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INTRODUCTION

v Floods are natural processes, taking place with different
magnitude and frequency in all fluvial systems

v Floods are one of the major natural hazard that affect highly
populated countries
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Which processes occur during floods?

Not only inundation!

Lateral mobility Channel aggradation Wood transport



Why the focus on extreme floods?

v Extreme floods may have strong impact on channel
morphology and floodplain

v The risk associated to such floods can be very high

v" In several areas extreme floods are likely to become more

frequent (climate change)



Outline of the lecture

1. Analysis of geomorphic response to extreme floods
2. Understanding processes: linking geomorphic response to
driving factors

3. Case study: the Magra River flood event

Hazard assessment. do we have effective tools to predict
geomorphic response to extreme floods? Which processes

can be expected in a specific river reach?



Channel Changes

Before the flood
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FLOOD and CHANNEL VERTICAL CHANGES

Deposition occurs on the bars and on the floodplains through gravel
deposition.

Aggradation is very common immediately downstream the tributary
junctions, where the channel bed presents lower slope or in areas were
the valley widens up and channels are unconfined.

On the floodplain, the amount of aggraded sediments tends to decrease
with distance from the channel




Channel Changes: bed level
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Stream power

Channel changes only occur when the flood power exceeds the channel boundary
resistance threshold, which depends on river bed and bank cohesive forces along
the channel reach.

Stream power has widely been used as a measure of the geomorphic effectiveness
of floods because its measures quantify river energy expenditure in fluvial
systems.

Stream power ‘the rate of energy supply at the channel bed that is available for
overcoming friction and transporting sediments’.

STREAM POWER
Q=pgQS
where Q [m3s?] is the flood discharge

UNIT STREAM POWER
Stream power per unit-wetted area is termed unit stream power, w [W m=] and
expressed as:
w=Q/w
where w [m] is the top channel width corresponding to the flood level



Role of unit stream power and flow duration
on geomorphic change
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(Costa & O’Connor, 1995)

Unit Stream Power: w = pgQS / w



Additional factors, besides hydraulic variables, should be

incorporated to explain channel and floodplain response:

v Bed-load supply (e.g. Dean & Schmidt, 2013,
Geomorphology)

v’ Lateral confinement (e.g. Thompson & Croke, 2013,
Geomorphology)

v" Artificial structures (e.g. Langhammer, 2010, Natural
Hazards)

«Despite decades of work in geomorphology on flood
effectiveness, we still generally lack ability to predict sites of
major geomorphic changes during extreme flow events»
(Buraas et al., 2014; ESPL)



Sediment sources and delivery
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Integrated approach for investigating
geomorphic response to an extreme flood
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EARTH SURFACE PROCESSES AND LANDFORMS

Earth Surf. Process. Landforms 41, 835-846 (2016)
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Extreme flood event in the Magra and Vara basins

O MAGRA and VARA

October 2512011
Nardi and Rinaldi, 2015 - ESPL;
Rinaldi et al., 2016 — ESPL;
Surian et al., 2016 - Geomorphology

MAIN CHANNELS MAGRA | VARA

Catchment area (km?) 1146 571
Catchment max elevation (m) 1901 1404
Channel length (km) 70 58
Sandstones

Main Catchment Geology

Mudstones




The 25% October 2011 event in the Magra River catchment:
spatial distribution of rainfall maxima corresponding to
three-hours rainfall duration
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(Surian et al., 2016, Geomorphology)

Maximum hourly rates: up to 149 mm/hr,
Event-accumulation maxima were up 500 mm (Rl up to 300 yr)



—— Channel network ]

e Study reaches
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Stream Drainage Basin Stream  Channel Dso Total 3hmax Runoff Qp Unit Qpk

area relief length slope (mm)  rainfall rainfall ratio (m3 s'1) (m3 s

(km?) (m) (km) (%) (mm) (mm) km™)
Teglia 38.8 1035 14.8 4.9 47-69 335 116 0.53 538 13.9
Mangiola 26.2 1012 12.9 6.6 41-95 376 148 0.57 406 155
Geriola 8.5 884 £2 8.8 n.a. 267 116 0.51 121 14.2
Osca 218 962 99 41 44-65 243 125 0.52 279 12.8
Gravegnola 34.6 1106 12.8 7.0 33-79 387 176 0.62 523 161
Pogliaschina 25.1 625 9.1 56 24-36 387 209 0.61 595 23.7




Geomorphic effects in the Magra River catchment

Teglia River

Pre-flood

Post-flood

(Rinaldi et al., 2016, ESPL)




Widening observed in the study channels

R el Average Width before flood =17m
- Average Width after flood = 43m
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Widening observed in the study channels

Width ratio ‘o -
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* The narrower the channel, the largest the max widening

* Very large scatter for similar channel size



Relation between widening («width ratio») and unit
stream power
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(Comiti et al., 2016)

width ratio = channel width after / channel width before the flood



Sediment connectivity analysis
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Multiple regression models between width ratio and
controlling factors for the sub-reaches characterized by

no-steep slope ( <4%)
Model 1 Model 2 Model 3 Model 4
R?=0.32 R*=0.35 R?=0.40 R?=0.38
R%a¢=0.29 RZ24=0.32 R%a4=0.37 R%2=0.35
p-value<0.000 p-value<0.000 p-value<0.000 p-value<0.000
R? p-value R? p-value R? p-value R? p-value
Ci 0.23 0.0000 0.23 0.0000 0.23 0.0004 0.23 0.0000
. 0.05 0.4247 0.05 0.1758 0.05 0.0729 0.05 0.9186
Structures
Sediment supply 0.11 0.0022 0.11 0.0004 0.11 0.0044 0.11 0.0028
Slope 0.01 0.7999 . - . ’
Q (Wm™ ; . 1.33E-06  0.0458 . -
Woefore (WM™) - . : - 0.14 0.0011
Watter (WM™®) . - - - - : 0.12 0.0061

(Surian et al., in review)



Multiple regression models between width ratio and
controlling factors for the sub-reaches characterized by

steep slope (> 4%)
Model 1 Model 2 Model 3 Model 4
R?=0.45 R?=0.66 R?=0.67 R?=0.44
R%24j=0.42 R%a=0.64 R%a4=0.66 RZaq=0.42
p-value<0.000 p-value<0.000 p-value<0.000 p-value<0.000
R? p-value R? p-value R p-value R? p-value
Ci 0.43 0.0000 0.43 0.0000 0.43 0.0000 0.43 0.0000
Sediment supply 0.03 0.4226 0.03 & 45 0.03 0.3047 0.03 0.3575
Slope 0.02 0.3389
Q (Wm™ 0.44 0.0000
Woefore (WM'?) 0.50 0.0000
Watter (WM™®) 0.02 0.7305

(Surian et al., in review)



Some remarks on the Magra flood

v" magnitude of changes: very intense channel widening (in several
reaches channel widening took up most of the alluvial plain)

v' controlling factors: besides hydraulic variables (unit stream
power), channel confinement, hillslope sediment supply, artificial
structures are significant

v’ regression models as predictive tools of channel widening: more
reliable in the steep channels, less in the no-steep channels

Geomorphology 272 (2016) 78-91
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Final remarks

v’ Integrated approach: crucial for a comprehensive analysis of extreme floods

v' Complex channel response: hydraulic variables are not sufficient to explain
geomorphic response (e.g. Costa & O’'Connor, 1995; Dean & Schmidt, 2013;
Thompson & Croke, 2013; Buraas et al., 2014); confinement is a key factors; unit
stream power calculated on pre-flood channel width

Hazard assessment: channel often
takes up the whole valley floor, in
small streams; widening and lateral
confinement are well related;
widening often coupled with
aggradation

Need to include geomorphic
processes in hazard assessment and

mapping: inundation is not
everywhere a major issue, much less
relevant than channel dynamics
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