

Protein Engineering

- Outline
 - ☐ Limitations of proteins in biotechnology processes
 - ☐ Definition and aim of protein engineering
 - Targeted properties of proteins
 - Basic approaches in protein engineering
 - **DIRECTED EVOLUTION**
 - RATIONAL DESIGN
 - **SEMI-RATIONAL DESIGN**
 - Examples

Proteins in biotechnology

- key problem -availability of optimal protein for specific process
- ☐ traditional biotechnology adapt process
- modern biotechnology adapt protein

HOW TO OBTAIN OPTIMAL PROTEIN?

Proteins in biotechnology

- classical screening
 - screening culture collections
 - polluted and extreme environment
- environmental gene libraries
 - metagenomic DNA
- data-base mining
 - gene databases
 - (meta)genome sequencing projects
 - numerous uncharacterised proteins

IF SUITABLE PROTEIN DOES NOT EXIST IN NATURE?

PROTEIN ENGINEERING

Proteins in biotechnology

- the process of constructing novel protein molecules by design first principles or altering existing structure "de novo design"
- use of genetic manipulations to alter the coding sequence of a gene and thus **modify the properties of the protein**
- AIMS AND APPLICATIONS
 - technological optimisation of the protein to be suitable in particular technology purpose
 - scientific desire to understand what elements of proteins contribute to folding, stability and function

Targeted properties of proteins

- structural properties of proteins
 - stability (temperature, solvents)
 - tolerance to pH, salt
 - resistance to oxidative stress

- ☐ functional properties of proteins
 - reaction type
 - substrate specificity and selectivity
 - kinetic properties (e.g., $K_{\rm m}$, $k_{\rm cat}$, $K_{\rm i}$)
 - cofactor selectivity
 - protein-protein or protein-DNA interactions

RATIONAL DESIGN

1. Computer aided design

2. Site-directed mutagenesis

Individual mutated gene

- 3. Transformation
 - 4. Protein expression
 - 5. Protein purification
 - 6. not applied

Improved protein

DIRECTED EVOLUTION

1. not applied

- 3. Transformation
- 4. Protein expression
- 5. not applied
- 6. Screening and selection
 - stability
 - selectivity
 - affinity
 - activity

Selected mutant enzymes

Constructed mutant enzyme

7. Biochemical testing

Directed evolution

- directed evolution techniques emerged during mid-1990s
- inspired by natural evolution
- this form of "evolution" does not match what Darwin had envisioned
 - requires outside intelligence, not blind chance
 - does not create brand new species, macroevolution,
 but only improvements of molecules, molecular evolution
 - does not take millions of years, but happens rapidly

Directed evolution

- evolution in test tube comprises two steps
 - random mutagenesisbuilding mutant library (diversity)
 - screening and selection
 identification of desired biocatalyst
- prerequisites for directed evolution
 - gene encoding protein of interest
 - method to create mutant library
 - suitable expression system
 - screening or selection system

Improved protein

1. not applied

2. Random mutagenesis

- 3. Transformation
- 4. Protein expression
- 5. not applied
- 6. Screening and selection
 - stability
 - selectivity
 - affinity
 - activity

7. Biochemical testing

Methods to create mutant libraries

- □ technology to generate large diversity
 - NON-RECOMBINING

one parent gene -> variants with point mutations

RECOMBINING

several parental homologous genes -> chimeras

Non-recombining mutagenesis

- UV irradiation or chemical mutagens (traditional)
- mutator strains lacks DNA repair mechanism mutations during replication (e.g., Epicurian coli XL1-Red)
- error-prone polymerase chain reaction (ep-PCR)
 - gene amplified in imperfect copying process
 (e.g., unbalanced deoxyribonucleotides concentrations,
 high Mg²⁺ concentration, Mn²⁺, low annealing temperatures)
 - 1 to 20 mutation per 1000 base pairs
- saturation mutagenesis
 - randomization of single or multiple codons
 - gene site saturation mutagenesis
- other methods
 - insertion/deletions (InDel)
 - cassette mutagenesis (region mutagenesis)

Recombining mutagenesis

- □ also refered to as "sexual mutagenesis"
- DNA shuffling
 - fragmentation step
 - random reassembly of segments
- □ StEP staggered extension process
 - simpler then shuffling
 - random reannealing combined with limited primer extension
- other methods
 shuffling of genes with lower homology down to 70%
 (e.g., RACHITT, ITCHY, SCRATCHY)

Screening and selection

- most critical step of direct evolution
- ☐ isolation of positive mutants hiding in library
 - HIGH THROUGHPUT SCREENING
 individual assays of variants one by one

DIRECT SELECTION
 display techniques (link between genotype and phenotype)

(Utra) High throughput screening

- common methods not applicable
- agar plate (pre)screening
- microtiter plates screening
 - 96-, 384- or 1536-well formate
 - robot assistance (colony picker, liquid handler)
 - 10⁴ libraries
 - volume 10 100 uL
- microfluidic systems (Lesson 5)
 - water in oil emulsions (up to 10 kHz)
 - FACS sorting (10⁸ events/hour)
 - 10⁹ libraries
 - volume 1 10 pL

Direct selection

- □ not generally applicable (mutant libraries >10 variants)
- ☐ link between genotype and phenotype
- display technologies
 - ribosome display
 - phage display
- life-or-death assay
 - auxotrophic strain
 - toxicity based selection

Example of Directed evolution

- directed evolution of enantioselectivity
 - lipase from P. aeruginosa (E-value improved from 1.1 into 51)
 - spectrophotometric screening of (R)- and (S)-nitrophenyl esters
 - 40 000 variants screened
 - the best mutant contains six amino acid substitutions

RATIONAL DESIGN

1. Computer aided design

2. Site-directed mutagenesis

Individual mutated gene

- 3. Transformation
 - 4. Protein expression
 - 5. Protein purification
 - 6. not applied

Improved protein

DIRECTED EVOLUTION

1. not applied

2. Random mutagenesis

(>10,000 clones)

- 3. Transformation
- 4. Protein expression
- 5. not applied
- 6. Screening and selection
 - stability
 - selectivity
 - affinity
 - activity

Selected mutant enzymes

Constructed mutant enzyme

7. Biochemical testing

Rational design

- emerged around 1980s as the original protein engineering approach
- knowledge based combining theory and experiment
- protein engineering cycle:
 - "structure-theory-design-mutation-purification-analysis"
- ☐ difficulty in prediction of mutation effects on protein property
- de novo design most challenging

Principal of rational design

2. Site-directed mutagenesis

Individual mutated gene

- 3. Transformation
 - 4. Protein expression
 - 5. Protein purification
 - 6. not applied

Improved protein

Constructed mutant enzyme

7. Biochemical testing

- rational design comprises:
 - design understanding of protein functionality
 - experiment construction and testing of mutants
 - prerequisites for rational design:
 - gene encoding protein of interest
 - 3D structure (e.g., X-ray, NMR) or sequence alignment
 - structure-function relationship
 - computational methods and capacity
 - side directed mutagenesis techniques
 - efficient expression system
 - biochemical tests

Design

- homologous wild-type sequences alignment
- identifying amino acid residues responsible for differences
- design combination of possitive mutation from all parental proteins

■ ANCESTRAL RECONSTRUCTION

- construction of phylogenetic tree
- design nods prediction by consensus approach

Design

- prediction of enzyme function from structure alone is challenging
- protein structure (X-ray crystallography, NMR, homology models!)
- molecular modelling
 - molecular docking
 - molecular dynamics
 - quantum mechanics/molecular mechanics (QM/MM)

Construction

- ☐ site-directed mutagenesis
 - introducing point mutations
- multi site-directed mutagenesis
- gene synthesis
 - commercial service
 - codone optimisation

- rational design of protein stability
 - stability to high temperature, extreme pH, proteases etc.
 - stabilizing mutations increase strength of weak interactions
 - o salt bridges and H-bonds Eijsink et al., Biochem. J. 285: 625-628, 1992
 - S-S bonds
 Matsumura et al., Nature 342: 291-293, 1989
 - o addition of prolines
 Watanabe et al., Eur. J. Biochem. 226: 277-283, 1994
 - o **less glycines** *Margarit et al., Protein Eng. 5: 543-550, 1992*
 - o oligomerisation
 Dalhus et al., J. Mol. Biol. 318: 707-721, 2002

- engineering protein to resist boiling
 - reduced rotational freedom Ser65Pro, Ala96Pro
 - introduction of disulfide bridge Gly8Cys + Asn60Cys
 - improved internal hydrogen bond Ala4Thr
 - filling cavity Tyr63Phe

Half-lifes (min.)	80°C	100°C
wild type	17.5	>0.5
mutant	stable	170

RATIONAL DESIGN

1. Computer aided design

2. Site-directed mutagenesis

Individual mutated gene

- 3. Transformation
 - 4. Protein expression
 - 5. Protein purification
 - 6. not applied

7. Biochemical testing

DIRECTED EVOLUTION

1. not applied

RATIONAL DESIGN

1. Computer aided design

2. Site-directed mutagenesis

Individual mutated gene

- 3. Transformation
 - 4. Protein expression
 - 5. Protein purification
 - 6. not applied

IMPROVED ENZYME

DIRECTED EVOLUTION

SEMIRATIONAL DESIGN

2. Random mutagenesis

(>10,000 clones)

- 3. Transformation
- 4. Protein expression
- 5. not applied
- 6. Screening and selection
 - stability
 - selectivity
 - affinity
 - activity

Constructed mutant enzyme

7. Biochemical testing

Selected mutant enzymes

conversion of 1,2,3-trichloropropane
by DhaA from Rhodococcus erythropolis Y2

- conversion of 1,2,3-trichloropropane
 by DhaA from Rhodococcus erythropolis Y2
- □ **DIRECTED EVOLUTION** importance of access pathways

- conversion of 1,2,3-trichloropropane
 by DhaA from Rhodococcus erythropolis Y2
- □ DIRECTED EVOLUTION importance of access pathways
- SEMI-RATIONAL DESIGN hot spots in access tunels
- ☐ library of **5,300 clones** screened

Engineering activity of DhaA

	DhaA wt	DhaA 31
К _т (mM)	0.98 ± 0.17	1.19 ± 0.15
$k_{\rm cat}$ (s ⁻¹)	0.035 ± 0.002	1.26 ± 0.05
$k_{\rm cat}/K_{\rm m} ({\rm mM}^{-1}.{\rm s}^{-1})$	0.04	1.06

STANDARD DESIGN

- random mutagenesis (2-3 positions)
- library of 10⁴ clones

ADVANCED DESIGN

- random mutagenesis (5-7 positions)
- library of >10⁶ clones

volume: $100^{\circ} \mu L$ assays/day: 10^{3}

volume: 10' pL assays/day: 10⁷

Software tools

loschmidt.chemi.muni.cz/caver

□ CaverDock

(coming soon)

Hotspot Wizard 2.0

loschmidt.chemi.muni.cz/hotspotwizard

☐ FireProt 1.0

loschmidt.chemi.muni.cz/fireprot

🖵 Cavetta

(coming soon)

Reading

- Lutz, S. 2010: **Beyond directed evolution semi-rational protein engineering and design**. *Curr Opin Biotechnol*. 21(6): 734-743
- ☐ Computational enzyme redesign and Computational de novo enzyme design (page 5-7)

NIH-PA Author Manuscript

NIH Public Access

Author Manuscript

Curr Opin Biotechnol. Author manuscript; available in PMC 2011 December 1.

Published in final edited form as:

Curr Opin Biotechnol. 2010 December; 21(6): 734–743. doi:10.1016/j.copbio.2010.08.011.

Beyond directed evolution - semi-rational protein engineering and design

Stefan Lutz

Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322

Abstract

Over the last two decades, directed evolution has transformed the field of protein engineering. The advances in understanding protein structure and function, in no insignificant part a result of directed evolution studies, are increasingly empowering scientists and engineers to device more effective methods for manipulating and tailoring biocatalysts. Abandoning large combinatorial libraries, the