LECTURE 4 Pulse: frequency B0: 9T-27T 1H: 400 MHz-1200 MHz 13C: 100 MHz-300 MHz 15N: 40 MHz-120 MHz Pulse: phase first pulse: convention: 180° for 7 > 0 convention: 0° for 7 < 0 other pulses: 0° x 90° y 180° -x 270° -y Pulse: phase modulation 0 cycle per pulse 100/is pulse: +0 kHz Pulse: phase modulation 1 cycle per pulse 100 /xs pulse: +10 kHz Pulse: phase modulation 2 cycles per pulse 100 /xs pulse: +20 kHz Pulse: phase modulation 4 cycles per pulse 100 /xs pulse: +40 kHz Pulse: power / amplitude field strength power attenuation P ocBl 10log10gf kHz W dB 20 logic B\\2 B\ l lOlogio Bi Bi 2 2 2 1 10 logic P2 Pi typical: P< 1000W, cjx < 50 kHz limit: sample/coil heating Pulse: length calibrate so that a Co where a = 90°, 180°,. OFFSET EFFECTS Pulse: amplitude modulation calibrate/calculate power so that a = \wi\tp where a = 90°, 180°,... O Offset effects / selectivity Offset effects / selectivity Q^O off resonance Offset effects / selectivity Offset effects / selectivity Offset effects / selectivity Offset effects / selectivity Offset effects / selectivity Offset effects / selectivity t M Q/^15; ujeff = VI + 15oji Quadrature detection / frequency discrimination COS(u;o^) —> ^cos(ujQt) —> ^cos(ujQt) cos(—u;ra(jj0t) channel a ^cos(ujQt) —>• ^cos(o;o*) sin(—wraC|j0t) channels icos(^0t) cos(-wradiot) : i cos(^0t) sin(-wradiot) high Q low J COS(Oo - wradio) t) + \ COS((w0 + <^radio) *) : isin(O0 - wradi0)t) - Jsin((wo + ^Yadio)*) ^cos(Qt) channel a o = Acos(Qt) isin(Qt) channel b 6 = Asin(Qt) data storing option: a, a, ■6, 6 conventionally labeled a -b —o, a x y —x -y Single channel, real Fourier transformation Two channels, complex Fourier transformation a + i&—y X + \Y Complex signal in indirect dimension 1 H or 1 5N JL JL y 4J | 4J | x/y I ti Repeat with y and y Complex signal in indirect dimension v\ = Aca = cos(Qc^i) cos(QH^2) channel a, pulse x r2 = Acb = cos(Qc^i) sin(^H^2) channels, pulse x r3 = Asa = sin(Qcti) cos(QH^2) channel a, pulse y r4 = As6 = sin(Qcti) sin(QHt2) channels, pulse y (Ac+iAs)(a+i6) x/y receiver acquired as stored as records r7- -\-x -\-x a : Acsin(QH*2) ri,r2 = Acsin(QH^2)^cCOs(QH^2) b : Accos(QH^2) +y -\-x a : Assin(QH*2) r3,r4 = Assin(QH^2)^sCOs(QH^2) b : Ascos(QH^2) Complex signal in indirect dimension (Ac + \As)(a + \b) —► (Ac + iAs)(X2 + \Y2) —>• (Xi + iYi)(X2 + \Y2) = XiX2 - YXY2 + \{XXY2 + 11X2) (Ac + Us)(a + 16) —>• (Ac + iAs)(X2 + \Y2) —► (Ac + iAs)X2 —> (Xi + iYi)X2 = XiX2 + i^Xs Phase cycling 1 1 y 1 H 4J I 4J 4>3 1 1 4J 1 3C or15N 4»i/4»i I d). tl (j>1 =X,-X,X,-X,X,-X,X,-X 4>2=X,X,-X,-X,X,X,-X,-X 4h =y-y.y-y.y-y.y-y 3=x>x>xlx-x-x-x-x receiver phase: x,-x,-x,x,x,-x,-x,x Pulsed-field gradients Pulsed-field gradients 1 cd CD cd cd CD c3> o cd o cd O C*> o cd cd CS> o cd cd G) o cd cd <3> o cd cd c3> cd cd c3> Cx> cd cd <3> cd <^d C5) cd cd C3> CD o cd <3> CgD o cd <^d cd \C3/ Gradient echoes a Gradients in HSQC 1H 3C or15N j_ 4J i / \i a b G7 i i y I ^ I c d e mm ti 1 x/y "I I i g h 7 Ii t2 1 Hl (p yu V/v vyyv>^— GARP Preservation of equivalent pathways H JL JL y | 4J | 4J | 1 3C or15N •—4 j_ JL y JL JL | 4J | 4J | 4J | 4J | | ^2 -x/x y t2 t1 a b c d e 1 i I f GARP g n 1 k k_A ♦- (|>i=x,-x,x,-x,x,-x,x,-x and receiver phase x,-x,-x,x,x,-x,-x,x for odd increments of ti §^=-x,x-x,x,-x,x-x,x and receiver phase -x,x,x,-x,-x,x,x,-x for even increments of ti (J)2=x,x,y,y,-x -x -y-y