
C2115 Practical introduction to supercomputing -1-Lesson 14

C2115
Practical introduction to

supercomputing

Petr Kulhanek
kulhanek@chemi.muni.cz

National Center for Biomolecular Research, Faculty of Science,
Masaryk University, Kotlářská 2, CZ-61137 Brno

Lesson 14

Revision 1

C2115 Practical introduction to supercomputing -2-Lesson 14

Content

➢ Infinity
role, command overview

➢ Starting applications
pmemd parallel run

➢ Exercises
efficiency of running pmemd in parallel

C2115 Practical introduction to supercomputing -3-Lesson 14

Infinity
https://lcc.ncbr.muni.cz/whitezone/development/infinity/

C2115 Practical introduction to supercomputing -4-Lesson 14

Overview of commands

Software management:
• site activation of logical computing resources
• software activation/deactivation of software

Task management:
• pqueues overview of batch system queues available to the user
• pnodes overview of computing nodes available to the user
• pqstat overview of all tasks submitted into the batch system
• pjobs overview of user tasks submitted into the batch system
• psubmit submitting a job into the batch system
• pinfo job information
• pgo logs the user on to the computing node where the task is performed
• psync manual data synchronization

C2115 Practical introduction to supercomputing -5-Lesson 14

Job

Job has to fulfill following conditions:

• each job runs in a separate directory

• all job input data must be in the job directory

• job directories must not be nested

• progress of the task is controlled by a script or input file (for automatically detected
jobs)

• job script must be in bash

• absolute paths must not be used in the job script, all paths must be stated relative to
the job directory

/home/kulhanek

job1

job2

/home/kulhanek

job1

job2

C2115 Practical introduction to supercomputing -6-Lesson 14

Job script

#!/bin/bash

script itself

#!/usr/bin/env infinity-env

script itself

Job script can be introduced by standard interpreter for bash or special interpreter infinity-
env which does not allow the task to run outside the computing node. The second
approach prevents possible damage/overwriting/deletion of already calculated data by
accidental re-running of the script.

C2115 Practical introduction to supercomputing -7-Lesson 14

Submitting a job

We are submitting the task in the job directory by command psubmit.

psubmit destination job [resources]

destination (where) is either:
• queue_name
• alias

job is either:
• job script name
• input file name for automatically detected jobs

resources are required resources for the job, if not specified, running on 1 CPU is required

C2115 Practical introduction to supercomputing -8-Lesson 14

Resource specification (selected)
Source Description

ncpus total number of CPUs required

ngpus total number of GPUs required

nnodes number of computational nodes (WN)

mem total amount of required memory (CPU), unit mb, gb

walltime maximum job run time

workdir type of working direktory on WN

place method of occupying computing nodes

props required properties of computational nodes

C2115 Practical introduction to supercomputing -9-Lesson 14

Monitoring progress of job

You can use command pinfo to monitor the progress of the job which is run either in the
job directory or in the working directory on the computing node. Other options are
commands pjobs and pqstat.

If the job is running on a computing node, you can use the command pgo which logs the
user on to the computing node and changes the current directory to the job working
directory.

User interface (UI)

/job/input/dir

Computing node (WN)
/working/directory/

pgo/any/directory

pgo job_id

without argument

Monitoring the task in the terminal.

C2115 Practical introduction to supercomputing -10-Lesson 14

Service files

In the job directory, service files are created when the job is submitted into the batch
system, during the life of the job and after its completion. Their meaning is as follows:

• *.info control file with information about the progress of the task

• *.infex custom script (wrapper), which is run by the batch system

• *.infout standard runtime output of *.infex script, must be analyzed when the
task terminates abnormally

• *.nodes list of nodes reserved for the job

• *.mpinodes list of nodes reserved for the job in format for OpenMP

• *.gpus list of GPU cards reserved for the job

• *.key unique job identifier

• *.stdout standard output from running a job script

C2115 Practical introduction to supercomputing -11-Lesson 14

Data synchronization

User Interface (UI)
(Frontend)

/job/input/dir

Computational Node #1
Worker Node (WN)

/scratch/job_id/

rsync

rsync

datain=copy-master

dataout=copy-master

Default operating mode

Source Meaning

workdir=scratch-local Data is copied from the job input directory to the working
directory on the computing node. The working directory is
created at the beginning of the job by the batch system. When
the job is completed, all data from the working directory is
copied back to the job input directory. Eventually, the working
directory will be deleted if the data transfer was successful.

C2115 Practical introduction to supercomputing -12-Lesson 14

Data synchronization, cover.
Suitable for analysis

User Interface (UI)
(Frontend)

/ job / input / dir

Computational Node #1
Worker Node (WN)

/job/input/dir

shared storage

Source Meaning

workdir=jobdir Job data is on shared storage.

C2115 Practical introduction to supercomputing -13-Lesson 14

Running
applications

C2115 Practical introduction to supercomputing -14-Lesson 14

Request/use of resources

Batch system Job

• user specifies required computing
resources

• user must ensure that the job uses
the assigned computing resources

Native batch system (PBSPro)

• user specifies required computing
resources

• Infinity environment will ensure
correct starting of the job (selected
applications only)

• (other tasks) user must ensure that
the job uses the assigned computing
resources

Infinity

C2115 Practical introduction to supercomputing -15-Lesson 14

pmemd

#!/bin/bash

activate module amber containing

application pmemd

module add amber

running application

pmemd –O –i prod.in –p 6000.parm7 \

-c 6000.rst7

pmemd is a program for molecular dynamics. More detailed information can be found
here: http://ambermd.org

Script for CPU run of the application:

C2115 Practical introduction to supercomputing -16-Lesson 14

pmemd – parallel run

When running in parallel, only entry of resources in the psubmit command changes.
Nothing else changes! (input data and job script remain the same).

$ psubmit default rum.sh ncpus=1 $ psubmit default run.sh ncpus=2

can be omitted

*.stdout
.....

Module build: amber:16.0:x86_64:single

.....

*.stdout
.....

Module build: amber:16.0:x86_64:para

.....

Computational node:Computational node:

C2115 Practical introduction to supercomputing -17-Lesson 14

Exercise

C2115 Practical introduction to supercomputing -18-Lesson 14

Exercise 1

1. The goal of the exercise is to determine how well the pmemd application scales in the
range of the number of CPUs, which are multiples of two. Determine the actual and
theoretical length of the calculation, the real acceleration, and the real CPU usage as a
percentage. Plot the real acceleration as a function of the number of CPUs. Compare
the found curve with the curve for ideal scaling.

2. Enter tasks using the Infinity environment with variable quantity for ncpus. Run each
test in a separate directory. Regardless of the number ncpus always request the whole
node (place=excl) and use the same computing node (props=vnode=wolf30).

Job input data is on the WOLF cluster in the directory:
/home/kulhanek/Documents/C2115/data/chitin/cpu

See notes on the following page

How to submit a job:

$ psubmit default run.sh ncpus=8 place=excl props=vnode=wolf30

C2115 Practical introduction to supercomputing -19-Lesson 14

pmemd

Simulation length:
The length of the simulation (calculation) is determined by the keyword (nstlim) specified
in the prod.in file, which specifies the number of integration steps. Select the size of nstlim
so that the job run time is about 60 minutes using 1 CPU.

The result of the simulation are the files:

mdout
mdinfo <- contains statistical information, e.g., how much ns per day is the

program able to simulate
mdcrd
restrt

