Revision 1

C2115 Practical introduction to supercomputing

Lesson 12

Petr Kulhanek

kulhanek@chemi.muni.cz

National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno

C2115 Practical introduction to supercomputing

Contents

Representation of numbers in digital technology

integers, real numbers

From problem to result

algorithm, source codes, translation, program execution, programming languages

- numerical integration
- matrix multiplication

Conclusion

To solve problems, it is always advisable to use **existing software libraries** or **programs**, that are **greatly optimized** for the given problem and **hardware**.*

> * May not always be appropriate in case of design verification (proof of concept), as the use of optimized approaches may not be trivial at first.

Representation of numbers

Typical computer scheme

CPU

Processor also **CPU (Central Processing Unit)** is an essential part of the computer; it is a very complex sequential circuit that **executes machine code** stored in the computer's operating memory. The machine code consists of individual machine instructions of a computer programs loaded into the operating memory. Www.wikipedia.org

How does the CPU (ALU) work with numeric values?

Integer numbers

The smallest unit of information in digital technology is one **bit**. Bits are formed into words. The smallest word is **byte** which contains 8 bits.

One byte can describe integers ranging from 0 to 255.

Signed integers can also be expressed. In this case, one bit is reserved for the sign, the remaining bits for the number. There are several implementation options. Intel architecture uses **two's complement**, which leads to range from -128 to 127.

	128	64	32	16	8	4	2	1]	
	1 0	1	1	1	1	1	1	1	=	127
	0	1	0	1	0	1	1	1	=	87
	0	0	0	0	0	0	0	1	=	1
	0	0	0	0	0	0	0	0	=	0
	1	1	1	1	1	1	1	1	=	-1
bit reserved for	1	0	1	0	1	0	0	1	=	-87
sign	1	0	0	0	0	0	0	0	=	-128

Integer numbers, II

Integers with greater dynamic range can be expressed using larger words typically composed of four bytes (32 bit word) or eight bytes (64 bit word).

32-bit unsigned integer:32-bit signed integer:64-bit unsigned integer:64-bit signed integer:

0 to 4.294.967.295 -2.147.483.648 to 2.147.483.647 0 to 18.446.744.073.709.551.615 -9.223.372.036.854.775.808 to 9.223.372.036.854.775.807

When working with integers it is necessary to take into account that you cannot express an arbitrarily large number and the option of underflow or overflow of values must be consistently avoided.

Real numbers

Real numbers are expressed in the following format (floating point format):

 $Q = m_1 \frac{1}{2^1} + m_2 \frac{1}{2^2} + m_3 \frac{1}{2^3} + m_4 \frac{1}{2^4} \dots \qquad m_1, m_2, m_3 \text{ are the bits of the matrix}$

In digital technology, real numbers are most often expressed in a format defined by a standard IEEE 754.

type	width	mantisa	exponent
single precision	32	23	8
double precision	64	52	11

Real numbers, II

Туре	Range	Accuracy
single precision	$\pm 1.18 \times 10^{-38}$ to $\pm 3.4 \times 10^{38}$	approximately 7 decimal places
double precision	±2.23×10 ⁻³⁰⁸ to ±1.80×10 ³⁰⁸	approximately 15 decimal places

By a special combination of value of the mantissa and the exponent, following **special values** can be expressed:

- 0 positive zero
- -0 negative zero
- NaN not a number, e.g., the result of division by zero
- +Inf positive infinity (number is too large to express)
- -Inf negative infinity (number is too large to express)

When working with real numbers, it is necessary to pay attention to propagation of **rounding errors**, in logical comparisons, it is **not appropriate** to use operators **equals** and **does not equal**, except for the zero comparison situation.

Exercise 1

- 1. Variable of type **signed char** (signed byte) contains the number 127. What value will the variable have if we increase it by one?
- 2. Variable of type **unsigned char** (unsigned byte) contains the number 88. How does the numeric value change if the bit representation of the number is shifted one position to the right or left? What is the mathematical meaning of the operation.
- 3. What will be the result of the sum of real numbers represented in double precision and having values:

0,1346978.10⁻¹²

1,2312657.10⁶

4. What is big-endian and little-endian? Indicate architecture that use given type of endianity. What effect does the endianity have on transfer binary data?

Joint exercise: conversion of numerical values from decimal to binary and hexadecimal

Conclusions

- CPUs (or other computing units, e.g., GPGPUs) operate with some numerical precision.
- Errors (numerical errors) can occur in numerical calculations, which can lead to incorrect results (predictions).
- When designing computer programs, it is therefore necessary to use such algorithms that are either not sensitive to rounding errors or significantly reduce their effect.

From problem to results

From problem to results ...

From problem to results ...

From problem to results ...

From problem to result ...

From problem to result ...

When solving problems using computer technology (supercomputers), it is necessary to **comprehensively evaluate** several aspects, including used hardware and its architecture.

Covered topics ...

When solving problems using computer technology (supercomputers), it is necessary to **comprehensively evaluate** several aspects, including used hardware and its architecture.

C2115 Practical introduction to supercomputing

Topics covered ...

When solving problems using computer technology (supercomputers) it is necessary **comprehensively evaluate** a number of aspects, including the hardware used and its architecture.

Numeric integration

Exercise LIII.3

1. Write a program that calculates a certain integral below. Use the trapezoidal method for integration.

Trapezoidal vs rectangular method

numerically more accurate method

numerically less accurate method easier implementation and parallelization

Sequential implementation

program integral

implicit none $I = \int \frac{4}{1+x^2} dx$ integer(8) :: i integer(8) :: n double precision :: rl,rr,h,v,y,x rl = 0.0d0rectangular method rr= 1.0d0n = 200000000 $I_i = y_i h$ h = (rr-rl)/nv = 0.0d0Yi do i=1,nx = (i-0.5d0) *h + rly = 4.0d0 / (1.0d0 + x**2) $v = v + y \star h$ end do h write(*,*) 'integral = ',v end program integral

Exercise 2

Source codes:

/home/kulhanek/Documents/C2115/code/integral/single

- 1. Compile the program integral.f90 with optimization -O3
- Measure application run time required to integrate the function. Use the program /usr/bi /time to measure the time.
- 3. What is the value of the integral equal to?
- What effect does the value of the variable "n" (i.e., size h) have on the accuracy of the calculation? Use programs integral-errors_sp.f90 and integral-errors_dp.f90 to assess. Briefly discuss obtained results.

Matrix multiplication

C2115 Practical introduction to supercomputing

Content

Matrix multiplication

implementation, complexity, computing power, exercises

Explanation of the obtained results

computer architecture and its bottlenecks

Use of optimized libraries

BLAS, LAPACK, LINPACK, comparison of results, exercises

Matrix multiplication

Use:

- finding eigenvalues and vectors of square matrices (quantum chemistry)
- solution of a system of linear equations (QSAR, QSPR)
- transformations (displacement, rotation, scaling display and graphics)

Matrix multiplication

Element of the resulting matrix **C** is the scalar product of the vectors formed by the line *i* of **A** matrix and column *j* of **B** matrix

C2115 Practical introduction to supercomputing

Matrix mult., implementation

subroutine mult_matrices(A,B,C)

```
implicit none
 double precision :: A(:,:)
 double precision :: B(:,:)
 double precision :: C(:,:)
  1_____
 integer
                  :: i,j,k
 1 -----
                         _____
 if (size(A,2) .ne. size(B,1)) then
   stop 'Error: Illegal shape of A and B matrices!'
 end if
 do i=1, size(A, 1)
   do j=1,size(B,2)
     C(i,j) = 0.0d0
     do k=1, size (A,2)
        C(i,j) = C(i,j) + A(i,k) * B(k,j)
     end do
   end do
 end do
end subroutine mult matrices
```

Number of operations

Assuming that matrices **A** and **B** are square with dimensions NxN:

In computer technology, computing power is assed via **FLOPS** (FLoating-point Operations **Per Second**) value, which expresses how many floating point operations a given device performs per second.

Results

wolf21: gfortran 4.6.3, optimalizace O3, Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz

Ν	NR	NOPs	Time	MFLOPS
50	50000	1250000000	6.1843858	2021.2
100	500	100000000	0.5200334	1923.0
150	50	337500000	0.1760106	5 1917.5
200	50	80000000	0.4280272	1869.0
250	50	1562500000	0.8440533	1851.2
300	50	270000000	1.4640903	1844.1
350	50	4287500000	2.3441458	1829.0
400	50	640000000	5.7083569	1121.2
450	50	9112500000	5.9363708	1535.0
500	50	1250000000	10.3366470	1209.3
550	1	332750000	0.6880417	483.6
600	1	43200000	1.1600723	372.4
650	1	549250000	1.8601189	295.3
700	1	68600000	2.5881615	265.1
750	1	843750000	3.2762032	257.5
800	1	1024000000	3.8522377	265.8
850	1	1228250000	4.7883034	256.5
900	1	1458000000	5.6963577	256.0
950	1	1714750000	6.5044060	263.6
1000	1	200000000	7.9444962	251.7

Key:

N - dimension of the matrix NR - number of repetitions NOPs - number of operations in FP Time - execution time in s MFLOPS - computing power

wolf21

Results

Exercise 3

Source codes:

/home/kulhanek/Documents/C2115/code/matrix

- 1. Compile the program **mult_mat_naive_dp.f90** with **gfortran** compiler, use **-O3** optimization.
- 2. Run the program and display the obtained dependence of the computational power depending on the size of the matrix in the form of a graph (interactive mode gnuplot).
- 3. Compare the results for the optimization levels -O3 and -O0. Display the obtained dependencies in one graph. Insert the graph into the protocol. Be sure to specify the CPU type (command lscpu).
- 4. Discuss obtained results.

Matrix multiplication

Architecture of computers

C2115 Practical introduction to supercomputing

Lesson 12 -36-

Architecture, overal view

Architecture, bottleneck

Bottleneck: data transfer rate between memory and CPU is slower than the speed at which the CPU is able to process data

Hierarchical model of memory

fast cache, different levels with different access speeds

wolf21 - transfer rates (memtest86 +, http://www.memtest.org/)

Туре	Size	Speed
L1	32kB	89 GB/s
L2	256 kB	35 GB/s
L3	8192 kB	24 GB/s
paměť	8192 MB	12 GB/s

Hierarchical model of memory

fast cache, different levels with different access speeds

wolf21 - transfer rates (memtest86 +, http://www.memtest.org/)

Туре	Size	Speed
L1	32kB	89 GB/s
L2	256 kB	35 GB/s
L3	8192 kB	24 GB/s
paměť	8192 MB	12 GB/s

When the size of problem exceeds size of CPU cache, data transfer rate between physical memory and CPU becomes the **speed limiting step**.

N=600 600x600x3x8 = 8437 kB A, B, C double precision

wolf21

Libraries for linear algebra

BLAS

The BLAS (**Basic Linear Algebra Subprograms**) are routines that provide standard building blocks for performing basic vector and matrix operations. The Level 1 BLAS perform scalar, vector and vector-vector operations, the Level 2 BLAS perform matrix-vector operations, and the Level 3 BLAS perform matrix-matrix operations. Because the BLAS are efficient, portable, and widely available, they are commonly used in the development of high quality linear algebra software, LAPACK for example.

LAPACK

LAPACK is written in Fortran 90 and provides routines for solving systems of simultaneous linear equations, least-squares solutions of linear systems of equations, ownproblems, and singular value problems. The associated matrix factorizations (LU,Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related computations such as reordering of the Schurfactorizations and estimating condition numbers. Dense and banded matrices are handled, but not general sparse matrices. In all areas, similar functionality is provided for real and complex matrices, in both single and double precision.

http://netlib.org

Optimized libraries

Optimized BLAS and LAPACK libraries

- > optimized by the hardware vendor
- ATLAS http://math-atlas.sourceforge.net/
- MKL http://software.intel.com/en-us/intel-mkl
- ACML http://developer.amd.com/tools/cpu-development/ amd-core-math-library-acml/
- cuBLAS https://developer.nvidia.com/cublas

Optimized FFT libraries (Fast Fourier Transform)

- > optimized by the hardware vendor
- MKL http://software.intel.com/en-us/intel-mkl
- ACML http://developer.amd.com/tools/cpu-development/
 - amd-core-math-library-acml/
- FFTW http://www.fftw.org/
- > cuFFT https://developer.nvidia.com/cufft

Matrix multiplication via BLAS - dp

```
subroutine mult_matrices_blas(A,B,C)
```

```
implicit none
  double precision :: A(:,:)
  double precision :: B(:,:)
  double precision :: C(:,:)
  if (size(A,2).ne. size(B,1)) then
    stop 'Error: Illegal shape of A and B matrices!'
  end if
  call dgemm('N', 'N', size(A,1), size(B,2), size(A,2), 1.0d0, &
             A, size(A,1), B, size(B,1), 0.0d0, C, size(C,1)
end subroutine mult matrices blas
```

F77 interface of BLAS library does not contain information about argument type. Programmer must enter all arguments in the correct order and type!!!! Compilation:

\$ gfortran -O3 mult mat blas dp.f90 -O mult mat blas dp -1blas

Matrix multiplication via BLAS - dp

subroutine mult matrices blas(A,B,C)

```
implicit none
  real(4) :: A(:,:)
 real(4) :: B(:,:)
  real(4) :: C(:,:)
  if (size(A,2) .ne. size(B,1)) then
    stop 'Error: Illegal shape of A and B matrices!'
 end if
  call sgemm('N','N', size(A,1), size(B,2), size(A,2),1.0, &
             A, size(A,1), B, size(B,1), 0.0, C, size(C,1))
end subroutine mult matrices blas
```

Compilation:

\$ gfortran -O3 mult_mat_blas_sp.f90 -O mult_mat_blas_sp -lblas

Naive vs optimized solution

Naive vs optimized solution

Exercise 4

Source codes:

/home/kulhanek/Documents/C2115/code/matrix

- 1. Compile the program **mult_mat_blas_dp.f90** with **gfortran** compiler, use **-O3** optimization.
- 2. Run the program and display the obtained dependence of computing power depending on the size of the matrix in the form of a graph (interactive mode gnuplot).
- 3. Determine the computational power for the optimization levels -O3 and -O0. Display the obtained dependencies in one graph. Insert the graph into the protocol. Be sure to specify the CPU type (command lscpu).
- 4. Compare computing power for **native** and **blas** approaches in the optimized version (option -O3). Display the obtained dependencies in one graph. Insert the graph into the protocol. Be sure to specify the CPU type (command lscpu).
- 5. Discuss obtained results.

Compilation:

\$ gfortran -O3 mult_mat_blas_dp.f90 -o mult_mat_blas_dp -lblas