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Sequence similarity is a measure of an empirical relationship between sequences. A

common objective of sequence similarity calculations is establishing the likelihood for

sequence homology: the chance that sequences have evolved from a common

ancestor. A similarity score is therefore aimed to approximate the evolutionary distance

between a pair of nucleotide or protein sequences. Many implementations for

measuring sequence similarity exist, where a general aim is to infer structural or

functional characteristics of an unannotated molecular sequence.

Comparative Sequence Analysis

Comparative sequence analysis is a commonfirst step in the
analysis of sequence–structure–function relationships in
protein and nucleotide sequences. In the quest for knowl-
edge about the role of a certain unknown protein in
the cellular molecular network, comparing the query
sequence with the many sequences in annotated protein
sequence databases often leads to useful suggestions re-
garding the protein’s three-dimensional (3D) structure or
molecular function. This extrapolation of the properties of
sequences in public databases that are identified as ‘neigh-
bours’ by sequence analysis techniques has arguably led
to the putative characterization (annotation) of more
sequences than any other single technology during the last
three decades.Although progress has beenmade, the direct
prediction of a protein’s structure and function is still a
major unsolved problem in molecular biology. Since the
advent of the genome sequencing projects and subsequent
rapid expansion of sequence databases, the method of in-
direct inference of molecular function by comparative se-
quence techniques has only gained in significance. Many
current research projects are aiming to improve the sensi-
tivity of sequence comparison techniques, which requires
high-performance computing given the current and rapidly
growing database sizes.

Sequence Alignment

Although many properties of nucleotide or protein
sequences can be used to derive a similarity score, for
example, nucleotide or amino acid composition, isoelectric
point or molecular weight, the vast majority of sequence

similarity calculations are based upon an alignment be-
tween two sequences from which a similarity score is in-
ferred. Ideally, the alignment matches the nucleotide or
amino acid sequences from either sequence according to
their evolutionary descent from a common ancestor, with
conserved and correspondingmutated residues at matched
positions and inserted/deleted fragments intervening at
proper sequence positions. Often, however, evolution has
led to very widely diverged sequences such that at the pri-
mary sequence level the ancestral ties have become blurred
beyond recognition, leading in many cases to biologically
incorrect alignments. Another confounding issue is the fact
that an increasing number of cases are identified of non-
orthologous displacement, where enzymes carrying out
an identical function in different organisms belong to
entirely different protein families, and thus are not ex-
pected to show any sequence similarity. Examples of non-
orthologous displacement include ornithine decarboxylase
inEscherichia coli andSaccharomyces cerevisiae, where the
isozymes speF and speC are responsible for this function in
E. coli and share the same structure comprising three do-
mains (ornithine decarboxylaseN-terminal ‘wing’ domain,
pyridoxal phosphate (PLP)-dependent transferase and or-
nithine decarboxylase C-terminal domain), whereas the
corresponding enzyme spe1 inS. cerevisiae is a two-domain
protein with entirely different domain structures
(PLP-binding barrel and alanine racemase-like domain).
In general, sequence alignment techniques are aimed at
recognizing divergent evolution by mutation, including
changes of gene structure by gene fusion or fission. How-
ever, the techniques are not able to trace evolutionary cases
of horizontal gene transfer or functional displacement of
one gene by another within a genome. See also: Alignment:
Statistical Significance; Evolutionary Distance; Evolution:
Convergent and Parallel Evolution; Gene Fusion; North-
ern Blotting and RNA Detection; Proteins: Mutational
Effects in

Techniques for pairwise alignment

Many methods for the calculation of sequence alignments
have been developed, of which implementations of the
dynamic programming (DP) algorithm (Needleman and
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Wunsch, 1970; Smith andWaterman, 1981) are considered
the standard in yielding the most biologically relevant
alignments. The DP algorithm requires a scoring matrix,
which is an evolutionary model in the form of a symmet-
rical 4� 4 nucleotide or a 20� 20 amino acid exchange
matrix. Each matrix cell approximates the evolutionary
propensity for the mutation of one nucleotide or amino
acid type into another. The DP algorithm also relies on the
specification of gap penalties, which model the relative
probabilities for the occurrence of insertion/deletion
events. Normally, a gap opening and extension penalty is
used for creating a gap and each extension, respectively
(affine gap penalties), so that the chance for an insertion/
deletion depends linearly upon the length of the associated
fragment. Given an exchange matrix and gap penalty val-
ues, which together are commonly called the scoring
scheme, the DP algorithm is guaranteed to produce the
highest scoring alignment of any pair of sequences: the op-
timal alignment. See also: Dynamic Programming; Sub-
stitution Matrices

Two main types of alignment are generally distin-
guished: global and local alignment. Global alignment
(Needleman and Wunsch, 1970) denotes an alignment
over the full length of both sequences, which is an appro-
priate strategy to follow when two sequences are similar
or have roughly the same length. A special form of global
alignment is semiglobal alignment, where alignment ex-
tends over full-length sequences, but with zero gap cost
for end gaps preceding or following a sequence. This is an
appropriate strategy for cases such as, for example, align-
ing a single gene against a genome, or a single-domain
protein sequence against a multidomain protein sequence
with one of its domains being homologous to the single-
domain sequence. However, some sequences may show
similarity limited to a motif or a domain only, while re-
maining sequence stretches may be essentially unrelated.
In such cases, global alignment may well misalign the
related fragments, as these become overshadowed by the
unrelated sequence portions that the global method at-
tempts to align, possibly leading to a score that would not
allow the recognition of any similarity. An appropriate
technique that addresses this issue is local alignment
(Smith and Waterman, 1981). The first method for local
alignment, often referred to as the Smith–Waterman
(SW) algorithm (Smith and Waterman, 1981), is in fact a
minor modification of the DP algorithm for global align-
ment. The algorithm selects the best-scoring subsequence
from each sequence and provides their alignment, thereby
disregarding the remaining sequence fragments. If no
knowledge about the relationship of two sequences is
available, it is generally advisable to align selected frag-
ments of either sequence that have retained most of the
evolutionary signal. Later elaborations of the local align-
ment algorithm include methods that generate a number
of suboptimal local alignments in addition to the optimal
pairwise alignment (e.g. Waterman and Eggert, 1987).
See also: Global Alignment; Sequence Alignment; Smith–
Waterman Algorithm

Calculating alignment scores

Since theDP algorithm essentially models the alignment of
two sequences as a Markov process, where the amino acid
matches are considered independent, the product of the
probabilities for eachmatch within an alignment should be
taken. Sincemanyof the scoringmatrices contain exchange
propensities converted to logarithmic values (log-odds), the
alignment score can be calculated by summing the log-odd
values corresponding to matched residues minus appro-
priate gap penalties:

Sa;b ¼
X

l

sðai; bjÞ �
X

k

NkgpðkÞ

where the first summation is over the exchange values as-
sociatedwith lmatched residues and the second is over each
group of gaps of length k, with Nk the number of gaps of
length k and gp(k) the associated gap penalty. In case affine
gap penalties are used (see above), gp(k)=po+kpe, where
po and pe are the penalties for gap opening and extension,
respectively. A consequence of the widely used affine gap
penalty scheme is that long gaps required, for example, to
span an inserted domain B in aligning a two-domain se-
quence AC (where A and C represent domains) with a
three-domain sequence ABC, are often too costly, so that
such sequences become misaligned.
The method Ngila (Cartwright, 2007) allows the appli-

cation of biologically more realistic gap penalties of the
form gp(k)=po+kpe+pc ln k, where po, pe and pc are the
penalties for gap opening, extension and concave exten-
sion, respectively. Setting pe to zero yields the so-called
concave gap penalty regime, which is more amenable to
inserting large gaps than the affine scheme.

Sequence database searching

A typical application to infer knowledge for a given query
sequence is to compare itwith all sequences in an annotated
sequence database.Unfortunately, theDP algorithm is too
slow for repeated searches over large databases, and may
take multiple CPU hours for a single query sequence on a
standard workstation. Although some special hardware
has been designed to accelerate the DP algorithm, this
problem has triggered the development of several heuristic
algorithms that represent shortcuts to speed up the basic
alignment procedure. Typically, these algorithms employ a
quick scanning step to discard putatively unrelated data-
base sequences. The relatively few remaining sequences are
then subjected to a more rigorous comparison to assess
their biological relatedness.

Fast heuristic methods

The homology searching tool FASTA (Pearson and
Lipman, 1988) was the first heuristic for fast sequence
comparison.Themethod incorporates a quick filtering step
that approximates local alignment using hashing, a com-
putational indexing technique. Database sequences that
are retained are then locally aligned to the query sequence
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using full DP. The popular BLAST suite (Altschul et al.,
1990) includes a number of routines for searching of all
combinations of nucleotide or protein sequences against a
nucleotide or protein database. For example, it enables the
routine searching of a protein query sequence against an
annotated nonredundant (NR) database of about 4million
protein sequences. The currently most widely used method
to scour sequence databases for homologies, PSI-BLAST
(Altschul et al., 1997), is an extension of the BLAST tech-
nology in that it can iteratively rescan the sequence data-
base. It does so bymeans of a profile representing the query
sequence that is constructed using database hit sequences
fromapreceding iteration.Anumberof updates to thePSI-
BLAST technique were effected (Schäffer et al., 2001), the
most significant of which was making the position-specific
scoring matrix (PSSM) in PSI-BLAST take compositional
biases of the query and database sequences into account.
Przybylski andRost (2007) extended the PSI-BLAST tech-
nology by regularizing theNRdatabase. In their approach,
each database sequence is replaced by a consensus se-
quence based upon neighbouring database sequences.
Thus the constructed consensus database led to improved
PSI-BLAST searches, whereas the PSI-BLAST method
itself did not need any modifications.

A computational effective adaptation of the BLAST
technique is the method BLAT, the BLAST-like alignment
tool (Kent, 2002). BLAT performs rapid messenger ribo-
nucleic acid/deoxyribonucleic acid (mRNA/DNA) and
cross-species protein alignments. Using a different tech-
nology it is about 500 times faster than BLAST when used
for mRNA/DNA alignments and 50 times faster for pro-
tein alignments at sensitivity settings typically used when
comparing vertebrate sequences.WhenBLAT is applied to
DNA sequences, an index of the entire genome with a size
of approximately 1 GB is built up in memory. The index
consists of all nonoverlapping 11-mers except for those
heavily involved in repeats. It is used to delineate putatively
homologous areas, which are then loaded into memory for
further detailed alignment. The BLAT routine for protein
sequences works in a similarmanner but uses 4-mers rather
than 11-mers. Although the protein index generated is
larger than that for DNA, it can be stored in memory on
modern workstations.

The standard implementation of BLAT quickly finds
sequences of 95%similarity ormore, and length � 40bases
when applied toDNA.However,more divergent regions at
longer length ormore similar regions at shorter lengths can
be missed. When applied to search protein sequences,
BLAT finds sequences � 80% sequence identity and of
length 20 amino acids or more. In practice, DNA BLAT
can be applied for homology searches covering primate
genomes, whereas protein BLAT is amenable to land
vertebrates.

Extended sequence comparison techniques

Owing to advances in computational performance, proce-
dures for homology searching have been developed based

on more computationally intense formalisms such as the
hidden Markov modelling-based tools SAM-T2K (Kevin
et al., 2001; Karplus et al., 1998) and HMMER2 (Eddy,
1998). Other improvements to the alignment of distant se-
quences have been achieved using alternative approaches.
Yu et al. (2003) showed that the use of organism-specific or
alignment set-specific background frequencies for contex-
tual readjustment of the standard amino acid exchange
weights provide a more sensitive and biologically accurate
way to align sequences. Alternatively, structural and/or
homologous sequence information can be incorporated
into the alignment process to help identify the distant re-
lations between sequences. The advantage of using related
sequence information has led to numerous profile–profile
alignment methods that apply different profile-scoring
schemes (e.g. Yona and Levitt, 2002; Edgar and Sjölander,
2004; von Ohsen et al., 2004; Tomii and Akiyama, 2004;
Jaroszewski et al., 2005; Simossis et al., 2005). Most of
these profile–profile alignment approaches have mainly
been used for sequence database searching (local pairwise
alignment), where a popular application has been to use
profile–profile comparisons for aligning a profile derived
from a query multiple alignment with a number of profiles
describing a collection of different protein families.
See also: BLAST Algorithm; FASTA Algorithm; Hidden
Markov Models; Multiple Alignment; Profile Searching

Databases and annotation

A database search can be performed for a nucleotide or
amino acid sequence against an annotated database of
nucleotide (e.g. EMBL, GenBank, DDBJ) or protein se-
quences (e.g. SwissProt, PIR, TrEMBL, GenPept, NR-
NCBI, NR-ExPasy). Also the GSS, EST, STS or HTGS
nucleotide databases can be scrutinized to find homologies,
gain insight into expression data or locate a gene on the
genome map. The NR-NCBI database is compiled by the
NCBI (National Center for Biotechnology Information) as
an NR protein sequence database for BLAST searches. It
contains a total of about 4 million nonidentical sequences
from GenBank CDS translations, PDB, Swiss-Prot, PIR
and PRF.
The success of sequence similarity searches depends cru-

cially on the quality and coverage of the sequence database
used. The quality of the data, especially nucleic acid se-
quences, has improved as a result of modern sequencing
techniques, while the amount of raw sequence data is in-
creasing very rapidly.However, functional characterization
is also critically reliant on the annotation of the data. Since
inferring and experimentally determining the annotations
represent abottleneck in thegenerationof thedata, there is a
rapidly widening gap between sequence and annotation
data. This is reflected in the fact that many sequences have
‘unknown’ as functional annotation, whereas an increasing
number of sequences, especially those originating from
bacterial genomes, feature annotations such as ‘conserved
hypothetical’. Conserved hypothetical database sequences
have homologues, usually in other organisms, but none of
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these homologues have known functions. Nonetheless, if
conserved hypothetical homologues exist, this provides
confidence that the sequence considered is truly a gene. See
also: Comparative Human Genomics

Comparing DNA or protein sequences

The actual pairwise comparison of sequences can take
place at the nucleotide or peptide level. However, the most
effective way to compare sequences is at the peptide level
(Pearson, 1996), which requires that nucleotide sequences
must first be translated in all six reading frames followed by
comparison with each of these conceptual protein se-
quences. Althoughmutation, insertion and deletion events
take place at the DNA level, there are several reasons why
comparing protein sequences can reveal more distant re-
lationships: (1) Many mutations within DNA are synon-
ymous, which means that these do not lead to a change of
the corresponding amino acids. As a result of the fact that
most evolutionary selection pressure is exerted on protein
sequences, synonymous mutations can lead to an overes-
timation of the sequence divergence if compared at the
DNA level. (2) The evolutionary relationships can bemore
finely expressed using a 20� 20 amino acid exchange table
than using exchange values among four nucleotides.
(3) DNA sequences contain noncoding regions, which
should be avoided in homology searches. Note that the
latter is still an issue when using DNA translated into pro-
tein sequences through a codon table. However, a compli-
cation arises when using translated DNA sequences to
search at the protein level because frameshifts can occur,
leading to stretches of incorrect amino acids in the wrongly
transcribed product and possible elongation of sequences
due to missed stop codons. On the contrary, frameshifts
typically result in stretches of highly unlikely and distant
amino acids, which can be used as a signal to trace their
occurrence. See also: Mutation Rates: Evolution

Similarity versus homology

Many times the term ‘homologous sequence’ is used when
in fact a sequence should only be referred to as similar to a
given reference sequence (May, 2001). Whereas sequence
similarity is a quantification of an empirical relationship of
sequences expressed using a gradual scale, the term ‘ho-
mology’ denotes an inference in that the presence of a
common ancestor between the sequences and hence diver-
gent evolution is assumed, leading to orthologous genes.
This means that homology is a qualitative state; that is, a
pair of sequences is homologous or not. As protein tertiary
structures are more conserved during evolution than their
coding sequences, homologous sequences are assumed to
share the same protein fold. Although it is possible in the-
ory that two proteins evolve different structures and func-
tions from a common ancestor, this situation cannot be
traced so that suchproteins are seen as unrelated.However,
numerous cases exist of homologous protein familieswhere
subfamilies with the same fold have evolved distinct

molecular functions. The term ‘homology’ is often used
in practice when two sequences have the same structure
or function, although in the case of two sequences sharing
a common function this ignores the possibility that the
sequences are analogues resulting from convergent evolu-
tion, now often referred to as nonorthologous displace-
ment (see earlier). Unfortunately, it is not straightforward
to infer homology from similarity as enormous differences
exist between sequence similarities within homologous
families. Many protein families of common descent com-
prise members that share pairwise sequence similarities,
which are only gradually higher than those observed be-
tween unrelated proteins. This region of uncertainty has
been characterized to lie in the range 15–25% sequence
identity (Doolittle, 1981) (see later), and is commonly re-
ferred to as the ‘twilight zone’. There are even some known
examples of homologous proteins with sequence similar-
ities below the randomly expected level given their amino
acid composition (Pascarella and Argos, 1992). As a con-
sequence, it is impossible to prove using sequence similarity
that two sequences are not homologous. See also: Protein
Homology Modeling
The similarity score for two sequences can be calculated

from their alignment using the above formula forSa,b, such
that it depends on the actual scoring matrix and gap pen-
alties used. Sequence similarity has also been calculated as
a fraction of a maximal score possible for two sequences
using a normalized scoring matrix and by normalizing the
raw alignment score by the length of the shorter sequence
(Abagyan and Batalov, 1997).

Sequence similarity versus identity

Numerous studies into protein sequence relationships eva-
luate sequence alignments using a simple binary scheme of
matched positions being identical or nonidentical. Se-
quence identity is normally expressed in the percentage
identical residues found in a given alignment, where nor-
malization can be performed using the length of the align-
ment or the shorter sequence. The scheme is simple and
does not rely on an amino acid exchange matrix. However,
if two proteins are said to share a given percentage in se-
quence identity, this is based on a sequence alignment,
which will have been almost always constructed using an
amino acid exchangematrix and gappenalty values, so that
sequence identity cannot be regarded as being independent
of sequence similarity. Using sequence identity as a meas-
ure, Sander and Schneider (1991) estimated that if two
protein sequences are longer than 80 residues, they could
relatively safely be assumed to be homologous whenever
their sequence identity is 25%ormore.Another commonly
used notion is that if two sequences share more than 50%
sequence identity, their enzymatic functionwill be the same
(Rost, 2002). Contrary to this notion, however, it has been
estimated that 70% of pair fragments with above 50% se-
quence identity might not have a completely identical
function (Rost, 2002). An example is Bacillus subtilus ex-
odeoxyribonuclease (SwissProt code exoa_bacsu) and rat
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DNA-lyase (SwissProt code ape1_rat), where the se-
quences share 57% identity over 122 alignment positions,
leading to a very significant BLASTE-value of 1.6� 10296,
but yet fulfil different functions (DNA degradation and
repair, respectively). Despite its popularity and use in em-
pirical rules as above, the use of sequence identity percent-
ages is not optimal for homology searches (Abagyan and
Batalov, 1997). As a result no major sequence comparison
methods employ sequence identity scores in deriving sta-
tistical significance estimates. See also: Gene Families

Statistics of Alignment Similarity
Scores

Sequence alignment methods are essentially pattern search
techniques, leading to an alignment with a similarity score
even in case of absence of any biological relationship (‘gar-
bage in, garbage out’). Although similarity scores of un-
related sequences are essentially random, they can behave
like ‘real’ scores and, for example, like the latter are cor-
related with the length of the sequences compared. Partic-
ularly in the context of database searching, it is important
to know what scores can be expected by chance and how
scores that deviate from random expectation should be as-
sessed. If within a rigid statistical framework a sequence
similarity is deemed statistically significant, this provides
confidence in deducing that the sequences involved are in
fact biologically related. As a result of the complexities of
protein sequence evolution and distant relationships
observed in nature, any statistical scheme will invariably
lead to situations where a sequence is assessed as unrelated
while it is in fact homologous (false negative), or the in-
verse, where a sequence is deemed homologouswhile it is in
fact biologically unrelated (false positive). A relatively fre-
quent cause of erroneous transfer of annotation is based on
similarity found over relatively short sequence regions and/
or similarity based on different domains in multidomain
structures (Rost, 2002).

The derivation of a general statistical framework for
evaluating the significance of sequence similarity scores
has been a major task. However, a rigid framework has
not been established for global alignment, and has only
partly been completed for local alignment.

Expected values for global similarity scores

Sequence similarity values resulting from global align-
ments are known to grow linearly with the sequence length
(Figure 1), although the growth rate has not been deter-
mined. Also, the exact distribution of global similarity
scores is yet unknown, and only numerical approximations
exist, providing only a rough bound on the expected ran-
dom scores. As the variance of the global similarity score
has not been determined either, most applications derive a
sense of the score by using shuffled sequences. Shuffled
sequences retain the composition of a given real sequence

but have a permuted order of nucleotides or amino acids.
The distribution of similarity scores over a large number
of such shuffled sequences often approximates the shape
of the Gaussian distribution, which is therefore taken to
represent the underlying random distribution. Using the
mean (m) and standard deviation (s) calculated from such
shuffled similarity scores, each real score S can be con-
verted to the z-score using

z� score ¼ S �m

s
The z-score measures how many standard deviations the
score is separated from the mean of the random distribu-
tion. In many studies, a z-score46 is taken to indicate a
significant similarity.

Expected values for local similarity scores

Statistics of local alignments without gaps

A rigid statistical framework for local alignments without
gaps has been derived for protein sequences following the
work by Karlin and Altschul (1990), who showed that the
optimal local ungapped alignment score grow linearly with
the logarithm of the product of sequence lengths of two
considered random sequences:

S� lnðn �mÞ
l

where n and m are the lengths of two random sequences,
and l a scaling parameter that depends on the scoring

Figure 1 Distribution of 66066 global similarity scores, derived from

pairwise global alignments over an artificial database of sequences derived

using a random mutation and insertion/deletion protocol, versus the length

of the shortest sequence in each pairwise alignment. The alignments were

effected using the PRALINE method (Heringa, 1999, 2002), where the

alignment scores were calculated using the BLOSUM62 matrix and gap

penalty values of 12 and 1 for gap initiation and extension, respectively. A

clearly linear lower band of alignment scores of unrelated sequences is visible.

The correlation coefficient of the random scores within the lower band is 0.99

while the slope of the regression line is 7.864. Also the higher scores of

putatively related sequences above the lower band are correlated: the

correlation coefficient is 0.98 and the linear regression line slope is 12.50.

Random and real scores were separated by the line y59.334x.
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matrix used and the overall distribution of amino acids in
the database. Specifically, l is the unique solution for x in
the equation

X

i;j

PiPje
Si;jx ¼ 1

where summation is done over all amino acid pairs, pi rep-
resents the background probability (frequency) of residue
type i and si,j the scoring matrix.

An important contribution for fast sequence database
searching has been the realization (Karlin and Altschul,
1990; Dembo and Karlin, 1991; Dembo et al., 1994) that
local similarity scores of ungapped alignments follow the
extreme value distribution (EVD) (Gumbel, 1958). The
computational advantage of exploiting the EVD for sta-
tistical significance scores was used for the first time in
BLAST (Altschul et al., 1990). This distribution is unimo-
dal but not symmetrical like the normal distribution, be-
cause the right-hand tail at high scoring values falls off
more gradually than the lower tail, reflecting the fact that a
best local alignment is associated with a score that is the
maximum out of a great number of independent align-
ments (Figure 2).

Following the EVD, the probability of a score S to be
larger than a given value x can be calculated as

PðS � xÞ ¼ 1� expð�e�lðx�mÞÞ
where m=(lnKmn)/l, and K a constant that can be esti-
mated from the background amino acid distribution and
scoring matrix. (See Altschul and Gish (1996) for a collec-
tion of values for l and K over a set of widely used scoring
matrices.) Using the equation for m, the probability for S
becomes

PðS � xÞ ¼ 1� expð�Kmne�lxÞ
In practice, the probability P(S� x) is estimated using the
approximation 12 exp(2e2x)� e2x, which is valid for

large values of x. This leads to a simplification of the
equation for P(S� x):

PðS � xÞ � e�lðx�mÞ ¼ Kmne�lx

The lower the probability for a given threshold value x, the
more significant the score S.
Despite the usefulness of the above statistical estimates

in recognizing sequence similarity, it should be noted that
they do not judge the distribution of similarity along the
sequences, which is a crucial aspect in assessing homology,
and can correspond to a single domain in a multidomain
protein sequence or to a single motif within a domain.

Statistics of local alignments with gaps

Although similarities between sequences can be detected
reasonablywell usingmethods that donot allow insertions/
deletions in aligned sequences, it is clear that insertion/
deletion events play a major role in divergent sequences.
Thismeans that accommodating gaps within alignments of
distantly related sequences is important for obtaining an
accurate measure of similarity. Unfortunately, a rigorous
statistical framework as obtained for gapless local align-
ments has not been conceived for local alignments with
gaps. However, although it has not been proven analyti-
cally that the distributionofS for gappedalignments canbe
approximated with the EVD, there is accumulated evi-
dence that this is the case. For example, for various scoring
matrices, gapped alignment similarities have been observed
to grow logarithmically with the sequence lengths (Arratia
andWaterman, 1994). Other empirical studies have shown
it to be likely that the distribution of local gapped similar-
ities follows the EVD (Smith et al., 1985; Waterman and
Vingron, 1994), although an appropriate downward cor-
rection for the effective sequence length has been recom-
mended (Altschul and Gish, 1996). The distribution of
empirical similarity values can be obtained from unrelated
biological sequences (Pearson, 1998). Fitting of the EVD
parameters l and K (see earlier) can be performed using a
linear regression technique (Pearson, 1998), although the
technique is not robust against outliers which can have a
marked influence. Maximum likelihood estimation (Mott,
1992; Lawless, 1982) has been shown to be superior for
EVD parameter fitting and, for example, is the method
used to parameterize the gapped BLASTmethod (Altschul
et al., 1997). However, when low gap penalties are used to
generate the alignments, the similarity scores can lose their
local character and assume more global behaviour, such
that the EVD-based probability estimates are not valid
anymore (Arratia and Waterman, 1994).

Statistics of database searches

To be useful in sequence database searches, the above
framework for comparing a pair of random sequences
should be adapted to multiple pairwise comparisons. Here,
it becomes important to establish the probability for a given
query sequence to have a significant similarity with at least
one of the database sequences. A p-value is the probability

Figure 2 Probability density function for the extreme value distribution

(EVD) resulting from parameter values m50 and l5 1, where m is the

characteristic value and l the decay constant.
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of seeing at least one unrelated scoreS greater than or equal
to a given scorex in adatabase searchover n sequences.This
probability has been demonstrated to follow the Poisson
distribution (Waterman and Vingron, 1994):

Pðx; nÞ ¼ 1� e�nPðS�xÞ

where n is the number of sequences in the database. In ad-
dition to thep-value, somedatabase searchmethods employ
the expectation value (or E-value) of the Poisson distribu-
tion, which is defined as the expected number of nonho-
mologous sequences with scores greater than or equal to a
score x in a database of n sequences:

Eðx; nÞ ¼ nPðS � xÞ
For example, if theE-value of amatched database sequence
segment is 0.01, then the expected number of random hits
with score S� x is 0.01, which means that this E-value is
expected by chance only once in 100 independent searches
over the database. However, if the E-value of a hit is five,
then five fortuitous hits with S�x are expected within a
single database search, which renders the hit not significant.
Database searching is commonly performed using an
E-value in between 0.1 and 0.001. Low E-values decrease
the number of false positives in a database search, but
increase the number of false negatives such that the sensi-
tivity (see below) of the search is lowered.

Evaluating sequence database searches

A few useful measures are commonly used to measure the
accuracy of sequence database search methods over an an-
notatedNRdatabase.The sensitivityofa search is definedas

Sensitivity ¼ TP

TPþ FN

where TP is the number of true positives and FN the number
of falsenegatives,which reflects the fractionof truehits found
relative to the total number of sequences in the database that
are homologous to the query. The sensitivity reflects to what
extent the method is able to identify distantly related se-
quences. In many studies this measure is also referred to as
coverage. The specificity (or selectivity) is defined as

Specificity ¼ TN

FPþ TN

which denotes the fraction of entries correctly excluded as
hits, and hencemeasures the avoidance of unrelated hits. Yet
another widely used measure is the positive predictive value
(PPV), defined as

PPV ¼ TP

TPþ FP

whichmeasures the proportionof true homologueswithin all
sequences designated by the search tool as related. In prac-
tical database searches, there is a trade-offbetween sensitivity
and specificity: Themore the p-values orE-values are relaxed
to allow more distantly related sequences to be found, the
more likely it becomes that chance hits infiltrate the search.
Moreover, even if a very statistically significant similarity is

encountered, problems remain. For example, if high similar-
ity is found over only a portion of the sequences, the
sequences may each contain multiple domains and share a
single homologous domain only (see above), so that only an
aspect of the overall function might be inferred. In iterative
homology searches, often carried out using the aforemen-
tioned method PSI-BLAST (Altschul et al., 1997), protein
sequences containing more than one structural domain can
be problematic in that they cause the search to terminate
prematurely or lead to an ‘explosion’ of common domains
(George andHeringa, 2002). For example, the occurrence in
the query sequence of a common and conserved protein do-
main such as the tyrosine kinase domain, which is then hit
many times in the database, can obscure weaker but also
relevant matches to other domain types (George and
Heringa, 2002), particularly when the E-value is set to only
include strong hits. Conversely, when multidomain se-
quences with the same sequential order of domains as in
the query sequence are found initially during an iterative
search, homologues with different domain combinations
might well be missed due to early convergence of the search.

Low-complexity sequences

To reduce the chance of including spurious hits, some data-
base search engines, such as PSI-BLAST (Altschul et al.,
1997), scan query sequences for the presence of so-called
low-complexity regions comprising biased residue compo-
sitions such as repeat-rich, coiled-coil or transmembrane
regions (Wooton and Federhen, 1996). These are then ex-
cluded from alignment to limit the inclusion of false-pos-
itive hits due to database sequence matches with these
regions. However, the occurrence of database sequences
with low-complexity regions can still cause an explosion of
false positives in iterative homology searches (George and
Heringa, 2002). Sharon et al. (2005) presented amodel that
corrects BLAST E-values for low-complexity sequences
without the need of complexity filtering.
Despite recent improvements of search techniques, com-

plications such as above illustrate that automatic biological
evaluation of homology searches in genomic pipelines re-
mains elusive. See also: Alignment: Statistical Significance;
Bioinformatics in Genome Sequencing Projects; Protein
Homology Modeling; Sequence Alignment; Similarity
Search
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