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Crystallography

Electron microscopy

— crystallography without
crystals
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Aims of the course

Physical principles allowing the use of X-ray
crystallography, cryo-EM, and AFM

Properties of X-ray radiation that make it suitable to
study (macro)molecular structures

Diffraction of light

Crystallographic space group symmetries
Approaches to resolve phase problem in crystallography
Use of electrons to display objects with high
magnification and fine detail

Calculation of three-dimensional reconstruction from
two-dimensional projections



Course plan

Dt Chapter
L# 2015 Topic reading
1 21.9. Introduction, crystals and symmetry |., and X-rays 1,2,3,16
2 5.10. Crystals and Symmetry Il. (continued) and the Theory of X-Ray Diffraction 3,4
3 12.10.The Theory of X-Ray Diffraction by a Crystal I. 4
5 26.10.The Theory of X-Ray Diffraction by a Crystal Il. 4
Average Reflection Intensity, Distribution of Structure Factor Data, Special
6 2.11. Forms of the Structure Factor. 5,6
The Solution of the Phase Problem by the Isomorphous Replacement
7 9.11. Method 7
8 16.11.Phase Improvement 8
Anomalous Scattering in the Determination of the Protein Phase Angles
9 23.11.and the Absolute Configuration and Molecular Replacement I. 9,10
Molecular Replacement Il., Laue Diffraction, Refinement of the Model
Structure, The Combination of Phase Information, Checking for Gross 10, 12, 13,

10 30.11.Errors and Estimating the Accuracy of the Structural Model. 14, 15




Class rules

Turn off anything that beeps or rings.

Reading any material that is not related to the class,
texting, or checking the internet during the class is
rude and will not be tolerated.

Please refrain from eating during class. Having
something to drink is fine.

Ask questions - it will help to clarify the issue not only
for you but for your peers as well!

In class discussions, be respectful of other students'
opinions.



Course textbooks:

Principles of Three-Dimensional

. Electron Microscopy
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What is asked of you:

Read assigned texts BEFORE the day for
which they are assigned

Participate in discussions

Do excercises and homeworks

| am here to help, learning is up to you!



Levels of passing the course:

“Sitter” — do exercises, hand in homework,
participate in discussions => grade E

“Theoretician” — “Sitter” + take theoretical part of
the exam (will include symmetry and equations) =>
best possible grade B

“Crystallographer” — “Theoretician” + extra part of
exam that will include questions related to input to
crystallographic and cryo-EM programs and
interpretation of program outputs




Not part of this course:

 Computer literacy (linux, terminal, shell
environment) — mental overload by using
computer. (Observed in my group.)

 Practical exercises will be demonstrations
because of time constrains

* |nstall programs on your computer. Try solving
structures. (You will never have more time
than now.)






Why do single snowflakes, before they become entangled
with other snowflakes, always fall with six corners? Why
do snowflakes not fall with five corners or with seven?

Johannes Kepler (1571-1630)



Although crystals of quartz and hematite appear in a great
variety of shapes and sizes, the same interfacial angles
persisted in every specimen. “Law of Constancy of Angles”

Niels Stensen (1638-1686)



“Law of Constancy of Angles”
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“Law of Constancy of Angles”

René Just Hally (1743-1822)




History of fundamental discoveries

WILHELM CONRAD RONTGEN
(1845-1923)

1901 Nobel Laureate in Physics

discovery of the remarkable rays
subsequently named after him

15



MAX VON LAUE
(1879-1960)

* 1914 Nobel Laureate in Physics

for his discovery of the diffraction of X-
rays by crystals

Friedrich and Knipping



Wavelength and diffraction
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Coherent beam




Addition of waves
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Particles & waves
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Diffraction of light
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Diffraction of light




Wavelength and diffraction
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Wavelength comparison of X-rays and visible light
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Crystallizing a Protein




Protein expression and purification
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1. Expression & purification
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Vapor-diffusion
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Batch and microbatch
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Microdialysis




Protein concentration —»

Protein crystallization phase diagram

Nucleation

Clear (metastable)

Crystallizing agent concentration B

[T supersaturation
I Undersaturation







Preparing crystals for diffraction
experiment
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Diffractometer with goniometer
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Diffractometer with goniometer

K
] b q)
, »
X / -
] -
ter | e
X-rays counter coun

20 «——




SIR WILLIAM HENRY BRAGG (1862-1942)
SIR WILLIAM LAWRENCE BRAGG (1890-1971)

1915 Nobel Laureates in Physics

for the analysis of crystal structure by means

nA = 2d sin6

of X-rays




There 1s NO PHASE DIFFERENCE 1if the path
differences are equal to whole number multiplies of

wavelength ()
Bragg s law:
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There 1s NO PHASE DIFFERENCE 1if the path
differences are equal to prime number multiplies of

wavelength (A)
Bragg s law:
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nA = 2dsin @




X-ray sources and detectors




X-ray sources

- sealed X-ray tubes
- synchrotrons

Rotating anode Tungsten target Stator

Rotor

/ Ball races

6.3
Vac

(LI

Hot
cathode

+ +100000V

Electron beam

X 1ays



Pholoelecion
AE=E-E
e 0

Incoming
radiation from
X-ray tube or
radioisotope.

escape level
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Spectrum of ﬂ
copper anode Ke

I

& Cu

| 1 |
05 10 15
X (R)

A (A)

K.(1) 1.54051 The weight average value for K,(1) and K,(2) is taken as 1.54178 A
K.(2) 1.54433 Dbecause the intensity of K,(1) is twice that of K,(2)
Kg 1.39217




Synchrotron
- Bending magnet
- Wavelength shifter
- Wiggler
- Undulator

X-ray radiation
->

=» clectron path




X-ray detectors

Single photon counter

Film

Image plates

Area detectors:

- CCDs

- Direct X-rays detectors - Pilatus



Crystals
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Figure 3.1. Crystals of trimethylammonium bromide belonging to the same crystal form
but exhibiting a range of morphologies.



® Origin

Figure 3.3. One unit cell in the crystal lattice.



Figure 3.4. A crystal lattice is a three-dimensional stack of unit cells.



“Law of Constancy of Angles”
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“Law of Constancy of Angles”

René Just Hally (1743-1822)

Make a drawing — sub divisions for different angles



Lattice planes and Indices

b

Figure 3.5. Lattice planes in a two-dimensional lattice. On the left, # =2 and k = 1; on
the right, » = 1 and k = 3.

Lattice planes distance d
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Figure 3.6. One unit cell bounded by the
planes (100), (010), and (001). The direc-

tions along a, b, and ¢ are indicated by
[100], [010], and [001], respectively.
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Figure 3.7. A crystal showing several faces.



Unit cell choice / selection

Figure 3.8. In this two-dimensional -9 —€@ 0 @@

lattice, the unit cell can be chosen in

different ways: as I, as II, or as IIIL. ‘ ‘ q : :
H 0
@

o o
*

ool




GEOMETRY OF CRYSTALS

[ Space Lattices
J Crystal Structures

J Symmetry, Point Groups and Space Groups

Acknowledgments: Prof. Rajesh Prasad for a lot of things



The language of crystallography is one succinctness

Crystal = Lattice + Motif

Motif or basis:
an atom or a group of atoms associated with each lattice point



Space Lattice

An array of points such that every point has identical
surroundings

» In Euclidean space = infinite array

» We can have 1D, 2D or 3D arrays (lattices)

or

Translationally periodic arrangement of points in space is called a lattice




S

A 2D lattice




Lattice Crystal

Translationally periodic arrangement of Translationally periodic arrangement
points of motifs

Crystal = Lattice + Motif

Lattice » the underlying periodicity of the crystal
Basis » atom or group of atoms associated with each lattice points

Lattice » how to repeat
Motif » what to repeat




Lattice

Motif
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Cells

Instead of drawing the whole structure | can draw a representative part
and specify the repetition pattern

= A cell is a finite representation of the infinite lattice

= A cell is a parallelogram (2D) or a parallelopiped (3D) with lattice
points at their corners.

= |f the lattice points are only at the corners, the cell is primitive.

= If there are lattice points in the cell other than the corners, the cell
IS nonprimitive.
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Courtesy Dr. Rajesh Prasad



© © © © © ®Nonprinfitive cell ® ©
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Primitive
° o cCell o °
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Triple

Symmetry of the Lattice or the crystal is not altered by our choice of unit cell!!



Centred square lattice = Simple/primitive square lattice

Nonprimitive cell

o) o) o) @
Primitive
o) o) o) @

cell
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Shortest lattice translation vector = % [11]




Centred rectangular lattice

Maintains the symmetry of the lattice

' «—— Nonprimitive cell
= the usual choice

(@] (@] (@] (@]
(@] 0] 0] 0] 0]
0] (@] (@] (@]
(@] (@] (@] (@] (@]
(@] (@] (@] (@]
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(@] 0] 0] 0] 0] 0]
0] (@] (@] (@] (@]
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Lower symmetry than the lattice |  2- fold axes
= usually not chosen




v

Centred rectangular lattice Simple rectangular Crystal
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Shortest lattice translation vector = [10]

Courtesy Dr. Rajesh Prasad



Cells- 3D

M In order to define translations in 3-d space, we need 3 non-coplanar
vectors

[ Conventionally, the fundamental translation vector is taken from
one lattice point to the next in the chosen direction

[ With the help of these three vectors, it is possible to construct a
parallelopiped called a CELL



This was the end in 2015



Primitive unit cell

For each crystal structure there is a conventional unit cell, usually chosen to make
the resulting lattice as symmetric as possible. However, the conventional unit cell
is not always the smallest possible choice. A primitive unit cell of a particular
crystal structure is the smallest possible unit cell one can construct such that,
when tiled, it completely fills space.

@ @ @ @
® ® ® ® Non-primitive
centered cell
@ @ @ @
@ @ @ @
@ @ @ @
Primitive
@ @ @ @
cell
@ @ @ @ @ @
16 @ @ ® @
5 5 @ @
o @ ® 16




SYMMETRY

L If an object is brought into self-coincidence after some
operation it said to possess symmetry with respect to that
operation.




Unit cell choice / selection

Figure 3.8. In this two-dimensional -9 —€@ 0 @@

lattice, the unit cell can be chosen in

different ways: as I, as II, or as IIIL. ‘ ‘ q : :
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Unit cell selection

1. The axis system should be right-handed.

2. The basis vectors should coincide as much as possible with directions of highest
symmetry (Section 3.2).

3. The cell taken should be the smallest one that satisfies condition 2. This condition
sometimes leads to the preference of a face-centered (A, B, C, or F) or a body-
centered (I) cell over a primitive (P) smallest cell (Figure 3.9). Primitive cells have only
one lattice point per unit cell, whereas nonprimitive cells contain two or more lattice
points per unit cell. These cells are designated A, B, or C if one of the faces of the cell is
centered: It has extra lattice points on opposite faces of the unit cell, respectively, on
the bc (A), ac (B), or ab (C) faces. If all faces are centered, the designation is F (Figure
3.9).

4. Of all lattice vectors, none is shorter than a.

5. Of those not directed along a, none is shorter than b.

6. Of those not lying in the a, b plane none is shorter than c.

7. The three angles between the basis vectors a, b, and c are either all acute (<90°)
or all obtuse (=90-°).



Handedness of axis system
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Lett hand Right hand



Bravais Lattice

A lattice is a set of points constructed by translating a single
point in discrete steps by a set of basis vectors. In three
dimensions, there are 14 unique Bravais lattices (distinct
from one another in that they have different space groups)
in three dimensions. All crystalline materials recognized till
now fit in one of these arrangements.

or

In geometry and crystallography, a Bravais lattice is an
infinite set of points generated by a set of discrete
translation operations.



Arrangement of lattice points in the unit cell
& No. of Lattice points / cell

Position of lattice points Effectlve number of Lattice
points / cell
1 | P |8 Corners ~8x(1/8)=1
8 Corners
2 Lo =1 (for corners) + 1 (BC)
1 body centre
8 Corners
3| F |+ =1 (for corners) + 6 x (1/2)
=4
6 face centres
A/
4 | B/ icomers = 1 (for corners) + 2x(1/2)
C |2 centres of opposite faces =2




14 Bravais lattices divided into seven crystal
systems

Crystal system  Bravais lattices
1. Cubic P I F
Tetragonal P 1

Orthorhombic P I F C
Hexagonal P

A o o B

Trigonal P
Monoclinic P C
Triclinic P

Courtesy Dr. Rajesh Prasad



7 B2 DT

Simple Face-centered Body-centered
cubic cubic cubic
Simple Body-centered Hexagonal
tetragonal tetragonal
Simple Body-centered Base-centered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic
‘ ﬁ /Y @
Simple Base-centered Triclinic

Rhombohedral Monoclinic monoclinic



a unit cell centered in
the (010) planes (B)

_a primitive unit cell (P)

a body-centered unit cell (I) a face-centered unit cell (F)



The following 4 things are different

Lattice

Motif
Symmetry of the
Crystal

Unit Cell

Eumorphic crystal (equilibrium shape and
growth shape of the crystal)

The shape of the crystal corresponds to the point
group symmetry of the crystal



THE 7 CRYSTAL SYSTEMS




1. Cubic Crystals
a
a=b=c
(X:B:'Y:gog q ad

 Simple Cubic (P)
e Body Centred Cubic (I) - BCC
 Face Centred Cubic (F) - FCC

_ _ 4 _ 2 Vapor grown NiO crystal
Point groups = 23, 43m, m3, 432, —3— Tetrakaidecahedron
m m (Truncated Octahedron)

[1]

Fluo
Octahedron Dodecahedron

[1]

[1] http://www.yourgemologist.com/crystalsystems.html|
[2] L.E. Muir, Interfacial Phenomenon in Metals, Addison-Wesley Publ. co.



2. Tetragonal Crystals

a=b=cC

a:ﬁ:‘y:gOQ

* Simple Tetragonal

e Body Centred Tetragonal

Point groups =4, 4,

, 422, 4mm, sz,i33

4
m mimim

[1]

Zircon

[1]

[1] http://www.yourgemologist.com/crystalsystems.htmi



Orthorhombic Crystals

a=b=c
a:ﬁ:yzgog

Simple Orthorhombic

b
Body Centred Orthorhombic &
Face Centred Orthorhombic
End Centred Orthorhombic
Point groups = 222, 2mm, 222 [1]
m m m Topaz

[1] http://www.yourgemologist.com/crystalsystems.htmi



4. Hexagonal Crystals
a=b=c
o=[p=902 y=120° ¢
* Simple Hexagonal Fe a
Point groups = 6, 6, 3, 622, 6mm, 6m2, 622
m mm m

[1] Corundum

[1] http://www.yourgemologist.com/crystalsystems.htmi



5. Rhombohedral Crystals

a=b=c
a=p=y =90°

Rhombohedral (simple)

Point groups = 3, 3, 32, 3m,

32
m

Tourmaline

a,B,y # 90°

[1] http://www.yourgemologist.com/crystalsystems.htmi



Monoclinic Crystals

azb=c
a=y=902=f

Simple Monoclinic
End Centred (base centered) Monoclinic (A/C)

Point groups= 2, 2,

K]
m

Kunzite

a # 90°
B.y = 90°

[1] http://www.yourgemologist.com/crystalsystems.htmi



7. Triclinic Crystals a,B.y # 90°
a=b=c
o=y =f ‘

e  Simple Triclinic

Point groups= 1, 1

Amazonite

[1] http://www.yourgemologist.com/crystalsystems.htmi



Table 3.2. The Seven Crystal Systems

Minimum point

Crystal system Conditions imposed on cell geometry group symmetry
Triclinic None 1
Monoclinic a = vy = 90°(b 1s the unique axis; for proteins 2
this is a 2-fold axis or screw axis)
or: @ = 3 = 90° (c is unique axis; for proteins this
is a 2-fold axis or screw axis)
Orthorhombic a=p=vy=90° 222
Tetragonal a=b,a=p=vy=90° 4
Trigonal a=>b;a==90°v = 120° (hexagonal axes) 3
or:a = b = c; a = B = vy (rhombohedral axes)
Hexagonal a=b,a=B =90y =120° 6
Cubic a=b=c,a=B=vy=90° 23




Table 2.9. The 32 crystallographic point groups

Triclinic  Monoclinic Ortho- Trigonal Tetragonal ~ Hexagonal  Cubic
rhombic
i - Cs o, T
e 3 23 “3-
2
m

DZ’@' D“@ Dﬁ% 0@
%.L'LE_W —; % ,’2'! 4/ mmm %_,,%_,% 6/mmm _;13,,;[ mim
Point groups are illustrated by stereograms that display the symmetry axes of each group.
The symmetry axes are described by the symbols defined in Table 2.10. A solid line always

describes a mirror plane, while a dashed line refers to a plane about which mirror symmetry
is not present.

=3

It




14 Bravais lattices

=t 2l

Simple Face-centered Body-centered
cubic cubic cubic
Simple Body-centered Hexagonal
tetragonal tetragonal
Simple Body-centered Base-centered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic
‘ ﬁ /Y @
Simple Base-centered Triclinic

Rhombohedral Monoclinic monoclinic



230 space groups

P23 P23 23 No. 195 %

| ons
A A A 1 X, ¥, Z

< \x ) Ex/ > ZX,Y,Z
/A AN /A N 3x,y,z
4 X,9,2

7()/* EX}\, S z7,X,y
b ' b 0eny
N ) T 2,X,y

4\7\* 71)* 8 7, X,y
9 v,z,x
< \:}(f ) \:xf X 10 y,z,x
AT AR 11 y,Z, X
12 y,z,x




1/2 unit cell
translation

Figure 3.12. A 2-fold axis (left) and a 2-fold screw axis (right); the latter relates one
molecule to another by a 180° rotation plus a translation over half of the unit cell.



1/3 unit cell
translation

a three-fold rotation axis a three-fold screw axis

Figure 3.13. A 3-fold axis (left) and a 3-fold screw axis (right); the latter relates one
molecule to another by a 120° rotation and a translation over one-third of the unit cell.



mirror plane

'

center of symmetry Figure 3.14. The effect of a mirror and
or inversion center of an inversion center.



Table 3.1. Graphic Symbols for Symmetry Elements

Symmetry axis or symmetry point

Graphic symbol

Screw vector of a right-handed screw
rotation in units of the shortest lattice
translation vector parallel to the axis

Printed symbol

Symmetry axes normal to the plane of projection (three dimensions) and symmetry points in the plane of the figure (two dimensions)

Identity
Twofold rotation axis
Twofold rotation point (two dimensions)

Twofold screw axis: “2 sub 1

Threefold rotation axis
Threefold rotation point (two dimensions)

Threefold screw axis: “3 sub 1”
Threefold screw axis: “3 sub 2”

Fourfold rotation axis
Fourfold rotation point (two dimensions)

Fourfold screw axis: “4 sub 1”
Fourfold screw axis: “4 sub 2”
Fourfold screw axis: “4 sub 3”

Sixfold rotation axis
Sixfold rotation point (two dimensions)

Sixfold screw axis: “6 sub 1”’
Sixfold screw axis: “6 sub 2”

Sixfold screw axis: “6 sub 3”

None

¢
[

e 4 ¢ > P >

- " a8 o

None
None

None

WIN W=

None

Bl N B

None

DI WO O\

1

6:

63

(cont.)



Table 3.1. (Continued )

Screw vector of a right-handed screw
rotation in units of the shortest lattice

Symmetry axis or symmetry point Graphic symbol translation vector parallel to the axis Printed symbol
Sixfold screw axis: “6 sub 4” ! ] % 64
Sixfold screw axis: “6 sub 5” : g 65
Center of symmetry, inversion center: “1 bar” I ) None 1
Reflection point, mirror point (one dimension) ’

Twofold rotation axis with center of symmetry ‘3‘. None 2/m
Twofold screw axis with center of symmetry § % 2y/m
Inversion axis: “3 bar” A None 3
Inversion axis: “4 bar” 4 None 4
Fourfold rotation axis with center of symmetry < None 4/m
“4 sub 2” screw axis with center of symmetry 4 % 4,/m
Inversion axis: “6 bar” & None 6
Sixfold rotation axis with center of symmetry ¢ None 6/m
“6 sub 3” screw axis with center of symmetry L : 63/m



Twofold rotation axis

Twofold screw axis: “2 sub 1”

Fourfold rotation axis

Fourfold screw axis: “4 sub 1”
Fourfold screw axis: “4 sub 2”

Fourfold screw axis: “4 sub 3”

Inversion axis: “4 bar”

Twofold rotation axis

Twofold screw axis: “2 sub 1”

Threefold rotation axis

Threefold screw axis: “3 sub 1”

Threefold screw axis: “3 sub 2”

Inversion axis: “3 bar”

Symmetry axes parallel to the plane of projection

Symmetry axes inclined to the plane of projection (in cubic space groups only)

.°.

e

K K K K

None
1

2
None

B I N S B

None

None

YN

None

1
3

2
3

None

Source: Reprinted from the International Tables of Crystallography, Volume A (Hahn, 1983), with permission of The International Union for Crystallography.



Explain general and special position
Explain crystallographic asymmetric unit



