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Speciation, that is, the evolution of reproductive barriers eventually leading to
complete isolation, is a crucial process generating biodiversity. Recent work has
contributed much to our understanding of how reproductive barriers begin to
evolve, and how they are maintained in the face of gene flow. However, little is
known about the transition from partial to strong reproductive isolation (RI)
and the completion of speciation. We argue that the evolution of strong RI is
likely to involve different processes, or new interactions among processes, com-
pared with the evolution of the first reproductive barriers. Transition to strong
RImaybe brought about by changing external conditions, for example, following
secondary contact. However, the increasing levels of RI themselves create oppor-
tunities fornewbarriers toevolveand,and interactionorcouplingamongbarriers.
These changing processesmay depend on genomic architecture and leave detect-
able signals in the genome. We outline outstanding questions and suggest more
theoretical and empirical work, considering both patterns and processes
associated with strong RI, is needed to understand how speciation is completed.

This article is part of the theme issue ‘Towards the completion of
speciation: the evolution of reproductive isolation beyond the first barriers’.
1. Is the evolution of strong reproductive isolation different
from the evolution of the first barriers to gene flow?

Speciation is the evolution of reproductive isolation (RI) through the accumu-
lation of barriers to gene exchange. Opinions vary on when the speciation
process ends: some require RI to be complete [1], while others allow some
possibility for gene exchange (notably [2, pp. 33–35]); some require RI to be irre-
versible while others do not [2, pp. 37–38]. Divergence continues to accumulate
after completion of RI. This is important for the evolution of biological diversity,
as continued ecological divergence can facilitate coexistence in sympatry. Con-
tinued divergence can remove the possibility of speciation reversal when
redundant barriers accumulate [3]. However, continuing divergence is not
strictly part of the speciation process and in this theme issue we do not consider
continuing divergence after the completion of RI.

Occasionally strong RI can appear rapidly, even in a single generation, in the
case of ploidy change [4], chromosomal rearrangements (as reviewed by de Vos
et al. [5] in this issue) and perhaps following hybridization [6,7]. However, more
often the accumulation of barriers to gene flow is an extended process in which
RI evolves slowly.Multiple different barriers evolve and are coupled [8], typically
over tens of thousands to millions of generations [2, Table 12.1]. This suggests the
idea of a ‘speciation continuum’, in which divergent populations can be placed
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according to their current level of RI. The continuum is not uni-
directional nor unidimensional, but rather a trajectory in
multivariate space (see also three-dimensional speciation cube
in [9]). During the speciation process, theremay not be amono-
tonic increase in RI and the rate of accumulation of barriers to
gene flow can vary widely (e.g. [10]). Therefore, the speciation
continuum is not a temporal progression: RI might stall at an
intermediate level [11], it might decrease following a change
in the environment that disrupts barriers to gene flow (e.g.
[12]), or it might fluctuate over time.

In this theme issue, we focus on the part of the speciation
continuum where some barriers to gene flow have already
evolved, as we are primarily concerned with the evolution of
RI towards the completion of speciation. We contrast this
with parts of the speciation process during which RI starts to
accumulate and barriers to gene flow are being established
against a background of weak or no divergence. Because RI
rarely increases steadily with time, the contrast between parts
of the continuum reflects the level of RI, not time since the
start of a speciation event. Much attention in recent speciation
research has focused on processes acting in parts of the conti-
nuum where RI is low, especially local adaptation. These
studies are important but may not allow inferences about the
speciation process closer to completion. First, they do not
increase our understanding of the mechanisms and processes
that can lead to the evolution of strong barriers. Second, the
mix of processes contributing to speciation may change with
increasing levels of RI, and feedback between barriers and pro-
cesses may occur. A key question then is, in what way are the
contributing barriers, processes and genomic patterns different
between the different parts of the speciation continuum?

Ideally, to address questions on the evolution of strong RI,
one would sample population pairs across the continuum and
test whether the increase in RI is consistent with a specific pro-
cess (e.g. a ‘snowballing’ of hybrid incompatibilities [13]), or
whether patterns associated with a certain process increase
along the continuum (e.g. signatures of reinforcement). Even
when it is not possible to analyse comparable population pairs
across the speciation continuum within taxa, we can learn
from individual case studies of taxon pairs near the completion
of speciation. These studies will contribute to an understanding
of the reproductivebarriers andgenomicpatterns that character-
ize the evolution of strong RI (see Stankowski et al. [14] and
Yamasaki et al. [15] in this issue) and, when combined, can
give importanthints about theunderlyingprocesses.Theoretical
studies and simulationapproaches are necessary to complement
empirical work and will allow a more direct understanding
of processes facilitating strong RI (see Blanckaert et al. [16],
Payne & Polechova [17] and Bisschop et al. [18] in this issue).
Finally, as pointed out by Barton ([19], this theme issue), some-
times completion of speciation may not actually be favoured.
This theme issue combines theoretical and empirical work on
the progression to strong RI and considers the patterns and pro-
cesses associated with high levels of isolation from various
angles. We hope it will contribute to a more comprehensive
view and a deeper understanding of the speciation process.
2. Are there stages in the speciation process and
what causes them?

General evolutionary processes that are known to contribute to
speciation include differential adaptation driven by divergent
selection, divergence in mating traits due to sexual selection
and mutation order processes resulting in incompatibilities
driven by either selection or drift, the mix of effects being
dependent on spatial context [2]. These processes can lead to
the evolution of extrinsic barriers (divergent adaptation) as
well as intrinsic barriers and assortment. Importantly, these
processes can take place in any part of a speciation trajectory.
When some RI is already present, they may strengthen existing
barriers that evolved earlier, lead to the emergence of new bar-
riers or increase RI by coupling of barriers (i.e. by causing
the effects of multiple barriers to work together in opposing
gene flow; [8]).

There is a long-standing idea that the continuum might be
divided into more or less discrete ‘stages’ or ‘phases’ (here we
use the former). This idea dates back to Darwin and Wallace
but has received renewed attention recently (see Lowry [20]
for a history of the debate over ‘stages of speciation’).
Hendry et al. [21] and Mérot et al. [22] illustrate the heuristic
value of this view when applied to empirical cases. If separ-
ate stages exist, they might reflect changing patterns and
processes along the speciation continuum; therefore, identify-
ing and understanding what causes stages will directly relate
to the questions posed by this theme issue.

Changes in the strength of RI, the rate at which RI
accumulates or the forces driving the speciation process
could all be used to define stages. The stages might also be
imposed externally. The classic example is divergence in allo-
patry followed by secondary contact and hybridization,
which is expected to introduce new potential mechanisms
for the evolution of reproductive isolation, notably reinforce-
ment. Another example of stages associated with external
factors is described in this issue by Muschick et al. [23].
They show that shifts between closely related host plants gen-
erate little RI (in terms of host preference), while shifts
between more distantly related hosts occur rarely, but lead
to greater RI in Timema stick insects. Host switches could
therefore help populations move to a stage with stronger RI.

Dieckmann et al. [9] argued for the necessity of recognizing
stages in generating a coherent overview of speciation precisely
because of the changes to the mix of individual processes
involved.Others haveargued that the initiationofRI, its accumu-
lation and its completion are likely to involve different mixes of
processes, and different impacts of the spatial setting and of the
genetic architecture [24]. Focusingon genetic architecture, and
on speciationwith gene flow,Wu [25] andFeder et al. [26,27] con-
sidered the existence of stages. They suggested the initial stage is
dominated by direct selection on individual barrier loci leading
to localized genomic barriers, which then extend arounddirectly
selected loci owing to physical linkage, and finally to a more
genome-wide barrier effect leading towards complete RI.
Stages with higher RI have a stronger contribution of indirect
selection via linkage disequilibrium (LD). Similar transitions
between regimes dominated by direct selection versus LD have
been described in earlier work [28]. Feder et al. [27] suggested
that the build-up of LD might generate a sharp transition
between these regimes under divergence with gene flow. If so,
there may be very distinct stages in some speciation trajectories.

Under which conditions we expect distinct stages remains
an open question (box 1: Question 1). In addition, in order to
better understand speciation, it is not sufficient to identify
stages (if they exist). Rather, we need to ask whether, how
and why the processes contributing to speciation change
along the speciation continuum.



Box 1. Outstanding questions about the progression towards complete RI during speciation.

1. What underlying processes create heterogeneity and the appearance of stages in the speciation continuum (e.g., as dis-
cussed by Muschick et al. [23] in this theme issue)? Do distinct stages occur in some speciation trajectories and not others?

2. Are there systematic differences in the types of barriers present at different points in the speciation continuum [2]? The
classical expectation is for postzygotic barriers (local adaptation or intrinsic incompatibility) to evolve first, followed by
prezygotic barriers (in a trajectory where allopatric divergence is followed by secondary contact; see e.g. North et al.
[29] in this theme issue) but alternative scenarios have been proposed, as discussed e.g. by Coughlan & Matute [30] in
this theme issue. For example, learned behavioural barriers could provide the reduction in gene flow needed for the estab-
lishment of ecological differentiation (e.g. Rometsch et al. [31] in this theme issue). Are changes in barrier types along the
speciation continuum driven mainly by external conditions (such as secondary contact) or by opportunities created by the
first barriers to appear (e.g. Tinghitella et al. [32] in this theme issue)? Do barriers evolve independently or in concert?

3. Are some speciation trajectories characterized by tipping points, or bi-stable states, resulting in sharp transitions from slow
to rapid accumulation of RI? If so, does rapid accumulation lead directly to completion of speciation or is it followed by a
slower stage involving other processes (such as reinforcement)? What is the evidence for tipping points and what mech-
anisms contribute to progressing through tipping points?

4. Under what circumstances do divergence and genomic hitchhiking contribute to the accumulation of RI? When in the spe-
ciation continuum do they contribute, and can they be used to distinguish between different stages of speciation? What is
the empirical evidence for these processes and how can the existing evidence be extended and improved? Does moving
from two-deme models to more realistic models of continuous space lead to different predictions for the role of divergence
and genomic hitchhiking?

5. The snowball effect depends on assumptions of epistatic interactions in the genome (see Satokangas et al. [33] in this theme
issue). Does accumulation of incompatibilities accelerate in snowball fashion under biologically relevant assumptions of
epistasis? Are complex incompatibilities involving multiple loci more stable in the face of gene flow (see Blanckaert
et al. [16] in this theme issue) and therefore more important for the completion of speciation compared to two-locus incom-
patibilities? How common are incompatibilities whose expression depends on the environment compared with purely
intrinsic incompatibilities?

6. Any change in the genetic composition of a population alters the opportunities and constraints on future evolution. How
much does this kind of feedback contribute to divergence between populations and the accumulation of RI? Does this
occur mainly by stochastic ‘mutation order’ processes, co-evolution of gene networks, and new ecological opportunities
opened up by early adaptive substitutions, or by processes such as sexual or genomic conflict or sexual selection that
are partly independent of the environment?

7. Reinforcement is a classical process in cases where some RI already exists, but it remains unclear how often, and how much
it contributes to speciation (see North et al. [29] in this theme issue). Does reinforcement complete RI following secondary
contact? If so, is this only when the initial isolation is already strong? How common is reinforcement in speciation trajec-
tories with continuous or frequent gene flow? How widely does reinforcement in the broad sense (adaptive coupling with
barrier enhancement, [8]) operate across different types of barrier effects?
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3. The dynamics of reproductive isolation
accumulation are likely to change with
increasing reproductive isolation

In principle, barriers resulting from the basic processes
described above could simply accumulate and steadily
increase reproductive isolation. Species would just be diver-
gent populations ‘writ large’, as suggested for Rhagoletis flies
[34,35]. Nosil et al. [10] argue that, even with gene flow,
strong selection on individual loci might generate this kind of
steady accumulation of RI (in contrast with weaker selection
on multiple loci which can create sharp transitions, see below).

Such a steady accumulation of RI seems unlikely in most
scenarios, owing to the emergence of new processes along the
speciation continuum (discussed below). These may lead to
feedback or interaction between different barriers and pro-
cesses, making these emergent properties important factors
in the evolution of strong RI (box 1: Question 2). Even with-
out changing processes and mechanisms, there are reasons to
expect differences between parts of the speciation continuum.
For example, if some types of barriers evolve systematically
more slowly (e.g. because they require large numbers of
new mutations), they are likely to appear later in the specia-
tion process. Even if this is not the case and different barriers
emerge completely at random, one could expect the relative
contribution of postzygotic barriers to RI to decrease over
the course of speciation. This is simply because it becomes
more likely that the emergence of barriers acting earlier in
the life cycle decreases the impact of late-acting barriers on
total isolation. This argument is general [36]; it does not
rely on reinforcement of prezygotic barriers.

Although possible, and perhaps useful as a null model,
speciation trajectories that are not characterized by feedback
mechanisms or interplay between different barriers as RI
increases are probably rare in nature. This is because the
introduction of barriers to gene flow has many effects: LD
is increased, particularly between loci underlying RI, effective
gene flow is reduced, and there is stronger selection against
hybrids, and a larger potential for negative epistatic inter-
actions between alleles from different populations [13]. In
addition, once some initial barriers have established, coup-
ling between pre- and postzygotic barriers [37], intrinsic
and extrinsic barriers [38] or between different barrier loci
[28] can occur. All these features can modify the trajectory
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of speciation, potentially leading to different barrier types,
effect sizes and genomic patterns at higher levels of RI com-
pared with low RI. Add to this the likelihood of externally
imposed changes in geographical distribution and demogra-
phy, and uniform speciation trajectories become very
improbable (e.g. cessation of gene flow by strong RI in cichlids
requires a combination of premating prezygotic isolation sup-
plemented with intrinsic and extrinsic postzygotic barriers
whose strengths and importance vary among different adap-
tive radiations; see Rometsch et al. [31] in this theme issue).
Some changes will not occur in every speciation trajectory
(e.g. addition of reinforcement) while others might be inevita-
ble (e.g. accumulation of incompatibilities in allopatry; [13]).

Below,we discuss feedback processes andmechanisms that
lead to coupling of barrier effects, especially reinforcement,
that can only occur once some RI already exists. These are
likely to be the dominant reasons for changes in the processes
operating in different parts of the speciation continuum.

4. Feedback, interactions and the snowball effect
Processes that drive divergence (e.g. divergent selection,
sexual selection, drift) and increase RI may vary along the
speciation continuum, e.g. because LD increases, effective
gene flow decreases (unless in complete allopatry) and the
total number of barrier loci increases with higher RI. Both
in allopatry and in settings with gene flow these changes
can lead to positive feedback, altering the rate at which RI
increases. Positive feedback, where some initial barrier
allows the spreading of the barrier effect or increases oppor-
tunities for other barriers to establish, might generate rapid
transitions from weak to strong overall isolation and so justify
the identification of distinct stages in the speciation process
(box1: Question 3). Feedback within and between processes
can be hard to isolate in natural populations but separation
can be achieved in models.

One type of feedback acting in the presence of gene flow
is divergence hitchhiking, where a divergently selected locus
provides a barrier locally in the genome that allows accumu-
lation of differentiation at linked sites, while gene flow
continues to homogenize allele frequencies elsewhere in the
genome [39]. Feedback occurs if the localized barrier facili-
tates the spread of other barrier alleles, allowing the size of
the ‘genomic island of differentiation’ and the total RI to
increase. The efficacy of this process depends on the extent
of LD and so the chance that new mutations will benefit
from the reduction in gene flow. Its effectiveness has been
debated [40–42]. Arguably, divergence hitchhiking is mostly
relevant when total RI is still low, because with strong RI
the density of selected loci becomes high enough to cause
LD even between distant and physically unlinked loci, gener-
ating a general barrier to gene flow. ‘Genome hitchhiking’
(a genome-wide reduction in the effective migration rate)
could then be considered characteristic of situations closer
to complete RI [43] (box 1: Question 4).

The interaction between selection and recombination can
generate a sharp discontinuity in the strength of the genome-
wide barrier to gene flow (e.g. Populus trees in Shang et al.
[44] and sticklebacks in Yamasaki et al. [15] in this issue). In
the context of secondary contact, Barton [28] showed that a
strong genome-wide barrier is expected when the ratio of
selection to recombination (known as the ‘coupling coeffi-
cient’) exceeds a critical value owing to accumulation of
incompatibilities (see also [37]). Above this critical value, sec-
ondary contact is much more likely to lead to speciation, for
example, because the associations needed for reinforcement
to be effective are much more likely to be maintained. An
analogous transition is seen in the models of speciation
with continuous gene flow by Flaxman et al. [45]: where the
genomic architecture allows LD (i.e. in models where sets
of genes are transmitted from parent to offspring, with or
without linkage, rather than sampled randomly from the
population) and where selection per locus is weak relative
to migration (s≪m), reproductive isolation accumulates
slowly until the genomic density of selected loci reaches a
critical point where LD can build up. LD increases the effec-
tive selection on each locus and this generates positive
feedback leading to a rapid increase in RI. However, this
result is based on the assumption of locally adaptive
mutations under weak selection, and modifications to the
model might change whether and how rapidly the feedback
process occurs. For example, the occurrence of globally ben-
eficial mutations is excluded from Flaxman et al. [45] and
other similar models of local adaptation. When they occur,
their sweeps interfere with the evolution of local adaptation,
reducing the differentiation between populations and delay-
ing the evolution of strong RI (as shown by Bisschop et al.
[18] in this issue).

Nosil et al. [10, p.1] suggested that behaviours analogous to
those seen in theFlaxman et al. [45]modelsmaybemoregeneral:
‘divergence process[es] involving small changes can suddenly
speed up at a ‘tipping point’ in speciation, at least in theory’.
How widespread these effects are, in theory or in reality, is cur-
rentlyanopenquestion (box 1:Questions 3 and4). There is some
empirical evidence consistentwith tippingpoints [10]. The ‘grey
zone’ of speciation studied by Roux et al. [46] shows a transition
zone between 0.5 and 2% net synonymous divergence during
which the probability of gene flow decreases sharply, which
could be interpreted as consistent with the tipping point idea.
On the other hand, the identified ‘grey zone’ is quite wide and
contains multiple semi-isolated taxa.

In addition to hitchhiking, the accumulation of genetic
incompatibilities can accelerate the evolution of RI, and so
generate marked changes across the speciation continuum.
Coughlan & Matute [30] argue in this issue that genetic
incompatibilities may be important already in the beginning
of the speciation process and discuss how they can enhance
the evolution of strong reproductive isolation via reinforce-
ment and the ‘snowball effect’. This effect occurs because
the number of genetic incompatibilities increases faster than
linearly with time if each new mutation has the potential to
be incompatible with any other mutation [13]. In Orr’s
model [13], the number of potential pairwise incompatibil-
ities increases with the square of the number of genetic
differences that have accumulated between two populations.
This acceleration potentially operates in all spatial settings.
Evidence for the snowball effect is mixed [47–51]. Impor-
tantly, the rate at which incompatibilities accumulate, and
so the snowball effect, depends on the number and distri-
bution of epistatic interactions in the genome. Models
explicitly incorporating empirical gene interaction networks
might lead to different predictions from standard population
genetic models, as discussed in this issue by Satokangas et al.
[33]. As more data have accumulated on the molecular basis
of epistatic interactions within the genome, models of incom-
patibilities have incorporated more realistic assumptions.
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Kalirad & Azevedo [52], and Dagilis et al. [53] showed
that considering both positive and negative epistasis and
accounting for differences in within-population and
between-population epistasis predicts a snowball-like effect
for hybrid fitness. In these models, loss of hybrid fitness
can accelerate owing to changes in the magnitude and/or
direction of average epistatic effects of mutations over time,
rather than changes in the numbers of incompatibilities. On
the other hand, Blanckaert & Hermisson [54] have shown
that pre-existing incompatibilities do not always facilitate
invasion of further barrier genes under gene flow, which
can seriously disrupt the snowball effect. Clearly, open
questions remain (box 1: Question 5).

A different feedback process occurs when each evolution-
ary change can open up unique new possibilities. As two
populations diverge at functional loci, the set of newmutations
that are positively selected in one population will start to
diverge from the set that is positively selected in the other
population. This is partly due to direct epistatic interactions
between mutations and accumulating structural variation in
the genome [55] and partly due to a changing ecological
environment enabled by divergence. It is related to mutation
order effects [56] in the sense that the events governing the
first mutations to spread in each population set the popu-
lations off on different trajectories. This is another possible
area for future research (box 1: Question 6). One could argue
that reinforcement falls into this category: the spread of alleles
that reduce hybrid fitness creates a selection pressure for assor-
tative mating that was initially absent [57]. However, we treat
reinforcement separately (see following section §5).

Remarkably, a strengthening of RI might occur even if
existing barriers enable the spread of the same new mutation
in both diverging populations, as discussed in this theme
issue. In their model, Blanckaert et al. [16] show that an
incompatibility between two derived alleles, with at least
one of them being locally adapted, can generate a much
stronger barrier if it is accompanied by the fixation of the
same new allele at a third locus, if this allele displays a
specific set of epistatic interactions.

5. Coupling and reinforcement
The barriers that form in the initial stages of speciation may
not coincide, in the sense that they might separate different
groups of populations in space or in some other dimension
(such as time or niche). For example, local adaptation might
distinguish groups of populations occupying different habitats
while incompatible allelic combinations separate groups of
populations with a common demographic history. Such
spatially scattered barriers may often be hard to detect empiri-
cally, as they are often weak and affect only a small number of
loci. RI can be enhanced by processes that bring these barrier
effects together so that they separate coincident groups of
populations (‘coupling’ sensu [8]). Spatial movement of clines
attracting one another when they overlap [38], and cycles of
population expansion and contraction [58] are examples of
potential processes that can achieve coupling of barrier effects
after the evolution of some RI, i.e. in the part of the speciation
continuum where substantial barriers already exist. A similar
effect might be caused by short periods of allopatry because
divergence at loci contributing to local adaptation is limited
by gene flow, particularly if locally adapted alleles also
cause some incompatibility in hybrids.
In addition to coupling of existing barrier effects, the pres-
ence of some initial barriers may result in selection favouring
the evolution of new barrier effects or the enhancement of
existing effects. This form of coupling includes reinforcement
as traditionally viewed (indirect selection favouring an
increase in prezygotic isolation as a result of reduced fitness
of hybrids), but also other processes where indirect selection
contributes to the origin or strengthening of barriers, whether
pre- or postzygotic [8]. All of these processes are most likely
to operate when the initial reproductive isolation is already
strong. They might be supplemented by direct selection
pressures, such as the costs of wasted mating efforts or sexual
selection induced by changes in female preference [59]. In
this theme issue Tinghitella et al. [32] further introduce an eco-
logical element, implicating different ecological conditions that
change mating interactions and select for environment-
dependent mate preferences. Payne & Polechová [17] argue
in this issue that pre-existing niche preference speeds up
further increase of assortment, thus facilitating reinforcement
in the later stages of speciation.

The classical scenario for reinforcement is the enhance-
ment of assortative mating following secondary contact.
The spatial distributions of most taxa have fluctuated through
time, with many populations temporarily persisting in geo-
graphical isolation from each other, for example, in distinct
glacial refugia [60]. Speciation can then have two clear
stages: during the period of allopatry populations accumulate
intrinsic and/or extrinsic incompatibilities and these post-
zygotic barriers act upon secondary contact to drive an
enhancement of isolation by reinforcement. Both modelling
and empirical data now strongly support the possibility of
reinforcement in this scenario, although the outcome
depends on many factors [61]. Strong postzygotic isolation,
multiple-effect traits [62], low costs of mate choice, matching
mechanisms of assortative mating [63] and one-allele systems
(where no divergence between populations is required to
enhance assortment; [64,65]) all promote the evolution of
assortative mating. Although the possibility of classical
reinforcement is now well established, its overall contribution
to speciation remains unclear (box 1: Question 7). There have
been few attempts to measure its frequency [66]. Although
the patterns of reinforcement are often observed at the pheno-
typic level, the genomic footprint of reinforcement is much
less well understood and data are scarce [57,67] (box 1: Ques-
tion 7). Focusing on copy-number variation detectable
in paired-end sequencing data, North et al. [29] test for
the expected patterns of genomic divergence under a
reinforcement scenario and show that these common, but
understudied fine-scale structural variants make for strong
candidate targets of reinforcing selection. While some ‘adap-
tive coupling’ processes have been well studied (especially
classical reinforcement), others have not (box 1: Question 7).
For example, habitat choice is a potent source of assortment
but it is a relatively understudied form of barrier [68,69].
However, these processes might also be self-limiting in the
sense that the selection pressure for increased isolation
derives from the production of hybrids and so declines as
hybrids become rare, for whatever reason [70]. Self-limitation
might also apply to other processes that mainly occur when
RI is already relatively strong, for example fitness gains
from approaching adaptive optima decline as the optima
are approached, potentially leading to a stable balance
between divergent selection and gene flow [11,71].
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The evolution or enhancement of new barriers to gene
flow as a result of costs associated with existing barriers
(e.g. [72]) is a much more general feature of systems with
high RI than suggested by the historical focus on the classical
form of reinforcement [8]. These processes can only operate
when populations are in contact because costs of hybridiz-
ation are not expressed during periods of allopatry, and
only to a limited degree in narrow hybrid zones. These mech-
anisms then require some minimum amount of interbreeding.
However, they do not require divergence followed by second-
ary contact: they are also potentially a key part of speciation
with continuous gene flow (e.g. [73] and Osborne et al. in this
issue [74]). They are not limited to assortative mating, or even
to enhancement of prezygotic isolation [8]. More work is
needed on these other forms of coupling (box 1: Question 7).
 Trans.R.Soc.B
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6. Conclusion
We expect the parts of the speciation continuum where sub-
stantial RI is already in place to have distinctive features and
contain a different mix of processes, including feedback
between barriers, compared with initiation of RI. We suggest
that more attention to these features and processes is impor-
tant for a full understanding of speciation, and we present a
list of open questions in box 1. Natural systems, but also
analysis of anthropogenic and experimental hybridization
events, can provide clues to answering open questions (e.g.
Viard et al. in this issue [75]).

Empirically understanding how processes change along
the speciation continuum is challenging, particularly because
the necessary contrasts are not available in most taxa, and
because many of the processes are notoriously difficult to
study even for a single taxon pair (e.g. reinforcement).
Progress will come from a combination of case studies of
taxon pairs nearing complete isolation (see Stankowski et al.
[14], Yamasaki et al. [15], Osborne et al. [74] and North et al.
[29] in this theme issue), comparative approaches (e.g. de
Vos et al. [5] and Meyers et al. [35] in this theme issue), theor-
etical studies highlighting what drives and hinders the
evolution of strong RI (e.g. Blanckaert et al. [16], Payne &
Polechová [17] and Bisschop et al. [18] in this issue), meta-
analyses (as discussed in Rometsch et al. [31] and Shang
et al. [44] in this issue), the identification of processes defining
stages (see Muschick et al. [23] and Tinghitella et al. [32] in
this issue) and combined approaches as outlined in this
issue (Coughlan & Matute [30] and Satokangas et al. [33]).
This theme issue is dedicated to Christian Lexer ([76], this
theme issue).
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