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Abstract

The study of speciation is concerned with understanding the connection
between causes of divergent evolution and the origin and maintenance of
barriers to gene exchange between incipient species. Although the field has
historically focused either on examples of recent divergence and its causes
or on the genetic basis of reproductive isolation between already divergent
species, current efforts seek to unify these two approaches. Here we inte-
grate these perspectives through a discussion of recent progress in several
insect speciation model systems. We focus on the evolution of speciation
phenotypes in each system (i.e., those phenotypes causally involved in re-
ducing gene flow between incipient species), drawing an explicit connection
between cause and effect (process and pattern). We emphasize emerging in-
sights into the genomic architecture of speciation as well as timely areas for
future research.
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INTRODUCTION

The promise of discovering general principles to explain the origin of species has inspired students
of speciation since Darwin. Insects offer among the best, if not the best, systems with which to study
the multitude of processes that cause speciation. This is, in part, due to the tremendous diversity
of insect taxa that offer representative “models” for the study of distinct mechanisms of speciation,
thus capturing the diversity of process that is the hallmark of evolution and speciation. In addition,
insect models often come with practical advantages. Insects can frequently be reared in the lab;
present the possibility of hybridizing races, subspecies, or species for genetic studies of natural
variation; and enable the study of large samples for hypothesis testing. The most comprehensive
and convincing studies of speciation garner evidence in the testing of specific hypotheses from a
diversity of disciplines, including ecology, phylogenetics, evolutionary process, behavioral ecology,
genetics, and genomics. As such, insects have served prominently in the development of these
approaches.

The identification of general causes of speciation, in insects or any taxon, has been a difficult
and elusive task, however, for several reasons. First, speciation occurs within lineages characterized
by unique biological and demographic characteristics, complicating the identification of common
processes in diverse taxa. Second, as with evolution in general, multiple mechanisms, rarely acting
alone, are involved in speciation (34). Third, universal definitions of species entities have evaded
evolutionary biologists for decades, at least in part owing to the first two impediments discussed
above.

Despite the multifarious nature of the speciation process and its varied taxonomic outcomes,
many argue that species have one key feature in common—reproductive (or genetic) isolation from
other species. Mayr (108) argued fervently that this characteristic is basic to species-level diversity
and is the defining criterion of species rank (under the biological species concept), where species
are groups of organisms that are reproductively isolated from other such groups. Some have even
gone so far as to assert that understanding the origin of species is equivalent to understanding the
origins of reproductive isolation (23).

Many have argued that the emphasis on reproductive isolation in the study of speciation has
come at a cost, however (72, 146). An alternative approach is to place intellectual emphasis on
the evolutionary processes that cause lineage divergence, a tradition traceable to Darwin’s On the
Origin of Species (28). Such an emphasis is not without precedence, as many models focus explic-
itly on phenotypic divergence (e.g., divergent natural and/or sexual selection) (173). Moreover,
other speciation models focus on population genetic consequences of changing demographies and
genetic drift (64). Although these models explicate mechanisms of character differentiation and
cladogenesis, they typically do not make an explicit connection to reproductive isolation. Thus, the
evolution of taxon diversity, as opposed to the effect of divergence on genetic cohesion, is modeled.

It is not hard to see that prevailing species concepts loosely align with this duality. On the
one hand, the biological species concept emphasizes future reproductive isolation as paramount
to species status. Research emphasis is placed on the tractable question, What is the nature and
origin of reproductive incompatibility? On the other hand, concepts such as the phylogenetic
species concept or the ecological species concept emphasize the origins of differentiation. In
such approaches, research emphasis is placed on the tractable question, What is the history and
consequence of character change? The current conceptual challenge in the study of speciation is
to bring these two perspectives together to ask, What is the history and consequence of character
change that has resulted in the severance of gene flow between species?

Previously, we argued that the study of “speciation phenotypes” leverages a conceptual frame-
work for connecting pattern and process in speciation (146, 147). This approach shifts emphasis
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away from efforts to characterize the genetic basis of reproductive isolation, which may reflect
historical causes of speciation, to the characterization of diverging phenotypes of incipient species,
the evolutionary forces causing those phenotypes to evolve, and the consequences (whether di-
rect or indirect) of this phenotypic divergence to contemporary patterns of gene flow. Although
single studies of speciation are unlikely to achieve this result, we suggest that a comprehen-
sive understanding of the speciation process requires demonstrating (#) axes of differentiation,
(¥) speciation phenotypes (i.e., traits whose divergence contributes directly or indirectly to a de-
pression of gene flow), (¢) which evolutionary forces cause the divergence of a speciation phenotype,
(d) the genetic architecture underlying the speciation phenotype, and (¢) how speciation pheno-
types trigger further genome evolution and the establishment of species boundaries.

Here we highlight a diversity of insect speciation models to evaluate the progress in the study
of speciation phenotypes. We discuss the patterns and processes of speciation in key taxa with
guidance from the conceptual framework outlined above. We also suggest where future research
is needed to generate a richer, more integrative view of the speciation process.

HELICONIUS BUTTERFLIES

Heliconius butterflies display a stunning diversity of brightly colored wing patterns, which act as
adaptive signals to warn potential predators of their unpalatability (Figure 14). Color pattern di-
vergence, resulting from predator-imposed selection to match different unpalatable mimicry mod-
els (99), isolates populations and species of Heliconius in at least two ways. First, color patterns act
as mate recognition cues, and male mate preferences often lead to strong assortative mating among
individuals that share similar wing pattern phenotypes (20, 77, 84). Second, hybrid offspring typ-
ically have recombinant, nonmimetic wing patterns that are subject to intense predation (80, 97).

Axes of Differentiation

Although color pattern divergence and mate preference evolution are the most well-understood
axes of differentiation within the Heliconius radiation, host-plant use and microhabitat choice
also differ between closely related species. For example, Heliconius melpomene and Heliconius cydno
are recently derived sister species that occasionally hybridize (98) but remain distinct and broadly
sympatric throughouta large portion of the Neotropics. There is substantial racial diversity among
populations of H. melpomene and H. cydno, which tracks, respectively, with geographic variation in
the Miillerian wing pattern phenotypes of Heliconius erato and Heliconius sapho/Heliconius eleuchia
(10). Mimetic convergence between distantly related species pairs of Heliconius, one from each
of two major subclades (pupal mating/ESS clade versus nonpupal mating/MCS clade) (159), is
typical of the genus. In this case, each pair of “comimics” also differs in their use of microhabitat
(H. melpomene and H. erato, open areas, versus H. cydno and H. sapho, forest understory) (36), larval
morphology (11), and patterns of host-plant utilization (153).

Identifying Speciation Phenotypes

Predation against novel color patterns generates geographically divergent selection among in-
traspecific racial populations of Heliconius and, as a result, leads to a reduction in gene flow due to
extrinsic hybrid inviability (96). Color pattern divergence is also directly tied to the evolution of
premating isolation in Heliconius, at both the intra- and interspecific levels, owing to divergence in
male preference for wing color pattern cues (77, 109, 112, 113). Male mate choice in Heliconius, in
turn, may coevolve with color pattern as a function of (#) direct selection of alleles at preference
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Figure 1

Axes of differentiation and candidate speciation phenotypes. (#) Heliconius butterflies displaying convergent (columns) and divergent
(rows) Miillerian wing patterns. (b) Acoustic divergence among two species of Hawaiian Laupala crickets (top), and colocalization of
QTL for female preference and male song (reproduced with permission from Reference 145). Red dashed lines indicate the 5%
significance threshold based on permutation. (¢) Host races of Rbagoletis pomonella depicting peak larval emergence from Malus pumila
apple and Crataegus hawthorn (modified with permission from Reference 56). (d) Lifetime fecundity of Acyrthosiphon pisum (pea aphids)
feeding on Trifolium pratense (red clover) and Medicago sativa (alfalfa) (modified with permission from Reference 17). (¢) Larval habitat
and behavioral divergence associated with ephemeral or permanent oviposition sites (photos courtesy of C. Constantini).

() Divergence in host utilization among geographic races of cactophilic Drosophila species. Abbreviations: cM, centimorgan (distance
based on the recombination frequency between markers); LOD, logarithm of the odds (to the base 10). A LOD score of 3 or more is
generally taken to indicate that two markers are close to each other on a chromosome. A LOD score of 3 means the odds are a thousand
to one in favor of genetic linkage.

loci, (b) correlated evolution with locally adapted mating choice signals, or (¢) disruptive sexual or
ecological selection against hybrids (85). Evidence suggests that Heliconius color patterning loci
are tightly linked to alleles underlying variation in male preference (86) as well as female mat-
ing outcome and hybrid sterility (112). This is important because tight physical linkage reduces
recombination between loci underlying adaptive traits and their associated preferences and may
facilitate the maintenance of positive assortative mating in this system.
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Evolutionary Forces Causing the Evolution of Speciation Phenotypes

As discussed above, color pattern divergence among geographical races of Heliconius comimics is
driven by purifying selection for local mimetic convergence, the associated evolution of male mate
preferences, and strong disruptive selection against nonmimetic, recombinant hybrid phenotypes
(77,100, 109). Divergence time estimates for the Miillerian comimics, H. erato and H. melpomene,
predate the Last Glacial Maximum (9), and historical inferences of population demography suggest
that H. melpomene diversified more recently than did H. erato (57). These findings have been
interpreted as evidence that the resemblance between geographic races of these two species reflects
mimetic “advergence” by H. melpomene onto the pre-existing template of H. erato warning patterns
(131), rather than phylogenetic codivergence of the two species. However, the initial evolution of
warning color patterns remains controversial (95).

Genetic Architecture of Speciation Phenotypes with Influence
on Patterns of Gene Flow

Heliconius color patterns are controlled by a small number of major Mendelian loci (148) that un-
derlie the evolution of both convergent and divergent mimicry phenotypes (79, 84). The genetic
basis of these major color patterning “switch” genes has been extensively reviewed elsewhere (83),
but several insights bear repeating. First, comparative mapping studies have shown that the ge-
netic variation underlying similar color pattern elements in different Heliconius species localizes to
a small number of homologous genomic intervals (79, 84), suggesting a conserved genetic basis for
wing pattern development. Second, larval expression domains of the transcription factor, optix, and
the signaling ligand, WntA, are correlated with red patterning (134) and patterns of melanin for-
mation (105), respectively. Third, at leastin some cases, chromosomal rearrangements (e.g., inver-
sions) play an important role in the origin and maintenance of Heliconius mimicry polymorphisms

78).

Connection Between Divergence of Speciation Phenotypes
and Species Boundaries

Color pattern divergence in Heliconius occurs across all levels of the species boundary continuum
(94) and can be achieved by changes in a relatively small number of loci. In fact, there is accumu-
lating evidence that adaptive introgression of patterning alleles among populations of Heliconius
may be more common than previously recognized (29), thus supporting the hypothesis that hy-
bridization is an important source of adaptive novelty in this system (66, 94). As discussed above,
this divergence results in barriers to gene exchange among different wing pattern phenotypes
of Heliconius owing to elevated rates of predation on recombinant patterns and through positive
assortative mating driven by the evolution of male mating preferences.

In summary, the available data support the hypothesis that Miillerian warning color patterns
are speciation phenotypes and that their divergence is predictably and repeatedly associated with
the evolution of diversity at both the intra- and interspecific levels. Future research in this system
is likely to be aimed at (#) the debate over whether advergence or codivergence best explains the
mimetic resemblance between H. erato and H. melpomene, (b) the importance of Wright’s (177)
shifting balance in the initial establishment of novel warning patterns, (c) adaptive introgression
and the evolving species boundary, and (4) the evolution of genetic and developmental interactions
among the regulatory network of color patterning genes that underlie the spectacular diversity of
Heliconius wing patterns.
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LAUPALA CRICKETS

The genus Laupala (Gryllidae: Trigonidiinae) is a group of flightless cricket species native to the
rain-forested slopes of the Hawaiian islands (125, 143), offering rare insights into the process of
speciation for several reasons. First, the genus is entirely endemic to the Hawaiian archipelago,
and its phylogenetic history is understood, revealing an older to younger island radiation (111).
Second, repeated speciation events have followed the colonization of each island, resulting in
species-rich assemblages within islands. Third, the age of the youngest island, Hawaii, and the
dramatic diversity of its endemic pacifica clade yield the highest speciation rate yet estimated
among invertebrates (111). Laupala crickets occur at mid-elevations within humid environments,
typified by dense foliage and leaf litter. However, there are no known host-plant dependencies,
and species are both morphologically and ecologically cryptic (125). The similar lifestyle among
species narrows focus to other aspects of differentiation, namely the reproductive system. Thus,
Laupala offers an unusual opportunity to isolate the effects of evolution in the mate recognition
system on speciation.

Axes of Differentiation

In Laupala, the most conspicuous axis of differentiation is male song. As with most crickets, males
sing a long-distance calling song to which females respond when locating a mate. Songs are
simple, consisting of long trains of pulses produced by wing stridulation (Figure 15), but they can
vary in multiple temporal features. Females show differential preferences for variation in these
song characteristics (144), and across the range of the variable Laupala cerasina, pulse rate and
pulse-rate preference have coevolved (69). A second rhythmic behavior that varies among Laupala
species is the diurnal timing of acoustic activity. Peak male singing behavior differs significantly
between sympatric species (26, 55) and correlates with the timing of mating (30, 54).
Furthermore, courtship in Laupala is extraordinarily elaborate: It lasts 6-8 h; involves the serial
transfer of smaller, spermless microspermatophores; and is followed by transfer of a larger, sperm-
filled macrospermatophore (30). Throughout courtship, males and females antennate extensively.
Although tactile or chemical cues may be detected during antennation, astoundingly diverse,
long-chain cuticular hydrocarbons (CHCs) (contact pheromones putatively used in mate choice)
vary among species (116, 117). This is intriguing because, in addition to their role in desiccation
resistance, CHCs play a role in a variety of social interactions among insects including courtship

73).

Identifying Speciation Phenotypes

Due to their role in pair formation, song and song preference may be speciation phenotypes in
crickets generally and in Laupala particularly. To date, these traits alone have been studied for
their impact on patterns of mating between differentiated forms in Laupala. Grace & Shaw (69,
70) found that females from acoustically distinct, neighboring populations of L. cerasina display
assortative acoustic preference and that this preference predicted a high probability of mating. In
addition, sexual isolation between L. cerasina and its sister species Laupala eukolea appears largely
based on strong assortative mating generated through acoustic preference for songs of conspecific
males (121). Sympatric congeners also display strongly differentiated songs and song preferences
in sympatry (110), consistent with the hypothesis that these traits are rapidly evolving speciation

phenotypes.
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Evolutionary Forces Causing the Evolution of Speciation Phenotypes

Several studies support the hypothesis that features of male calling song experience intense sexual
selection (110, 122, 144). Furthermore, females display unimodal preference functions, suggesting
stabilizing selection on pulse rate. Mean pulse rate preference is also well matched to mean pulse
rate of a given species (69, 110). Interestingly, mismatches in mean pulse rate and preference
have been measured and suggest a mechanism of divergent evolution by female choice (69, 122).
Once divergence has occurred, evidence shows that assortative mating mediated by long-distance
acoustic preference behavior should contribute to reduced gene flow between populations and
species differentiated by pulse rate (110). However, explanations for why these preferences exist
and diverge remain to be investigated.

Genetic Architecture of Speciation Phenotypes with Influence
on Patterns of Gene Flow

Interspecific studies clearly show that acoustic trait differences are controlled by many, small-
effect genetic factors (35, 147, 176). Two independent species crosses have been studied. In the
pacifica group, Laupala kobalensis [~3.7 pulses per second (pps)] and Laupala paranigra (~0.7 pps)
are closely related species that differ in pulse rate by approximately 25 standard deviations (147).
Quantitative trait locus (QTL) mapping studies have corroborated the quantitative genetic nature
of this species difference (147). Remarkably, preference QTL colocalize with song QTL to the
same regions of the genome, suggesting either tight genetic linkage or pleiotropy of genetic
effects on both song and preference variation (176). In the cerasina group, a genetic correlation has
been documented between male and female traits (70). Furthermore, a cross between L. cerasina
(~2.5 pps) and its sister species L. eukolea (4.0 pps) has revealed a comparable quantitative pattern
of inheritance, with approximately five underlying genetic factors responsible for each pulse rate
and pulse rate preference. As seen in the paranigra/kobalensis cross, the X chromosome explains a
relatively small effect in the cerasina/eukolea cross.

Connection Between Divergence of Speciation Phenotypes
and Species Boundaries

As described above, divergence in song and acoustic preferences in response to divergent sexual
selection likely contributes to the establishment of species boundaries between closely related
populations of Laupala by reducing gene flow. The available data also suggest that tight genetic
correlations between these traits facilitate the maintenance of species boundaries once established.
Future work aimed at identifying the specific genetic basis of male song and female preference
should (#) allow a test of the hypothesis that parallel examples of acoustic divergence among
pairs of Laupala species reflect repeated divergence in the same QTL; (b) help clarify whether
the observed colocalization of QTL contributing to song and preference in mapping crosses is
the result of tight linkage or pleiotropy; and (¢) elucidate the proximate mechanisms underlying
variation in male pulse rate at the genetic, cellular, and developmental levels.

RHAGOLETIS POMONELLA: THE APPLE MAGGOT FLY

Tephritid fruit flies in the genus Rhagoletis have been heavily investigated as a potential case of
incipient sympatric speciation via host-race formation (12, 13, 44). In the mid-1800s, a larval
host shift from their native host, hawthorn (Crataegus L. spp.), to varieties of domesticated apples
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(Malus pumila spp.), contributed to the formation of two “host races” of Rbagoletis pomonella,
which are isolated as a result of a combination of host-specific mating, oviposition preferences,
and host-associated fitness trade-offs (12, 14, 44) (Figure 1¢). The system has been important in
evolutionary biology not only as a model of sympatric divergence, but also as an early example
of extrinsic hybrid inviability arising as a consequence of antagonistic pleiotropy related to host

fidelity (4, 45).

Axes of Differentiation

The primary axis of differentiation within the R. pomonella sibling species complex is host-plant
utilization, and evidence suggests that olfactory cues play an important role in host location and
host discrimination (25, 59, 91). However, although early studies of peripheral chemoreception in
Rbagoletis suggested that changes in receptor or receptor neuron specificity may underlie olfactory
preference (1, 2, 124), subsequent investigation found no evidence that peripheral coding was
directly correlated with olfactory behavior (123). This suggests a complicated basis for olfactory
behavior in this system even if the novel odor preference for apple has arisen recently (48).

A more recent study challenges that assumption and suggests that historical and ongoing gene
flow from flies infesting a variety of hawthorn species in the southern United States (2, 3, 45) may
have been the source of chemosensory variation in this system (128). Populations of R. pomonella
in the southeastern United States differ along the same ecological axes differentiating host races
in the northern United States, including fruiting phenology, the color and size of host fruits,
and, importantly, their olfactory and behavioral responses to volatile compounds emitted from
the surface of ripening fruit (2, 3, 19). Interestingly, although southern flies are not attracted to
the apple volatile blend, they respond behaviorally to volatile blends from southern hawthorn
species that include volatile olfactory cues used by apple maggot races; therefore, it is possible
that standing behavioral variation in downy hawthorn flies may have predisposed them to evolve
sensitivity to apple olfactory cues (128).

Identifying Speciation Phenotypes

Host fidelity is the key barrier to gene flow between races of R. pomonella (44, 46, 50). Divergence
in host-plant utilization directly causes prezygotic isolation among host races of Rhagoletis because
mating and oviposition occur on the fruit of their hosts (50). Migration between hosts is thought to
be as high as ~6% per generation (50), indicating that host choice alone is an insufficient barrier to
maintain the observed ecological differentiation between host races. Eclosion-time differences also
isolate host races and arise as a consequence of differences in host phenology, which impose strong
selection on the timing and duration of diapause (52). Recent work indicates that geography and
introgression may have played an important role in providing the genetic variation to initiate the
switch to apple (45, 51, 128). Population divergence in sympatry, however, was clearly triggered
by the host shift, and the fact that host fidelity both directly and indirectly limits gene flow between
host races suggests it is an important speciation phenotype in this system.

Evolutionary Forces Causing the Evolution of Speciation Phenotypes

Sympatric divergence among populations within the R. pomonella sibling species complex arises
from ecological pressures associated with the colonization of novel hosts (12, 13). Host-plantiden-
tification involves visual, olfactory, tactile, and gustatory cues (60). Apple flies use olfactory cues
for long-to-intermediate range behavioral orientation, a combination of visual and chemical cues
to locate fruit within the tree canopy, and a suite of sensory modalities (tactile, visual, gustatory,
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etc.) when fruit is located. Host fidelity is tied both to host-plant identification and to avoidance
of non-natal hosts (60). Studies of courtship in Rbagoletis suggest that, although visual cues based
on wing and body markings are important for courtship initiation (12), males are unable to dis-
criminate the sex or species identity of other flies prior to copulation attempts (129, 130). In the
absence of evidence for additional mate recognition divergence, it is reasonable to assume that
host fidelity plays a primary role in isolating host races (44, 50).

Genetic Architecture of Speciation Phenotypes with Influence
on Patterns of Gene Flow

Genetic divergence among apple and hawthorn host races of Rbagoletis was initially demonstrated
for a small number of allozyme loci (z = 6) that are correlated with postdiapause development
and, hence, the timing of adult eclosion (56). All six of the major allozymes that differentiate host
races of R. pomonella reside within one of three large chromosomal inversions (51). Coalescent
genealogies based on widespread geographical sampling of flies from the southern United States
and Mexican hawthorn populations suggest that at least some of the inversion polymorphisms
that currently characterize differences between northern host races of R. pommonella are the result
of historical introgression (45).

A major obstacle to speciation with gene flow is the expectation that recombination will quickly
break down linkage disequilibrium between loci favored by ecologically divergent selection, thus
preventing the accumulation of additional genomic barriers to gene exchange (164). Within in-
verted chromosomal segments, however, recombination is drastically reduced, thus alleviating
selection-recombination antagonism (53). Although inversions protect suites of coadapted alleles
from recombination, they also present a significant challenge to traditional genetic-mapping ap-
proaches for elucidating the genetic architecture and/or genetic basis of traits underlying adaptive
differentiation, such as postdiapause development. Despite these challenges, mapping work on
fruit-odor discrimination suggests that as few as three loci contribute the majority of variation in
preference for natal hosts (25). In conclusion, divergence among host races of R. pomonella likely
arises via a combination of geographic variation in exposure to natal and novel hosts, the exis-
tence of pre-existing genetic variation for the recognition of volatile compounds from non-natal
hosts, clinal variation in overwintering diapause optima, and strong ecological pressures related
to host-plant identification and utilization.

ACYRTHOSIPHON PISUM: PEA APHIDS

Pea aphids (Acyrthosiphon pisum) thrive on a wide variety of plants in the legume family (Fabaceae)
as well as on several cultivated legume varieties in areas outside of the ancestral geographic range.
Although they are treated taxonomically as a single species, pea aphids represent a diversified
complex of populations, host races, and incipient species that span the species boundary continuum
(126). In North America, sympatric populations utilizing alfalfa (Medicago sativa) and red clover
(Trifolium pratense) are genetically distinct and locally adapted (161, 162) (Figure 14).

Axes of Differentiation

The primary axis of differentiation among North American pea aphids is ecological specialization
on alternative host plants, leading to reduced performance on non-natal hosts (161-163, 167).
Behavioral traits are generally thought to play a key role in the evolution of host-plant divergence
(63). Not surprisingly, in A. pisum, behavioral acceptance of a novel host is also the key factor
driving host fidelity (17).
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Beyond host performance and behavioral preference divergence, aphids also display remarkable
phenotypic variation in the geographic composition of their reproductive lineages. Pea aphids are
cyclically parthenogenetic insects that reproduce clonally throughout the spring and summer
but produce sexual forms in the fall. However, these “sexual lineages” may coexist with other
reproductive lineages that are strictly parthenogenetic (i.e., asexual) (62). Interestingly, pea aphid
populations also display a male dispersal polymorphism, with some populations producing only
winged (alate) or wingless (apterous) males and other lineages that produce both adult male
phenotypes in equal frequencies (7, 15).

Color polymorphism (red versus green) also characterizes pea aphid populations, and color
variation influences susceptibility to parasitoids as well as predation rates (92). The two morphs
also differ in their ability to utilize alfalfa hybrids selectively bred for aphid resistance (87), and
behavioral differences exist in their response to disturbance (8). Taken together, these results
suggest a complex relationship between color and fitness in this system (16). Finally, although less
well investigated than other known axes of differentiation in this system, one intriguing finding
is that host races differ substantially in their complement of obligate (Buchnera) and facultative
endosymbionts (27, 115, 149). Strikingly, there is evidence of strong interrelationships between
patterns of genetic differentiation, facultative symbionts, color morph, host-plant use, reproductive
mode, and male sexual (alate versus apterous) phenotypes (61).

Identifying Speciation Phenotypes

Host fidelity among Acyrthosiphon lineages, arising as a consequence of strong host-plant pref-
erences (17, 167), generates considerable premating isolation (163, 167). In addition, although
host migration rates may be as high as 10% (163), strong selection against migrants and reduced
hybrid performance in parental environments reduce gene flow among host-plant races and is an
important source of postmating reproductive isolation in this system. The association between
life-history traits described above and natal host performance suggests that traits related to host
acceptance and feeding behavior may be important speciation phenotypes as well as key targets of
divergent selection. In addition, because sexual reproduction in aphids takes place exclusively on
the host plant, a secondary consequence of host preference divergence is reproductive isolation
resulting from assortative mating (74, 169).

Evolutionary Forces Causing the Evolution of Speciation Phenotypes

Host-plant acceptance and host fidelity are complex traits. Thus, it is fair to ask what evolution-
ary forces favored the initial evolution of behavioral preferences for alternative hosts. Within
Acyrthosiphon populations, there is generally some genetic variation among clonal genotypes in
the relative use of the two plants over and above the differences between population means (168).
Dispersal by a clonal fundatrix to a non-natal host, although expected to be rare given evidence for
divergent selection on winged adults for accurate habitat choice (167), would lead to strong dis-
ruptive selection on fecundity and/or additional fitness measures (163). Genetic coupling of host
acceptance preferences and host performance traits (see below) is then expected to have greatly
facilitated resource specialization in this system.

Genetic Architecture of Speciation Phenotypes with Influence
on Patterns of Gene Flow

QTL mapping experiments using crosses between clover and alfalfa races indicate that host accep-
tance and performance are polygenic. These studies also found evidence for close physical linkage
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between loci controlling the two traits and/or pleiotropy (74, 168). In addition, outlier analyses
subsequently confirmed that divergent AFLP Fgr outliers significantly cluster around fecundity
and hostacceptance QTL (170), and a larger study using ~400 microsatellite loci recently revealed
that 5 of 11 significant outliers map to positions close to olfactory receptor genes or several genes
that encode salivary gland proteins (75). A more explicit candidate gene approach employed by
Smadja et al. (152) found a handful of loci showing elevated genetic differentiation between pea
aphid host races, almost all of which corresponded to either odorant-binding or gustatory receptor
genes.

Connection Between Divergence of Speciation Phenotypes
and Species Boundaries

Taken together, the above studies suggest that speciation among pea aphid host races is primarily
driven by divergence in host-plant acceptance and performance, which may be controlled by a
small handful of tightly linked, or pleiotropic, chemosensory genes. However, more work needs
to be done to tie conclusively the genetic variation in these loci with the observed phenotypic
differences among host races. Furthermore, the observed interrelationships among host-plant use,
polymorphism in color and male dispersal phenotypes, as well as the composition of symbiont
communities, deserve further investigation. Finally, an assessment of sexual isolation and/or an
analysis of chemical mate recognition cues is needed to rule out the possibility that sexual selection
also plays an important role in this system.

ANOPHELES GAMBIAE

The Anopheles gambiae species complex is comprised of seven closely related, morphologically
cryptic mosquito species that are incompletely isolated (174, 175). An. gambiae sensu stricto (s.s.),
the major vector of malaria in sub-Saharan Africa, is further subdivided into two partially isolated
molecular forms, M and S, which were originally characterized by the identification of several
fixed single-nucleotide polymorphisms in the rDNA of the X chromosome (43). The M and S
molecular forms are further subdivided by inversion karyotypes into five distinct chromosomal
types (31, 65), and the relationship between molecular and chromosomal forms varies as a function
of geographic and ecological distributions (21).

Axes of Differentiation

Where the M and S forms are sympatric and synchronously breeding, there is strong assortative
mating, possibly mediated by differences in female wing morphology (139) and divergent song
types (127), but premating barriers are incomplete (157, 158). In addition, the S-form larvae are
primarily associated with small, ephemeral, predator-free rain pools. In contrast, the M-form larvae
exploit larger, more persistent bodies of water associated with anthropogenic habitats, suggesting
that the two forms are further isolated by ecologically dependent postzygotic isolation arising as
a consequence of fitness trade-offs in these alternative larval habitats (90) (Figure 1e).

Identifying Speciation Phenotypes

Coluzzi et al. (21) first hypothesized that adaptation to different larval environments was piv-
otal to speciation in this system, and the finding that genetic differentiation among forms is
strongly correlated with ecological zones supports this view (22, 101, 178). Furthermore, reciprocal
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transplant experiments suggest that in the absence of predators the two forms outcompete each
other in their respective larval habitats but that the M form significantly outperforms the S form
in both habitats when predators are present (32, 33). Both larval forms display behavioral plasticity
in response to predators (67), spending less time foraging and more time engaging in behaviors
consistent with predator vigilance, but M-form larvae exhibit a much more dramatic shift toward
predator vigilance (68).

Evolutionary Forces Causing the Evolution of Speciation Phenotypes

As mentioned above, evidence suggests that divergent selection between the molecular forms
of An. gambiae is related to differences in predation risk in larval habitats (32). However, larval
habitats within the complex range from very small, ephemeral puddles (e.g., drainage dishes, old
tires) to larger, more stable sites associated with higher predation risks, and until recently it was
unclear how differences in larval-site use between the two forms was mediated. One possibility
is that performance differences among molecular forms, which are dependent on predation risk,
have favored the evolution of distinct oviposition preferences related to the presence or absence
of predator chemical cues. Consistent with this hypothesis, oviposition experiments involving
water conditioned with the presence or absence of two types of potential predators, Notonecta sp.
backswimmers or Xenopus tadpoles, demonstrate that certain strains of An. gambiae display strong
oviposition avoidance in the presence of these predator chemical cues (118, 172).

Genetic Architecture of Speciation Phenotypes with Influence
on Patterns of Gene Flow

Although the two forms appear to have diverged recently (21, 24), efforts to understand the genetic
variation contributing to differences in niche preference, ecological adaptation, and assortative
mating have remained elusive (18). Early efforts to characterize patterns of genome-wide genomic
divergence in this system identified several small, isolated regions of high differentiation between
forms located near the centromeres of each chromosome (156, 160, 174), leading to speculation
that these “genomic islands of speciation” housed genes involved in ecological adaptation and/or
sexual isolation. However, further investigation revealed widespread, heterogeneous divergence
between molecular forms of An. gambiae (89) and no evidence for biased cotransmission of speci-
ation islands (71). These results appear to call into question the speciation with gene-flow model
but may also simply reflect variation in the strength of extrinsic ecologically dependent postmating
barriers across populations or fluctuating environmental conditions (135).

Connection Between Divergence of Speciation Phenotypes
and Species Boundaries

In summary, molecular forms of An. gambiae are characterized by strong differences in niche
utilization, larval behavior, and female mate choice that are consistent with a recent history of
ecological divergence in response to strong natural selection for niche adaptation. The genetic
architecture of divergence is not fully elucidated but appears to be the result of divergence in a
small number of loci located in regions of low recombination; however, the lingering uncertainty
about realized levels of gene flow across the genome between populations makes it difficult to
predict conclusively how the architecture of adaptation will impact the future evolution of species
boundaries in this system. Future work dissecting the relationship between diverging genomic
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islands, habitat utilization, larval performance, and morphological correlates of song and mate
choice should shed light on the shape and depth of the species boundary in this system.

DROSOPHILA

Drosophila is a diverse genus of small flies with more than 1,500 recognized species (102), rep-
resenting the group of insects most intensively studied on the topic of speciation. A panoply of
differentiating phenotypes has been documented. Indeed, the complexities of differentiation are
often a hindrance to comprehending what first drives speciation in Drosophila because simultaneous
axes of differentiation between closely related species characterize early Drosophila diversification.
Although a full review of Drosophila speciation would require a book-length treatment, we high-
light Drosophila arizonae and Drosophila mojavensis (repleta group, mojavensis species cluster), an
exemplary study system for speciation. These two focal species are distributed across the arid
southwestern extent of North America and Mexico, infesting the fermenting tissues of a vari-
ety of cacti, including prickly pear (Opuntia), as well as various columnar (Stenocereus) and barrel
(Ferocactus) cacti (42) (Figure 1f).

Axes of Differentiation

Within the mojavensis species cluster, the most recent context of differentiation occurs among
four biogeographic subspecies of D. muojavensis (although subspecies boundaries continue to be
investigated) (42, 93, 133). Host use varies among these subspecies, with associated effects on life-
history traits (39) and CHCs (e.g., 73). Additional axes of differentiation include male courtship
song (38), aedeagus shape (136), body size, and mating speed (82). These differences and more, such
as postmating prezygotic physiology (6, 171) and partial hybrid male sterility (132), distinguish
D. mojavensis from its sister species D. arizonae (93, 103).

Identifying Speciation Phenotypes

In D. mojavensis, both CHC and song differences contribute to mate choice and sexual isolation
(38, 73). Interestingly, data suggest that cactus substrate impacts life-history traits, which im-
pacts CHC variation, which in turn alters the sexual selection environment for song traits (39).
Thus, host environment acts as a keystone to the system, whereby changes in the fermenting
host-plant environment impact multiple phenotypes involved in mate choice, with sexual isola-
tion as a by-product, among differentiated populations of D. mojavensis. Such effects are variable
and complex, however, as sexual isolation is not concordant with all changes in host-plant en-
vironments. Statistically significant sexual isolation is evident only between Baja California and
mainland Sonora, Sinaloa, and Arizona, which diverged ~0.18-0.25 Mya on the basis of extensive
nuclear sequence data (154). In contrast, sexual isolation between D. mojavensis and D. arizonae,
which diverged ~0.66-1.5 Mya (107, 133), is nearly complete (106), and the species boundary
may have been sealed for some time. Thus, even though hybrid male sterility, for example, is
pronounced between species rather than among geographic populations/subspecies, it is likely an
effect of postspeciation divergence because hybrids apparently do not form in the wild (93).

Evolutionary Forces Causing the Evolution of Speciation Phenotypes

Evidence suggests that divergence in speciation phenotypes in D. mojavensis is tied to host shifts,
as each subspecies is associated with a distinct species of cactus (42) and is differentiated in CHCs
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(37, 73, 155). Host-plant adaptation is likely, with longer development times expressed on pu-
tatively more novel hosts (i.e., organ pipe) (39). Experiments establish a connection between
development time and CHC expression. They further suggest evolutionary links between evolu-
tion in developmental timing and CHC differentiation, ultimately manifest as partial (one-way)
sexual isolation between the Baja California (agria cactus host plant) and mainland Mexican and
Arizona (organ pipe host plant) populations (39). In addition, although female mate choice is
predicted among population mating trials by variation in CHCs, “perfuming” experiments (with
“attractive” CHC extracts placed on “unattractive” Baja California males) eliminate sexual isola-
tion between female mainland and male Baja flies (37, 73, 155). Variation in male courtship song
has also been linked to mate choice and sexual isolation between these same populations (38).
It is unclear whether the additional axes of differentiation contribute to sexual isolation among
geographical regions of D. mojavensis.

D. arizonae may continue to be involved in speciation within D. mojavensis owing to their
partial sympatry in mainland Sonora. The geographic setting, coupled with a small but nonzero
crossability in the laboratory, has inspired tests of character displacement within D. mojavensis
(76, 106), interspecific gene flow (93) (also see below), and the components of reinforcement.
Sexual isolation is stronger between D. arizonae and sympatric (versus allopatric) D. mojavensis
(106), and the interspecific interaction may be causally involved. CHC variation can distinguish
the two species (41) and is involved in the asymmetrical isolation between D. mojavensis subspecies
(discussed above). Thus, it seems an obvious hypothesis as to the causal phenotype behind the
heightened sexual isolation within D. mojavensis.

Genetic Architecture of Speciation Phenotypes with Influence
on Patterns of Gene Flow

The genetic architectures of the putative speciation phenotypes in D. mojavensis (development
time, CHCs, and song) are not simple, but rather involve multiple genomic regions (including
both autosomal and X chromosomes), gene by environment interactions, and some degree of
genetic correlation among traits and/or pleiotropy (39, 40, 73). At the level of species differences
(D. mojavensis versus D. arizonae), the genetic basis of these phenotypes is presumably even more
complex. Data suggest that additional mating phenotypes (e.g., sexual conflict phenotypes) may
also be involved in a complex genetic fashion, as gene expression in heterospecifically mated females
differs drastically from conspecifically mated females (6). Furthermore, a quantitative genetic basis
to hybrid sterility between the species has also been documented (132), with contributions from
multiple, interacting QTL and cytoplasmic effects.

Connection Between Divergence of Speciation Phenotypes
and Species Boundaries

Extensive genetic structure has been documented in both D. mojavensis and D. arizonae and ex-
tends to the interspecific level where species boundaries are measurably well defined (93, 133).
In addition, several chromosomal inversions differentiate the two species (42). Partial reproduc-
tive compatibility and geographic overlap between the two species motivated Machado et al. (93)
to hypothesize greater differentiation between inverted, compared with collinear, chromosomal
regions. Such a pattern could indicate greater current (cf. ancient) gene flow in regions free to re-
combine (in females) as the ancestral lineage split giving rise to the two species. Although evidence
of recent gene flow was rejected, inverted regions showed significantly higher differentiation than
did collinear regions. This discrepancy could indicate differential gene flow in the distant past;
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alternatively, however, the authors point out that those chromosomes carrying inversions have re-
peatedly harbored inversions across the repleta group (137). Thus, the differentiation may predate
the split between D. mojavensis and D. arizonae (93). Regardless, the lack of recent gene flow argues,
despite observations of reproductive compatibility in the lab, for a sealed species boundary between
D. arizonae and D. mojavensis. However, interspecific reproductive or ecological interactions in
sympatric regions may have caused divergence between sympatric and allopatric populations of
D. mojavensis (i.e., character displacement), shifting the focus of current speciation processes back
to the D. mojavensis subspecies. The genetic architecture of phenotypic variation among differen-
tiating D. mojavensis subspecies is not fully resolved, but there is currently no compelling evidence
that differentiation in inverted regions is caused by divergent selection on speciation phenotypes.
What we do know is that there is ample opportunity for the multigenic architecture of speciation
phenotypes in this system to impact speciation islands and species boundaries and that many of
the insights about speciation in this group are mirrored by other groups of Drosophila in which,
e.g., song and CHC variation are evolving at the earliest stages of divergence (88).

EMERGING INSIGHTS INTO THE PROCESS OF SPECIATION

Here, and in the past, we have advocated for a more integrative view of the speciation process
that focuses on the characterization of speciation phenotypes, the evolutionary forces driving their
divergence, and the consequences of evolution of these traits with respect to the formation and
maintenance of species boundaries (146, 147). Viewed through this lens, it is fair to ask what
insights are beginning to emerge about speciation in general and insect speciation in particular.
Although this review cannot hope to capture the full complexity of speciation in insects (see
Supplemental Table 1; follow the Supplemental Material link from the Annual Reviews home
page at http://www.annualreviews.org), several themes are evident.

First, the systems considered here, and the broader speciation literature (e.g., 138, 140), demon-
strate that disruptive natural selection and/or sexual selection are often involved in phenotypic
divergence early in the speciation process. Second, accumulating evidence indicates that rapid evo-
lution of sexual isolation arises as a consequence of divergence along multiple axes or modalities of
sexual communication (e.g., visual, olfactory, acoustic, vibrational), and several studies have now
demonstrated tight linkages between traits experiencing divergent selection and traits controlling
assortative mate preferences (74, 86, 112, 113, 176). This is important because speciation may
be favored when traits experiencing divergent selection also contribute to nonrandom mating via
pleiotropy (so-called magic traits) or tight linkage (53).

Third, once controversial, a large literature now exists on the conditions that favor speciation
with gene flow (5, 64, 81, 120, 141, 142, 151, 164). Furthermore, the genetic architecture of
diverging phenotypes largely determines whether disruptive natural or sexual selection leads to
widespread genomic differentiation, and presumptively speciation, or simply weak differentiation
at isolated genomic regions (47, 58, 119, 165, 166). There is widespread interest in identifying
such “genomic islands of differentiation” (49, 114, 150, 160), and it has been argued that the
reduction in effective gene flow due to such islands may facilitate the accumulation of additional
weakly selected alleles through a process termed divergence hitchhiking (47, 120, 166, 170).

Although our ability to detect such genomic regions of elevated divergence is relatively recent
in most nonmodel systems, the field has a longstanding interest in this topic because it promises
to elucidate the shape (genomic distribution) and depth (proportion of the genome) of the evolv-
ing species boundary (146). Recent advances in next-generation-sequencing technologies have
allowed, for the first time, truly genome-wide insights into genomic patterns of differentiation,
and they have led directly to the cataloging of hundreds of specific genetic changes underlying
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mples of phenotypic evolution (104). Moving forward, when coupled with population genomic

data, this knowledge will allow for far more rigorous and direct investigations of how phenotypic

divergence impacts the evolution of species boundaries through space and time.

SUMMARY POINTS

1. Testing the hypotheses of speciation phenotypes is critical to the success of speciation
studies.

2. Multiple axes of differentiation characterize even the youngest of incipient species and

often include multiple sensory modalities involved in sexual communication.

3. The genetic architecture of diverging traits plays a pivotal role in whether speciation
proceeds in the face of ongoing gene flow.

4. How selection shapes the evolving species boundary through the accumulation of and

DI

synergy between “islands of divergence” is an area of active research.
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