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Highlights
Dramatic reductions in dispersal ability
have evolved repeatedly across diverse
taxa and ecosystems.

Dispersal reduction can be driven either
by spatial or ecological causes. Re-
peated losses of dispersal in ‘insular’
habitats (e.g., island and alpine ecosys-
tems) suggest that both isolation and
habitat shifts can underpin loss of
dispersal.

The ‘transporter’ hypothesis may pro-
vide a key mechanism for the ‘spread’
of dispersal reduction, and widespread
parallel evolution has been revealed by
recent genomic analyses of birds, fishes,
and insects.

Ecological gradients can drive both grad-
ual and rapid dispersal-reduction events.
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Recent biological analyses suggest that reductions in dispersal ability have been
key drivers of diversification across numerous lineages. We synthesise emerging
data to highlight similarities regarding the causes and consequences of dispersal
reduction across taxa and ecosystems, aswell as the diverse genomicmechanisms
underpinning these shifts. Natural selection has acted on standing genetic variation
within taxa to drive often rapid – and in some cases parallel – losses of dispersal,
and ultimately speciation. Such shifts can thus represent an important nexus be-
tween adaptive and neutral diversification processes, with substantial evolutionary
consequences. Recognition of the links between these concepts that are emerging
from different fields, taxa and ecosystems is transforming our understanding of the
fascinating role of dispersal reduction in the formation of biodiversity.

Reductions in Dispersal Ability
A key goal of ecological and evolutionary research is to reveal the processes that generate biodi-
versity over space and time. The evolution and maintenance of dispersal ability have long been
recognised as being important for the geographic spread and ecological diversification of numer-
ous biological clades [1–4]. Despite the potential advantages conferred by dispersal ability
(e.g., reduced competition; colonisation of new habitat patches [5]), this strategy also carries sub-
stantial energy costs and risks [6]. This tension is highlighted by the fact that major reductions in
dispersal ability (dispersal reduction; see Glossary) have evolved repeatedly across the tree of
life. This trend appears to be clear in birds, and also in insects, where nearly every order provides
examples of multiple losses of flight [7,8]. Newly emerging data are transforming our understand-
ing of the commonalities and consequences of dispersal-reduction processes across numerous
lineages. We synthesise here recent widespread evidence across a diversity of ecosystems and
taxa (later and Figure 1) on the causes, genomic mechanisms, and evolutionary consequences of
a reduction in dispersal capacity. We further explore the role of these shifts within a novel niche-
based model explaining the patterns of geographic speciation.

Terrestrial Ecosystems
Flightless birds on oceanic islands (Figure 1A) represent iconic cases of dispersal reduction. In-
deed, flightlessness has evolved repeatedly in numerous avian lineages, and some clades
(e.g., ratites [9–11], anatids [12], and rails [13,14]) show abundant evidence of repeated flight re-
duction, particularly on islands [15]. Wings have also been lost repeatedly within nearly all insect
orders, and probably thousands of times within the Coleoptera alone [7]. The loss of flight in in-
sects has been regularly linked to particular habitats such as soil and caves [16,17]. Wing reduc-
tion in insects is also widely associated with island [18] and montane [19] (Figure 1B)
assemblages, and there is a similarly substantial literature on dispersal reduction in island plants
[20–22] (Figure 1C). The repeated association of islands with reduced dispersal capacity in birds,
plants, and invertebrates has captivated the attention of biologists [15], but in the latter case has
received only limited empirical assessment (Box 1).
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Glossary
Convergent evolution: the
independent evolution of analogous
traits in unrelated lineages.
Diadromy: life cycles that include
movement between freshwater and
marine ecosystems.
Dispersal reduction: decreased
spatial displacement of individuals and
reproductive propagules, resulting in
diminished gene flow among
populations.
Ecological selection: where strictly
ecological processes govern the
transmission of heritable traits.
Genomic islands of divergence:
small regions of the genome that are
tightly associated with adaptation and
that are resistant to gene flow.
Neutral evolution: random genetic
drift of alleles that are selectively neutral.
Oceanic islands: islands that do not sit
on a continental shelf and are typically
volcanic in origin.
Parallel evolution: the independent
evolution of similar traits in related
lineages.
Planktotrophic larvae: juvenile
individuals that drift in the ocean, feeding
on plankton.
Transporter hypothesis: the process
by which gene flow introduces adaptive
alleles into different regions, thus
facilitating parallel selection on the same
adaptive alleles in distinct populations.
Viviparity: brooding of early
developmental stages within the
parental body until birth.
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Freshwater Ecosystems
Reductions in marine migratory ability and/or salinity tolerance are a widespread phenomenon in
diverse freshwater taxa [23–25]. Repeated losses of diadromy are particularly well characterised
in radiations of salmonid [26], gasterosteid [27,28], and galaxiid [29–31] fishes, and there are
many cases of repeated ‘landlocking’ following colonisation of postglacial lakes (Figure 1D).
Rapid reductions in salinity tolerance have also been documented for numerous marine inverte-
brate lineages entering freshwater ecosystems [23]. In aquatic insects, wing reduction (as well
as eye loss and pigment reduction) is a repeated feature of water beetles colonising subterranean
aquifers [32], and multiple studies point to diminished dispersal capacities in species inhabiting
running waters compared to related species in standing systems [33–35].

Marine Ecosystems
For sedentary marine species that rely on passive transport, loss of buoyancy of larval or adult
propagules can substantially decrease dispersal ability [36]. In macroalgae (e.g., southern bull
kelp, Durvillaea spp.), for example, losses of buoyancy (e.g., transitions from hollow-bladed to
solid-bladed adult ecotypes) can drastically reduce potential for trans-oceanic rafting [37]
(Figure 1E), and non-buoyant lineages are typically restricted to single landmasses [38]. Similarly,
transitions from planktonic (dispersive) to benthic/brooding (non-dispersive) larval development
have occurred in numerousmarine invertebrate taxa [39–41], with major implications for biogeog-
raphy and genetic connectivity [42–44] (Figure 1F).

Causes of Dispersal Reduction
Reductions in dispersal ability are caused by processes that alter selective pressures on dispersal
traits. Causes of dispersal reductions emerging from recent literature can be broadly grouped into
(i) purely spatial causes, such as the colonisation of isolated (and commonly reduced) habitat
patches for a lineage; and (ii) ecological causes, namely shifts in the abiotic and/or biotic condi-
tions that a lineage experiences. These two causes may act in isolation or jointly. The most
paradigmatic examples of reductions in dispersal ability have been associated with the colonisa-
tion of islands [15,45], and dispersal reduction is indeed one of the most frequently invoked insu-
lar syndromes. Owing to the isolated nature of islands and other patchy ecosystems
(e.g., calcrete aquifers [32]), spatial isolation has often been inferred to play a primary role in
such dispersal reduction by acting via direct negative selection against dispersive individuals
(given their reduced probability of finding a suitable habitat relative to non-dispersers) [46,47].
However, several authors have also highlighted a role for ecological causes of island dispersal re-
ductions, citing changes in biotic and/or abiotic conditions (even without habitat shifts) that are
frequently associated with the colonisation of insular settings. It has been demonstrated, for ex-
ample in the case of island birds, that reductions in dispersal are not only significantly associated
with island size but also with decreased predation pressure [15] (Figure 2A). Similarly, other re-
searchers have proposed that insular flight reduction is linked to diminished resource availability
and the emergence of conflicting pressures [48], where dispersal reduction could be the
byproduct of trade-offs involving selection for other traits (e.g., juvenile survivorship or competitive
ability in the case of insects [22]). In the case of calcrete-aquifer insects, reduced dispersal may
also reflect a combination of spatial and ecological causes, where wing reduction is partly a
side-effect of adaptation to the singular conditions of these fragmented subterranean habitats
(e.g., [32]).

Perhaps some of the clearest evidence for ecological causes of dispersal reduction comes from
associations between dispersal and habitat variation. In the case of insects, wing-reduction
events have been frequently attributed to habitat transitions that are linked to changes in habitat
features such as stability [7,49,50], abiotic stress [51], or habitat discontinuity [32]. Recent
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Figure 1. Examples of Dispersal Reduction. Reduced dispersal has evolved repeatedly across a wide range of taxa and ecosystems, often leading to genetic isolation
of dispersal-limited lineages. In the schematic examples, ancestral lineages with higher dispersal potential (connected by gene flow, arrows) are in blue, whereas their
dispersal-limited derivatives are indicated in red, orange, and brown. (A) Flight reduction in island birds (e.g., rails [13,14]). (B) Wing reduction in alpine insects
(e.g., Zelandoperla stoneflies [53,59,102]). (C) Increased seed size in island plants (e.g., Fitchia sunflowers [20,21]). (D) Loss of marine migratory ability in freshwater fishes
(e.g., Gasterosteus sticklebacks [27,28]). (E) Transitions from buoyant intertidal to non-buoyant subtidal seaweed ecotypes (e.g., Durvillaea kelps [38]). (F) Loss of plank-
tonic larval dispersal in marine invertebrates (e.g., Astrotoma brittle stars [43]).
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examples have provided mechanistic evidence for such processes in alpine insects, where
parallel evolution of wing reduction in individual species is associated with repeated adaptation
to high-altitude habitats [52–54] (Box 2). For aquatic insect lineages, contrasting habitat stability
[e.g., standing (lentic) versus running (lotic) water; tidal versus seasonal marshes] has been sug-
gested as an ecological driver of shifts in dispersal capacity [49,50], even between closely related
species [34,35]. In the case of fish lineages, loss of a marine migratory phase seems to be pro-
moted by ecological causes such as drainage geomorphology, habitat quality, and competition
[24]. In the marine realm, reductions in larval dispersal {e.g., transitions from planktotrophic
larvae to lecithotrophic (yolk-feeding) development, and switches to viviparity [39]} are also
associated with habitat transitions that are linked to habitat features such as ocean temperature
[41,55], habitat productivity, and/or environmental predictability [40]. In buoyant seaweeds,
for which passive drifting represents an important means of coastal and trans-oceanic
514 Trends in Ecology & Evolution, June 2020, Vol. 35, No. 6
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Box 1. Oceanic Islands as Drivers of Dispersal Reduction

The loss or reduction of dispersal ability is often considered to be a key feature within the generalised island syndrome [22]
that describes directional differences in attributes between island taxa and their continental relatives. This trend has been
repeatedly suggested in plants, birds and – perhaps most famously – insects, where Darwin [46] speculated that the inci-
dence of flightless species on Madeira (as described by Wollaston [47]) could be explained by a selective disadvantage for
dispersing individuals that might well perish in the sea. However, comparisons of the incidence of flightless species be-
tween island and continental areas have led to the conclusion that no selective arguments are required because there is
no discernible tendency for oceanic islands to have higher frequencies of flightless species [19]. Alternatively, if islands
are more likely to be colonised by flighted species, as would seem plausible, then secondary loss of flight would be nec-
essary to explain similar proportions of flightless species compared to continental areas. There are good reasons to expect
such a trend, building on Darwin’s [46] original argument. If the trade-off relationship reported for reduced dispersal invest-
ment and higher reproductive investment in insects (e.g., [106,107]) is broadly generalisable, then wemight indeed predict
an island rule for secondary flightlessness in insects, although comparative data are lacking. In the case of birds, a recent
comparative analysis does suggest a general trend toward flightlessness in island birds [15]. However, instead of the
purely spatial causes that have been suggested to explain flightlessness in insects, the results of this study argue that dis-
persal reduction evolves because of release from predators – an ecological cause. Although many studies suggest a gen-
eral trend toward reduced dispersal ability in island plants ([108] for examples), it has recently been highlighted that this
trend might simply be a passive byproduct of selection for large seeds [22] (see Outstanding Questions). There are thus
parallels across all three taxonomic groups, and there is an emerging consensus that, when dispersal loss does occur,
it is likely to be helped along – or wholly driven – by indirect benefits to the organism. Particularly with regard to insects
and plants, however, more comparative data will be necessary for a more complete understanding of the relative incidence
of dispersal reduction on islands, the selective agents at play, and their relative roles (see Outstanding Questions).
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dispersal [37,56], secondary loss of buoyancy may stem from ecological transitions to exploit
subtidal niches [38], and where dispersal reduction is thus an incidental effect of these ecotypic
shifts.

Some particular clades appear to be especially prone to dispersal reduction [57]. For instance,
diadromous fish that readily colonise lakes can repeatedly lose their marine migratory larval
phases [27], and this may be particularly the case for strong-climbing species that penetrate far
inland to reach alpine tarns [58]. Similarly, asterinid sea stars may be predisposed to repeated
loss of planktotrophic larval development under environmental gradients [44]. Weak-flying insects
TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 2. Dispersal Reduction is a Nexus between Ecological Selection and Geographical Speciation. In both
schematic examples, selection along environmental gradients reduces dispersal potential, which in turn increases the
probability of population structuring and geographical speciation. (A) Flight reduction in island birds. (B) Flight loss in alpine
insects. Flighted lineages are indicated in blue, flightless in red. In (A), flight ability may diminish gradually and predictably in
volant birds before being lost completely (e.g., [11,12,15]). In (B), dispersal ability can be highly bimodal in insect populations –
being essentially ‘all or nothing’ (e.g., by being constrained by a simple wing polymorphism; e.g., [51,53,74]).
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Box 2. Repeated Dispersal Reduction in High-Altitude Ecosystems

Loss of dispersal potential is a repeated and distinctive feature of high-altitude assemblages, and this phenomenon has been
particularly well characterised for montane insect taxa that have lost their ability to fly [19,52–54,57,59]. Darlington [109], for
instance, compared diverse beetle assemblages at different altitudes in New Guinea, noting ‘Wing atrophy is insignificant
among the lowland forms … [whereas] 95 percent of the carabids on the highest mountain-tops have atrophied wings’.
Recent altitudinal transect analyses from New Zealand mountains have similarly revealed striking contrasts – even at the in-
traspecific level – where wing-polymorphic insects showmarked increases in wing reduction over small spatial scales linked
to the alpine treeline [53,59]. These findings are mirrored by analyses from the mountains of Japan [54] and the Galapagos
[52] which similarly reveal parallel evolution of wing-reduced high-altitude insect ecotypes. Together, these compelling data
imply that exposure to high-altitude conditions (e.g., winds) explains the increasing prevalence of insect dispersal reduction in
montane ecosystems at the species and population levels (see Figures 1B, 2B, and 3 in main text). Comparable trends are
now also emerging for botanical assemblages, where the majority of plant species in Australia’s alpine flora [110] exhibit sub-
stantially lower seed-dispersal capacity than predicted for terrestrial plants more generally [111]. Although these
macroecological trends might simply stem from the relatively small stature of alpine plants (with lower release height for dis-
persive propagules), Morgan and Venn [110] noted that an unusually high proportion of alpine plants also lacked alternative
means of long-distance dispersal, contrasting with adaptations that are relatively common in lowland plant communities. Some
of the earlier phenomena suggest that purely spatial causes can reinforce dispersal reduction for taxa occupying highly
fragmented (effectively ‘insular’) alpine habitats. The possibility that isolated montane habitats can function as ‘islands’ for
dispersal-limited upland taxa has also been suggested for flight-reduced alpine birds –which similarly show unexpected phylo-
geographic diversity [112]. Although non-dispersive alpine populations experience rapid rates of genomic evolution [102] (see
Figure 2B in main text), this diversificationmay be somewhat offset by increased rates of extinction, especially under rapid global
change [113].

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 3. Evolutionary Hypotheses for theWidespread Occurrence of Dispersal Reduction. (A) An example of the
distributions of dispersive versus non-dispersive lineages within wing-polymorphic insect taxa. (B) Alternative evolutionary
scenarios for single loss versus multiple losses of dispersal ability (indicated by red stars). (C) Distinct evolutionary
predictions for dispersal-reduction loci under the ‘standing variation’ hypothesis (e.g., transporter hypothesis, ancestra
variation) versus the ‘independent mutations’ hypothesis. Blue circles represent dominant alleles coding for dispersal
whereas red and orange circles represent independently evolved recessive flight-loss alleles.
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such as stoneflies (Plecoptera) similarly seem predisposed to flight loss in harsh environments
[59]. The apparent propensity of some taxa for such parallel switches may also be partly
explained by the transporter hypothesis [60] (later and Figure 3). Regardless, although the spe-
cific drivers and mechanisms of dispersal reduction may be highly variable among taxa
and ecosystems, the similarities that arise from these cases highlight the importance of the
interplay between isolation and ecological selection in promoting reductions in dispersal
capacity (Figure 2).

Genomic Mechanisms of Dispersal Reduction
High-throughput genomic sequencing is starting to provide crucial new insights into the drivers
and mechanisms of dispersal reduction. In particular, there is a growing literature addressing
the genomic and epigenomic bases of animal migratory phenotypes [61]. Although dispersal-
related phenotypic variation has been suggested to have complex genetic bases (e.g., [62]),
several recent genomic studies conclude that dispersal ability and timing can be heavily
influenced by small numbers of major-effect genes (e.g., [63–66]). Furthermore, emerging data
imply that reductions in dispersal can potentially evolve rapidly via genetic changes in both coding
and regulatory regions [11,67,68]. In assessing genomic shifts in the unique flightless Galapagos
cormorant (Phalacrocorax harrisi), for example, Burga et al. [67] detected mutations that may
underpin phenotypic shifts in cilia function and skeletal development. The genomic comparisons
of several flight-degenerate bird lineages by Pan et al. [68] revealed convergent evolution of
mutations in key genes regulating carbohydrate and lipid metabolism. These authors suggested
that metabolic switches related to primary energy sources may be important drivers of avian
dispersal reduction. Similarly, Sackton et al. [11] detected apparently convergent regulatory shifts
(involving different genes) across independent flight-loss events in ratites. By contrast, Campagna
et al. [12] identified parallel changes in two loci that were associated with multiple flight-reduction
events in steamer ducks (Tachyeres), and one of these markers had previously been linked to
vertebrate skeletal development. In most of the earlier cases, it seems likely that avian flight
diminished gradually over evolutionary time [12,15] (Figure 2A).

Genomic data are similarly increasing our understanding of the genetic basis of variation in fish
dispersal ability, including the loss of salinity tolerance. Hess et al. [63], for instance, detected ge-
netic loci in salmonid fishes, including single loci of major effect, that were associated with differ-
ential timing of marine migration. In addition, genomic analyses of migratory versus resident
freshwater fishes are revealing both coding and regulatory loci that are associated with repeated
ecological transitions between convergently evolved fish ecotypes [27,31,69–71]. In genomic
comparisons of freshwater versus diadromous stickleback (Gasterosteus) fish ecotypes,
Terekhanova et al. [28] detected 18 genomic islands of divergence, thus providing a frame-
work for 'rapid assembly of G. aculeatus genotypes from pre-existing genomic regions of
adaptive variation'. Such genetic shifts probably underpin a broad array of rapid freshwater adap-
tations, including changes specifically associated with loss of diadromy. In contrast to birds, it
would seem that the potential for rapid dispersal reductions may be higher in fish, consistent
with the sharp selection gradients between marine and freshwater habitats.

Numerous insect taxa exhibit bimodal intraspecific dispersal polymorphisms, and selection
operating on this standing variation provides a potential pathway to complete loss of dispersal
ability [57]. There are also many examples where strictly flighted species have undergone multiple
flight-loss transitions (e.g., [72]). When selection is strong, such dispersal reduction may be both
rapid and complete (Figure 2B). The developmental/genomic bases of dispersal polymorphisms,
however, are only starting to become clear (e.g., [73,74]). Wing length in some wing-polymorphic
insect taxamay bemediated by the expression of the versatile arthropod sesquiterpenoid juvenile
Trends in Ecology & Evolution, June 2020, Vol. 35, No. 6 517



Trends in Ecology & Evolution
hormone (JH) at key stages of development [75–77]. Indeed, recent transcriptomic comparisons
of sympatric full-winged and wing-reduced stonefly lineages suggest that JH expression may
underpin wing reduction in these alpine insect lineages [78]. In other systems, however, wing
polymorphisms appear to be mediated by the steroid prohormone ecdysone (aphids [79]) or
by insulin signalling (planthoppers [73,80]), suggesting that the mechanistic routes for wing loss
may differ substantially across insect taxa. The bimodal dispersal states recurrently observed in
many insect species enable rapid responses to fine-scale spatial and temporal environmental het-
erogeneity [19]. In addition, these extreme phenotypes may suggest the existence of relatively
simple developmental/genetic ‘switches’, and that the transition toward insect flightlessness
may occur over shorter timescales than for avian systems.

Some clades are seemingly genomically predisposed to dispersal reduction (e.g., [60]), but
explaining why (see Outstanding Questions) requires an understanding of the extent to which re-
peated dispersal-reduction events have common versus convergent (e.g., [11]) genomic origins
(Figure 3). Under the ‘transporter hypothesis’ [28,60] (Figure 3), local adaptation is enhanced by
the spread of dispersal-reduction alleles among regions via dispersive individuals, with selection
acting repeatedly on this standing variation (e.g., as suggested in [44]). Increasing support for the
transporter hypothesis is emerging from several systems (e.g., [12,51]) where standing variation facil-
itates rapid, repeated evolution of dispersal-limited ecotypes in a range of taxa. Alternatively, de novo
dispersal-reduction mutations may arise completely independently in different regions (e.g., [11])
(Figure 3), although such novel mutations may imply relatively long evolutionary timeframes.

Evolutionary Consequences of Dispersal Reduction
Dispersal capacity is a key factor that constrains both the geographical range size and the genetic
substructuring of species [81], and thus influences the spatial scale of speciation [82]. Hence,
dispersal reduction may increase the sensitivity of lineages to landscape/environmental variation,
manifested by reduced gene flow among populations, and potentially driving neutral evolution
and speciation [83,84]. Similarly, dispersal reduction can increase extinction risk when a habitat is
temporally transient and/or spatially disjunct, such that colonization of new habitat patches may be
relatively infrequent compared to local population extinction [85]. Along these lines, diverse analyses
have linked reduced dispersal to dramatically increased rates of speciation (e.g., [60,86]), as well as to
increased rates of molecular evolution [87,88], reduced range sizes [89,90], and increased suscepti-
bility to extinction (e.g., [29,91]).

Loss of dispersal ability among populations can have drastic consequences over rapid
timeframes when strongly reduced gene flow, accelerated genetic drift, and loss of heterozygos-
ity lead to rapid geographical speciation [44]. Loss of marine migration, for instance, is considered
to be a key initiator of freshwater fish speciation in many regions of the globe [24,25,31,92]. Such
effects are observable both within and among species, and meta-analyses reveal consistently
higher levels of intraspecific diversification among freshwater fish populations relative to their ma-
rine and diadromous counterparts [93]. Also in the aquatic realm, the higher diversification rates,
genetic structure, endemicity, disequilibrium with current climate, and vulnerability of lotic insect
lineages have been attributed to their reduced dispersal capacities compared to their lentic rela-
tives (e.g., [33,94,95]).

As noted earlier, numerous examples of biological speciation involve splits between dispersive
and non-dispersive lineages (e.g., [12,28,31,42,50,53,70,92]), and strong reductions in gene
flow seem to be a key driver of such divergence. In some cases speciation occurs despite
range overlap and potential for ongoing gene flow among ecotypes, and dispersal reduction per-
haps plays a role in the incipient stages of ‘divergence with gene flow’. For instance, differential
518 Trends in Ecology & Evolution, June 2020, Vol. 35, No. 6



Outstanding Questions
Does selection act on dispersal for its
own sake, as proposed by Darwin, or
is dispersal reduction an indirect
consequence of selection for other
traits? This issue remains contentious,
and may potentially vary across both
taxa and ecosystems.

The extent to which dispersal
reduction has evolved repeatedly from
standing variation (either ancestral or
transported) – as opposed to conver-
gent genomic mechanisms (independent
mutations) – remains to be revealed for
many dispersal-polymorphic groups.
Although the former mechanisms are re-
ceiving increasing support from emerging
genomic analyses, further studies from a
diversity of systems are required.

Are insect lineages more likely to lose
dispersal ability on islands compared
to continental areas? Although studies
have compared the relative incidence
of flightlessness between ecosystems,
the question of whether the rate of
dispersal reduction is higher on islands
remains unanswered.

To what extent does the evolution of
dispersal reduction per se drive higher
diversification or speciation rates?
There is a need for studies that
control for other variables that may
also explain such differences.

Can dispersal-reduced lineages reac-
quire their former dispersal ability? Al-
though re-evolution of such complex
traits has been considered to be es-
sentially impossible under Dollo’s law,
recent studies hint at the potential for
reacquisition of dispersal ability via hy-
bridization and introgression of dis-
persal alleles. Future genomic studies
of migration promise to shed important
new light on the evolution of dispersal
ability.

Can macroecological patterns of
biodiversity be explained by a niche-
based model of dispersal reduction,
whereby ecological selection acceler-
ates neutral diversification?
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dispersive behaviour of ecotypes may result in spatial sorting and reproductive isolation
(e.g., [50]). Genomic shifts (e.g., islands of divergence [28,96]) may also play important roles in
such sympatric diversification scenarios.

Recent genetic analyses highlight that speciation events linked to dispersal reduction can occur
extremely rapidly [44,53]. In cases where dispersal shifts initiate divergence, loci controlling dis-
persal ability could potentially be considered as ‘speciation genes’ [97]. In some cases, dispersal
reduction may be associated with singular (isolated) speciation events (e.g., [44,67]), whereas
other dispersal reductions can initiate substantial downstream cladogenesis {e.g., dispersal-
limited lineages may be relatively prone to vicariance; e.g., moa (Dinornithiformes) [98] and the
Galaxias vulgaris fish complex [92]}.

Broadly, widespread evidence suggests that reductions in dispersal can be key drivers of
diversification, where rapid divergence is initiated by dispersal reduction [86,92]. However, it
should be noted that, in some cases (e.g., in isolated cases when divergence dates are relatively
old), establishing causal links between dispersal reduction and speciation can be complex. As an
example, Vogler and Timmermans [99] emphasise that reductions in flight could be the effects
(rather than the causes) of physical isolation. The Galapagos cormorant, for instance, could
have lost flight either before or after its initial divergence from sister taxa. It is increasingly clear
that unravelling the precise causes and timeframes of dispersal reduction and divergence
requires dispersal-polymorphic systems that are evolutionarily young (e.g., incipient species
complexes). Systems exhibiting replicated dispersal reduction have potential as particularly
powerful models [51,53].

The ability of dispersal-reduced lineages to reacquire their former dispersal capacity has long
been controversial [8,100]. Under Dollo’s Law [101], loss of dispersal ability should be irreversible,
but questions remain about the potential of recently evolved non-dispersive lineages to reacquire
their ancestral dispersal ability. One potential pathway could be via hybridization and introgres-
sion of dispersal alleles [12,51,102] (see Outstanding Questions). Future studies of the genomic
bases of migration and dispersal promise to shed increasing light on the evolutionary lability
of dispersal ability [61].

Concluding Remarks and Future Perspectives
This synthesis highlights that dispersal reduction is both a cause and consequence of ecological
and geographical diversification, and can be an important nexus between adaptive and neutral
speciation processes. Specifically, reductions in dispersal ability can stem from an array of eco-
logical causes, including immediate ecological conditions (e.g., as evidenced by differential selec-
tion across environmental gradients). The consequences of these shifts, however, are substantial
because diminished dispersal can be a key driver of subsequent neutral genetic divergence
among isolated lineages (Figure 2). In this way, dispersal shifts may even contribute to large-
scale patterns of biological diversification and macroevolutionary biogeographic phenomena
(e.g., [89,90]) (see Outstanding Questions). In some cases, even fine-scale microhabitat prefer-
ences may substantially influence both dispersal ability and the rate of neutral genetic differentia-
tion [103]. Broadly, the detection of these inter-related patterns (Figure 1), across a variety of
ecosystems and spatial scales, emphasises their overarching similarities. This model, whereby
the rates and patterns of neutral divergence are constrained by adaptive processes, contrasts
with Hubbell’s [83] strictly ‘neutral’ theory, but echoes Vrba’s [104] ‘effect’ hypothesis, whereby
immediate adaptation to local ecological conditions (e.g., [105]) can carry incidental but
substantial long-term evolutionary consequences. These data emphasise the general importance
of dispersal reduction for explaining macroecological and macroevolutionary patterns (e.g., niche-
based latitudinal and altitudinal diversity gradients, changes in neutral diversification rates between
Trends in Ecology & Evolution, June 2020, Vol. 35, No. 6 519
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closely related lineages, or contrasting vulnerabilities under environmental change; Figure 2). Future
ecological genomic analyses of dispersal-polymorphic lineages and complexes promise to further
elucidate the fascinating role of dispersal reduction in the formation of biodiversity.
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