incorporated at Trp146 and
Trp214 in domain II, which in turn give rise to enhanced
catalytic activity [34]. Likewise, global incorporation of
8 into b-galactosidase yields an enzyme with better cata-
lytic activity. The fluorinated enzyme showed a 4.5-fold
increased Vmax towards phenyl-b-D-galactopyranoside and
464
a twofold increase for ortho-nitrophenyl-b-D-galactopyra-
noside at pH 7.0. However, in terms of stability, 50% more
activity was lost in the fluorinated enzyme within 2.5 min
at pH 6.0 compared to the wild type enzyme [35]. Further,
organophosphate hydrolase engineered by substituting
tyrosine with 8 had an extended pH optimum of activity
at acidic pH and improved thermal stability at alkaline pH.
In addition, 40% residual activity was maintained in the
fluorinated enzyme after heating at 558C, whereas the wild
type enzyme retained only 13% activity [36]. More recently,
engineering v-transaminase (v-TA) by global substitution
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Figure 2. Enzyme engineering by the site-specific method. General diagram illustrating the incorporation of unnatural amino acids (UAA) into enzymes for functional

studies and for improving or altering enzyme catalytic properties.
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of tyrosine by 8 yielded enhanced activity up to 20%
higher than that of the wild type enzyme. In addition
to enhanced catalytic activity, �36% of the residual
activity was maintained at 708C, with a 2.3-fold longer
half-life, and 90% residual activity was retained in pres-
ence of 50% (v/v) dimethylsulfoxide (DMSO), whereas the
wild type enzyme exhibited only 51% of residual activity
[37]. Interestingly, global fluorination of v-TA does not
change its original substrate specificity or enantioselec-
tivity. A similar approach involving the substitution of
fluorinated phenylalanine analogs into PvuII endonucle-
ase showed changes in enzyme catalytic behavior. Interest-
ingly, 3-fluorophenylalanine, 9, gave a twofold increase in
average specific activity, with a similar conformational
stability to the wild type enzyme. Structural analysis of
PvuII endonuclease revealed that the substituted phenylal-
anine residue was not located near the catalytic region or
in a DNA-binding site [38]. Hence, this work showed that
the incorporation of 9 at locations distant from the active
site of PvuII endonuclease can alter its catalytic behavior
465
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through subtle changes in enzyme conformation. In addi-
tion, the multi-UAA acid incorporation strategy was used to
incorporate (4S)-fluoroproline 10, 6, and 2 into Thermoa-
naerobacter thermohydrosulfuricus lipase (TTL) [39]. Inter-
estingly, global substitution of the three different mono-
fluorinated amino acids at 24 positions did not have any
detrimental structural effects or abrogate enzyme activity
[39]. UAA substitution into the KlenTaq polymerase (C-
terminal fragment of TaqI polymerase analogous to the
Klenow fragment of E. coli DNA polymerase I) was exploited
to examine the general applicability of incorporating UAA
into such large and highly-dynamic enzymes at multiple
sites. Multi-fluorinated KlenTaq DNA polymerases were
generated by the global replacement of methionine and
proline residues with 5 and (4R)-fluoroproline, 11, respec-
tively. The enzymes with fluorinated methionine and pro-
line residues exhibited highest activity at temperatures in
the range 50–608C, maintaining a temperature optimum
similar to that of the wild type enzyme. Incorporation of
11 was accompanied a loss of thermostability at 958C;
however, the enzyme showed similar dNTP conversion
and specific activity compared to the wild type [40,41]. Thus,
fluorination of KlenTaq without any major loss in enzyme
activity or fidelity represents a promising starting point
for directed DNA polymerase evolution with UAA which
could eventually be further extended for engineering other
DNA polymerases with novel functions suitable for biotech-
nological applications.

The use of non-fluorinated amino acids has also played
an important role in enzyme tailoring. For example, the
global substitution of methionine residues with an hydro-
phobic analog nor-leucine 12 in TH-4 (a variant of BM-3
cytochrome P450 fatty acid monooxygenase, CYP102A1,
derived through directed evolution) resulted in a twofold
increase in peroxygenase activity despite a significant loss
in thermostability [42]. Thus, the global substitution with
12 can produce an enzyme resistant to chemical oxidation
accompanied by interesting catalytic behavior. The incor-
poration of non-fluorinated analogs such as 12 into TTL
generated an enzyme that was highly stable at 75 8C for
180 min and that exhibited increased activity in aqueous
phase without the need for thermal activation [43]. This
change arises most likely due to alterations in the hydro-
philicity/hydrophobicity balance of the lid domain when
globally replaced with 12, resulting in an open conforma-
tion state, and thereby promoting enzyme activity.

Enzyme engineering via the site-specific method
Rapid progress with the site-specific incorporation method
has allowed protein engineers to successfully incorporate
more than 100 diverse UAAs into enzymes and proteins for
various applications. A wide range of studies enabled by
the site-specific incorporation of UAAs as crosslinkers and
‘handles’ for bioconjugation, protein localization studies,
and post-translational modifications have been extensively
reviewed [44–48]. Similarly to the residue-specific method,
the site-specific method has also been exploited for engi-
neering enzymes for structural studies and activity en-
hancement. In addition, the site-specific method has been
used successfully to alter enzyme properties such as enan-
tioselectivity and regioselectivity as well as to develop
466
photo-controllable enzymes which can potentially be used
to precisely control their biological function (Figure 2).

Biophysical probes

The site-specific introduction of UAA as biophysical probes
aids the analysis of local structure and dynamics in proteins
and enzymes, and is an important technique for the study of
protein folding and stability, conformational changes, and
protein–protein interactions, allowing scientists to explore
complex biological problems [10]. For instance, the introduc-
tion of 4-carboxymethyl-L-phenylalanine, 13, protein argi-
nine methyl transferase 1 (PRMT1) clearly demonstrated
that tyrosine phosphorylation can alter protein–protein
interaction and substrate specificity. Substitution of 4-
benzoyl-L-phenylalanine, 14, at Tyr291 revealed the involve-
ment of phosphorylation changes in protein interactions
with the histones [49]. Similarly, the introduction of 14
site-specifically into the acyl carrier protein provided a
simple photocrosslinking method for rapid and sensitive
detection of the acyl carrier protein–ketosynthase interac-
tion [50]. The ability of UAAs to label enzymes at a specific
site for use as a probe will certainly serve as a basis for new
approaches to regulate and examine enzyme biological func-
tion. Incorporating fluorescent UAAs into DHFR was used
to monitor enzyme conformational changes by studying the
intermolecular interactions through the energy-transfer
changes exhibited by biphenyl-L-phenylalanine, 15, and
L-(7-hydroxycoumarin-4-yl) ethylglycine, 16 [51]. Likewise,
substituting 16 site-specifically into the regulatory site of
aspartate transcarbamoylase was helpful in deciphering the
molecular mechanism behind the allosteric regulation of
this enzyme [52].

Furthermore, site-specific incorporationof UAAs has been
used as an effective tool to provide structural insights into the
structures of enzymes and their roles in governing enzyme
action. The role of cation–P interaction in catalysis by aris-
tolochene synthase was investigated by replacing Trp334
by a strong electron-withdrawing substituent containing
phenylalanine analogs such as 4-chlorophenylalanine, 17,
4-trifluoromethylphenylalanine, 18, or 4-nitrophenylala-
nine, 19 [53]. Likewise, site-specific incorporation of 2,3,
5-trifluorotyrosine, 20, into ribonucleotide reductase was
performed to investigate the significance of a stable tyrosine
radical pathway for maintaining enzyme conformation and
activity during catalysis [54]. Incorporating 20 site-specifi-
cally into the KlenTaq DNA polymerase active site allowed
the investigators to probe the role and importance of specific
hydrogen bond interactions in the abasic bypass site, based
on the modulation of pKa values [55]. Further, site-specific
incorporation of isotopically labeled UAA such as 2-nitro-
benzyltyrosine, 21, 2-amino-3-(4-(trifluoromethoxy)phenyl)-
propanoic acid, 22, and 4-methoxyphenylalanine, 23, at
11 different positions around the proposed binding site in
the thioesterase domain of human fatty acid synthase
demonstrated the utility of NMR-active UAAs as a tool to
probe the structure, dynamics, and ligand binding of
enzymes [56].

Enhancing activity

The nitroreductase enzyme has recently raised enormous
interest in view of its potential use in enzyme prodrug



Review Trends in Biotechnology August 2015, Vol. 33, No. 8
therapy applications. To improve the catalytic activity of
the enzyme, engineering the Phe124 site with natural
amino acids such as Tyr, Lys, and Asn, and incorporating
diverse phenylalanine analogs into the enzyme, changed
the catalytic properties of the enzyme. Among the various
analogs incorporated, enzyme containing 19 showed a
substantial increase in catalytic efficiency and a >2.3-fold
improvement over the best possible natural amino acid,
lysine. Results from this study clearly demonstrate the
feasibility of the site-specific approach in improving en-
zyme catalytic properties in a way that cannot be achieved
using natural amino acids [57].

Altering regioselectivity and enantioselectivity

Engineering the properties of enzymes by modifying their
enantioselectivity and regioselectivity is a fruitful biotech-
nological application [1–3]. The site-specific incorporation
method has recently been employed successfully for modi-
fying enzymes to improve their functional activity. For
instance, a P450 enzyme was engineered by the site-spe-
cific incorporation of the tyrosine analogs 4-amino-phenyl-
alanine, 24, 4-acetyl-phenylalanine, 25, 2-benzyl-tyrosine,
26, and 3-(2-napthyl) alanine, 27, into an engineered vari-
ant termed CYP102A1-139-3. The parent enzyme converts
(S)-ibuprofen methylester into benzylic alcohol (62%) and
allylic alcohol (38%) derivatives. However, the incorpo-
ration of 26 at Leu181 enabled the conversion of the (S)-
ibuprofen methylester into benzylic alcohol (15%) and
allylic alcohol (85%) derivatives. Another variant, in which
27 was incorporated at Ala32, also converted the (S)-ibu-
profen methylester into benzylic alcohol (5%) and allylic
alcohol (95%) derivatives. These results clearly demon-
strate that the site-specific incorporation of UAAs at the
active-site positions can change enzyme regioselectivity in
a promising way. Further, the introduction of 24 into the
Leu75 variant resulted in an increased total turnover
number (34650) for (+)-nootkatone, and this is the highest
value reported to date [58].

Over the past few decades, controlling the enantioselec-
tivity of a biocatalyst has been a major challenge, and
various attempts to address this issue have been reported
[59]. More recently, mutagenesis studies with diketoreduc-
tase showed that Trp222 is crucial for substrate binding and
catalysis. The wild type enzyme showed an (R)-preference,
with 9.1% enantiomeric excess (e.e.) value towards the
substrate 2-chloro-1-phenylethanone. The incorporation of
tyrosine analogs such as 4-methoxy-L-phenylalanine, 23, 4-
phenyl-L-phenylalanine, 28, 4-cyano-L-phenylalanine, 29,
or 2-tert-butyl-L-tyrosine, 30, into the enzyme at Trp222
altered the enantioselectivity of the enzyme. For example,
the variant incorporating 30 gave a 33.7% e.e. value. More
interestingly, the enzyme containing 29 showed an inver-
sion of enantiopreference from (R) to (S), with 33.3(S)%
e.e. [59]. Taken together, these data clearly demonstrate
the potential of UAA in increasing the enantioselectivity
and also in changing the enantiopreference of enzymes.

Photo-controllable enzymes

Incorporating photocaged UAAs site-specifically into pro-
teins and enzymes enables researchers to precisely control
their biological activities via the photochemical reaction
[60,61]. Optochemical control studies began with the in-
corporation of 21 into b-galactosidase and 2-nitrobenzyl-
cysteine (31) into caspase-3, respectively, to monitor their
enzymatic activities [62,63]. Likewise, incorporation of 21
into Taq DNA polymerase successfully enabled research-
ers to regulate the enzyme activity [64]. Later, 2-nitroben-
zyllysine (32) was introduced at the active site of firefly
luciferase to facilitate the measurement of intracellular
ATP dynamics in HEK293T cells [65]. More interestingly,
investigating signaling pathways through the optochem-
ical control method was accomplished by incorporating 32
into a highly conserved lysine site of the mitogen-activated
protein kinase kinase 1 (MAP kinase kinase 1, MEKK1)
[66]. Recently, the principle of photocaging has also been
extended to gene-editing studies. A light-activatable zinc-
finger nuclease was developed by site-specifically labeling
the enzyme with 2-nitrobenzyl tyrosine (21) which can be
used as an alternative over the Cu(I)-catalyzed click cyclo-
addition because activation by light is non-toxic to cells
and enables precise temporal control in gene-silencing
applications [67].

Challenges and opportunities for enzyme engineering
with UAAs
Residue-specific incorporation is an simple approach for
preparing single UAA-containing proteins with novel
functionalities. In particular, the synergistic effects of
multisite UAA replacements can be exploited to improve
the structural and biological features of the proteins.
However, the major drawback of this approach is that
there is no specific control of the site of introduction
[68]. Further, enzyme engineering with residue-specific
incorporation enables multisite incorporation of UAAs
that often induces perturbations in the folded structure,
especially for larger proteins [17,69,70]. This can be over-
come by employing directed evolution (Box 2) [69,71,72] or
by exclusion of the non-permissive site [70] with the help of
structural analysis. In the residue-specific incorporation
approach, the presence of trace levels of the corresponding
natural amino acid in the cell can compete with the UAA,
often leading to heterogeneous proteins [39,73]. For the
efficient incorporation of UAA, complete depletion of the
corresponding natural amino acids in the medium after
reaching a specific optical density (in general, 1 OD600

in flask cultures) is a crucial step in UAA incorporation,
and this complicates the process, notably for large-scale
production of enzymes in fermenters. Taken together, it
is important to develop standardized protocols and cus-
tomized approaches for efficient incorporation of UAA
during large-scale fermentation. In addition, the resi-
due-specific incorporation method relies on the substrate
specificities of endogenous tRNA synthetases that are
restricted to isostructural analogs of the 20 common amino
acids [74]. To achieve efficient incorporation of desired
UAA, the substrate specificity of the endogenous tRNA
synthetase needs to be engineered to permit an increased
spectrum of UAAs [74].

In contrast to residue-specific incorporation, site-specif-
ic incorporation is a unique system that enables selective
control of UAA incorporation. In addition, this approach is
generally not restricted to isostructural UAAs because it
467



Box 2. Directed evolution with UAAs

Directed evolution is based upon the principle of natural evolution,

whereby the introduction of random mutations into a protein allows

the creation of high-level sequence diversity and screening/selection

for favorable variants [92]. In the current decade, the directed evolution

strategy has been enhanced by an expanded set of amino acids that

enlarge the sequence space of proteins and in turn increase the

chances of evolving a desired mutant [69,93–95]. Recent progress in

protein evolution using UAAs is outlined below.

Directed evolution with the residue-specific incorporation method

Although the introduction of UAAs using residue-specific incor-

poration provides new functionalities to the proteins, it often leads to

a substantial loss of activity or stability through perturbations of the

correctly folded structure [17,69]. Tirell and colleagues described a

new approach to engineer enzymes with novel compositions by

combining residue-specific incorporation of UAAs with directed evo-

lution [69]. The complete replacement of 13 leucine residues of

chloramphenicol acetyltransferase (CAT) with the leucine surrogate

50,50,50-trifluoroleucine resulted in a 20-fold reduction in the half-life

of thermal inactivation of the parent enzyme at 60 8C. However, two

rounds of random mutagenesis and screening yielded a variant of

CAT containing three amino acid substitutions, which in fluorinated

form demonstrated a 27-fold improvement in half-life, demonstrating

full recovery from the loss in thermostability caused by 50,50,50-

trifluoroleucine incorporation [69]. Later, a similar strategy was

demonstrated for other proteins such as green fluorescent protein

and the single-chain variable fragment (scFv) of an antigenin antibody

[71,72]. These studies showed that directed evolution provides an

effective means for adapting protein sequences for the inclusion of

novel side chains and intramolecular interactions.

Directed evolution with site-specific incorporation method

In contrast to the residue-specific incorporation method, UAAs can

be genetically encoded at a desired site by using a stop codon, thereby

enabling site-specific incorporation [73]. Translation with UAA using

site-specific incorporation utilizes the same fundamental paradigm as

translation with natural amino acids, resulting in unrestricted 21 amino

acid protein evolution [92,93]. The initial groundwork for the directed

evolution of proteins with UAAs was carried out in the phage-display

system targeting the immunoglobulin complementary-determining

region 3 of the heavy chain (CDR3H) [93]. The phage-displayed anti-

body libraries that randomly incorporated UAAs into CDR3H were

subjected to in vitro selection experiments. A phagemid expression

system comprising bacteriophage M13 coat protein pIII and an ortho-

gonal tRNA/synthetase pair was utilized for the incorporation of UAAs

in response to the amber stop codon (TAG) [93]. Antibodies containing

boronate or sulfotyrosine residues were found to outcompete natural

antibodies in binding to acylic glucamine resins and the HIV coat

protein gp120, respectively [96–98]. Although this strategy was de-

monstrated with an antibody, it can also be extended to enzymes

where the incorporation of novel amino acid codons into the genetic

code can be advantageous for the evolution of enzymes with novel

or enhanced functions. In addition, directed evolution methods have

been developed that allow random substitution of a contiguous

trinucleotide stop codon sequence (TAG) throughout a target gene

for use in conjunction with site-specific incorporation [94].
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relies on the use of an orthogonal system developed by
guided-evolution approaches [75]. Although great progress
has been made in enzyme engineering via site-specific
incorporation of UAAs, it also has limitations such as poor
protein yield and single-site incorporation of a single type
of UAA [76–78]. Recent breakthrough strategies enable
increased protein expression levels and multisite incorpo-
ration of UAAs by engineering ribosomes or by the removal
of a translation release factor [76,77,79–81]. Further,
efforts have also been focused on multi-UAA incorporation,
and this has been accomplished by evolving quadruplet
codons and encoding at two different types of stop codon
[79,82]. Exploiting these strategies in enzyme engineering
will have an enormous influence on evolving novel enzymes
with attractive multifunctional properties. Finally, struc-
tural insights into the target enzyme and understanding
the effects of novel side-chain UAAs will be necessary for
choosing the optimum site and the appropriate UAA.
Although these emerging strategies have become now
become firmly established, UAA diversity and break-
through strategies can be further expanded and more
widely applied in enzyme engineering.

One way to overcome the challenges inherent in each
method is to combine them in a single in vivo expression
experiment. To make this possible, a simple approach was
developed by combining residue-specific and site-specific
incorporation of UAA to generate a multifunctional protein
with great promise in several applications (Box 1) [68,75,
83–85]. By means of this coupling approach, a bifunctional
v-TA enzyme was engineered that exhibited increased
thermostability, owing to the synergistic effects of globally
substituted (4R)-fluoroproline, and enhanced chitosan im-
mobilization as a result of site-specifically added L-dihydrox-
yphenylalanine, thereby facilitating the reusability of the
468
enzyme [84]. In terms of thermal stability, two different
UAA-containing v-TA variants showed a 2.4-fold increase in
half-life at 708C, compared to the wild type enzyme, and the
immobilized enzymes exhibited excellent reusability for up
to 10 cycles in the kinetic resolution of chiral amines [84].

Concluding remarks and future perspectives
In vivo incorporation of UAA has proved to be a remarkably
effective strategy in engineering enzymes with improved
and altered enzyme activity, stability, regioselectivity, or
enantioselectivity. The technique is also helpful in investi-
gating photo-controllable activation and for the biophysical
characterization of enzymes using UAA as biophysical
probes. Although tremendous efforts have been invested
in advancing protein engineering using UAAs [75–85], the
newly developed strategies and recent advances have not
yet been fully exploited in enzyme engineering applica-
tions. The high cost of the unnatural building blocks and
their commercial unavailability are major barriers to the
industrial application of UAA-containing enzymes. To
overcome these limitations, enzymatic synthesis of UAA
amino acids such as fluorotyrosine and tryptophan analogs
has been accomplished using tyrosine phenol lyase and
tryptophan synthase, respectively [86–88]. Further devel-
opment of chemical and enzymatic routes for the synthesis
of UAAs in an easy and cheap way will be a milestone in
enzyme engineering. Alternatively, host cells can be engi-
neered for the biosynthesis of UAA such as phenylalanine
and pyrrolysine analogs and their subsequent incorpo-
ration into target proteins [89–91]. Ultimately, evolving
host cells for the metabolic production of UAAs from cheap
sources and concurrently incorporating them into target
enzymes will lead to a boom in the industrial applications
of engineered enzymes.
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In conclusion, rapid developments in UAA incorporation
strategies are opening new doors in enzyme engineering
and will serve as a toolbox to evolve and engineer enzymes
with desired functions.
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