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System of two electrons

Figure 4.4. A system of two P e,
electrons: e; and e,. The path —
difference between the 1 X
scattered waves 1 and 2 So :

isp—+gq. >

So and s are wave vectors of magnitude 1/A
p=NA\T-Sg |
gq=—\NT-S

minus sign is due to the fact that the projection of r on s has a direction opposite to s

p+qg=N\T-(So—S).



Figure 4.4. A system of two
electrons: e; and e;. The path
difference between the
scattered waves 1 and 2 So

isp+gq.

The wave along electron e, is lagging behind in phase compared with the wave
along e;. With respect to wave 1, the phase of wave 2 is

2Tr-(Sog —S) - A
A

= 27r - S,
where

S=s—59 4.1)



Scattering by a unit cell

Suppose a unit cell has n atoms at positions r; (j = 1,2, 3, ..., n) with respect
to the origin of the unit cell (Figure 4.12). With their own nuclei as origins, the
atoms diffract according to their atomic scattering factor f. If the origin is now
transferred to the origin of the unit cell, the phase angles change by 27rr; - S. With
respect to the new origin, the scattering is given by

fj = fj exp[2'rrirj . S],

Figure 4.12. A unitcell with three
atoms (1, 2, and 3) at positions ry,
I, and r;.




Figure 4.13. The structure factor
F(S) is the sum of the scattering by
the separate atoms in the unit cell.

unit cell 1s
F(S) =)  fj expl2mir; - S]. (4.3)
j=1

F(S) is called the structure factor because it depends on the arrangement (structure)
of the atoms in the unit cell (Figure 4.13).



Scattering by a crystal

Suppose that the crystal has translation vectors a, b, and ¢ and contains a large
number of unit cells: n; 1n the a direction, n, 1n the b direction, and n3 in the ¢

direction (Figure 4.14). / /
C
a
tatub+v.e 7 . scattering of this unit cell
e with O as origin is :
e F(S)exp[2it.a.S]exp[2iu.b.S]exp[2niv.c.S)
C
/
/
O a

The scattering of this unit cell
with O as origin is F(S)

Figure 4.14. A crystal contains a large number of identical unit cells. Only two of them are
drawn in this figure.



To obtain the scattering by the crystal, we must add the
scattering by all unit cells with respect to a single origin. We choose the origin O
in Figure 4.14. For a unit cell with its own origin at position ¢t -a+u -b+ v - ¢,
in which ¢, u, and v are whole numbers, the scattering is

F(S) x exp[2mita - S] x exp[2miub - S] x exp[2mive - S].

The total wave K(S) scattered by the crystal is obtained by a summation over all
unit cells:

n, n, ni
K(S) = F(S) x Zexp[2'm'ta - S] x Zexp[Zm’ub - S] % Zexp[2'm'vc - S].
=0 u=0 v=0



The total wave K(S) scattered by the crystal is obtained by a summation over all
unit cells:

K(S) = F(S) x Zexp[tha S] x Zexp[Z'mub S] x Zexp[vac S].
=0 =0

Because np, n,, and nj are very large, the summation ) ;' , exp[2ita - S] and the
other two over u and v are almost always equal to zero unless a - S is an integer
h,b - S is an integer k, and ¢ - S is an integer /. This is easy to understand if we
regard exp[2mita - S] as a vector in the Argand diagram with a length of 1 and a
phase angle 2mrta - S (see Figure 4.15).

Figure 4.15. Each arrow repre-
sents the scattering by one unit
cell in the crystal. Because of the
huge number of unit cells and
because their scattering vectors
are pointing in different direc-
tions, the scattering by a crystal is,
in general, zero. However, in the
special case that a - Sis an integer

h, all vectors point to the right and
the scattering by the crystal can be
of appreciable intensity.
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Conclusion: A crystal does not scatter X-rays, unless

a-S=h,
b-S =k, (4.4)
c-S=1[.

These are known as the Laue conditions. &, k, and [ are whole numbers, either
positive, negative, or zero. The amplitude of the total scattered wave is proportional
to the amplitude of the structure factor F(S) and the number of unit cells in the
crystal.



lattice plane

2d sin 0

Figure 4.17. Two lattice planes are drawn separated by a distance d. The incident and the
reflected beams make an angle 6 with the lattice planes. Note that the beam is thus deflected
through an angle of 20 relative to its incident direction.

The incident and reflected beam make an equal angle with the plane (Figure 4.17).
In a series of parallel reflecting planes (Bragg planes), the phase difference between
the radiation from successive planes is 2. The diffraction of X-rays by lattice
planes can easily form the impression that only atoms on lattice planes contribute to
the reflection. This is completely wrong! All atoms in the unit cell contribute to each
reflection, atoms on lattice planes and in between. The advantage of lattice plane
reflection and Bragg’s law is that it offers a visual picture of the scattering process.






Reciprocal lattice and Ewald construction

There 1s a crystal lattice and a reciprocal lattice. The crystal lattice is real, but the
reciprocal lattice is an imaginary lattice.

Question: What is the advantage of the reciprocal lattice?
Answer: With the reciprocal lattice, the directions of scattering can easily be
constructed.



reciprocal
lattice

Figure 4.19. The Ewald sphere as a tool to construct the direction of the scattered beam.
The sphere has radius 1/A. The origin of the reciprocal lattice is at O. sy indicates the
direction of the incident beam; s indicates the direction of the scattered beam.

https://youtu.be/qCQmMT N6 fA



https://youtu.be/qCQmT_N6_fA

e The reciprocal lattice rotates exactly as the crystal does.

e The direction of the beam diffracted from the crystal is parallel to MP for the
orientation of the crystal, which corresponds to the orientation of the reciprocal
lattice.

From Figure 4.19, two properties of S(k k I) can easily be derived:

1. The reciprocal space vector S(h k) = OP(h k 1) is perpendicular to the reflect-
ing plane & k [, which is in agreement with the definition of S in Section 4.3.
2. |S(hkl)| =2(sinB)/\ = 1/d and Bragg’s law is fulfilled.

X )
’7‘9' lattice




One more comment on lattice planes: If the beam 4 k I corresponds to reflection
against one face (let us say the front) of a lattice plane, then (hk [) [or (—h, —k, —I)
corresponds to the reflection against the opposite face (the back) of the plane

(Figure 4.20). reciprocal lattice line
with h k | in reflection position

hkl

front face of

lattice plane Ewald sphere

origin of the
reciprocal lattice

opposite face of
lattice plane

= |
|

same reciprocal lattice line

with h k| in reflection position



Temperature (B) factor

Figure 4.22. The plot of an
organic molecule with 50%
probability of thermal
ellipsoids. (Reproduced with
permission from Strijtveen
and Kellogg (©) 1987
Pergamon Press PLC.)




The vibration of an atom in a reflecting plane 4 k [ has no effect on the inten-
sity of the reflection (h k). Atoms in a plane diffract in phase and, therefore, a
displacement in that plane has no effect on the scattered intensity. The component
of the vibration perpendicular to the reflecting plane does have an effect. In the
simple case in which the components of vibration are the same in all directions,
the vibration is called isotropic.

Then the component perpendicular to the reflecting plane and thus along S is
equal for each (h k1), and the correction factor for the atomic scattering factor is

T (1s0) = exp

= exp

2sin 0
A

sin? @

—B X2

J=en [ (5]
)]

y (4.6)

Assuming isotropic and harmonic vibration, it can be shown that the thermal
parameter B is related to the mean square displacement iz of the atomic vibration:

B = 8% x ii? 4.7






Calculation of electron density

The structure factor is a function of the electron
density distribution in the unit cell:

F(S) =)  f;j exp[2mir; - S]. (4.3)
J

FS) = f p(r)exp[2mir; - S]dv. (4.8)

cell
where p(r) is the electron density at position r in the unit cell. If x, y, and z are

fractional coordinates in the unit cell (0 < x < 1; the same for y and z) and V is
the volume of the unit cell, we have

dv=V -dxdydz
and
r- S=@-x+b-y+c-z)-S=a-S-x+b-S-y+c-S-z
= hx + ky +lz.



Scattering by a unit cell

Suppose a unit cell has n atoms at positions r; (j = 1,2, 3, ..., n) with respect
to the origin of the unit cell (Figure 4.12). With their own nuclei as origins, the
atoms diffract according to their atomic scattering factor f. If the origin is now
transferred to the origin of the unit cell, the phase angles change by 27rr; - S. With
respect to the new origin, the scattering is given by

fj = fj exp[2'rrirj . S],

Figure 4.12. A unitcell with three
atoms (1, 2, and 3) at positions ry,
I, and r;.




Figure 4.13. The structure factor
F(S) is the sum of the scattering by
the separate atoms in the unit cell.

unit cell 1s
F(S) =)  fj expl2mir; - S]. (4.3)
j=1

F(S) is called the structure factor because it depends on the arrangement (structure)
of the atoms in the unit cell (Figure 4.13).



Calculation of electron density

The structure factor is a function of the electron
density distribution in the unit cell:

F(S) =)  f;j exp[2mir; - S]. (4.3)
J
F(S) = f p(r) exp[2mir; - S]dv. (4.8)
cell

where p(r) is the electron density at position r in the unit cell. If x, y, and z are
fractional coordinates in the unit cell (0 < x < 1; the same for y and z) and V is
the volume of the unit cell, we have

dv=V -dxdydz
and

r- S=@:-x+b-y+c¢-z2)-S=a-S-x+b:-S:-y+c¢-S-z2
= hx + ky +lz.



Information from X-ray diffraction
experiment
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FS) = [ p(r)exp[2mir; - S]dv. (4.8)

cell

1 1 1
F(hkl)=V/ f fp(xyz)exp[2'ni(hx+ky+lz)]dxdydz. (4.9)

x=0 y=02z=0



1 1 1

F(hkh)=YV / f f p(x yz)exp[2mi(hx + ky + Iz)]dx dy dz. 4.9)
x=0 y=0z=0

F(h k1) 1s the Fourier transform of p(x y z), but the reverse is also true: p(x y z)

is the Fourier transform of F(4 k[) and, therefore, p(x y z) can be written as a
function of all F(h k [):

p(xyz) = % Y ) O F(hk 1) exp[—2mi(hx + ky + 12)]. (4.10)
h k 1

The Laue conditions tell us that diffraction occurs only in discrete directions and,
therefore, in Egation (4.10), the integration has been replaced by a summation.
Because F = [l exp[ia], we can also write

l
Py =< 3 > 3 |G | exp (2 SN - /0]
h k [

(4.11)




Notes

1. F(hkl) is the Fourier transform of the electron density p(x y z) in the entire

unit cell. Often the unit cell contains more than one molecule. Then F(h k [) is
composed of the sum of the transforms of the separate molecules at position

(h k I) in reciprocal space.

2. Because of the crystallographic repeat of the unit cells, the value of the transform
F(h k [) 1s zero in between the reciprocal space positions (4 k ). If there were no
crystallographic repeat, the transform would be spread over the entire reciprocal
space and its value is not restricted to reciprocal space positions (&, k £).



1 1 1

F(hkh)=YV / f f p(x yz)exp[2mi(hx + ky + Iz)]dx dy dz. 4.9)
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h k [

(4.11)




Intensity diffracted by a crystal

Figure 4.29. Most crystals are imperfect and can be regarded as being composed of small
mosaic blocks.



We have the following assumptions:

1. Apart from ordinary absorption, the intensity /p of the incident beam is the same
throughout the crystal.

2. The mosaic blocks are so small that a scattered wave is not scattered again (i.e.,
multiple scattering does not occur).

3. The mosaic blocks scatter independently of each other.

With these assumptions, the expression for 7 (int., 4 k [), if the crystal is rotated
with an angular velocity w through the reflection position, is

2
. )\3 e2
I(int., hkl) = X | —5 | XVaxIgxLxPxT,x|FhkD)*.
w-V mc
(4.32)

A — wavelength lo — intensity of the excitation beam
w — angular velocity of crystal L — Lorentz coefficient
rotation P — polarization coefficient
V — unit cell volume T, — transmission coefficient
e — electron charge | F(hkl)| - structure factor amplitude

m — electron mass
c — speed of light
V. — crystal volume



Effect of the unit cell size on the diffraction
Intensity

3 2\ 2
I(int., hkl) = )\Vz X(e_) X Ve X Igx L x Px T, x |F(hkl)|?
m-

Figure 4.36. The displacement of a particle
under the influence of Brownian motion.
For n steps, where n is very large and each
f step has alength f, the final distance to the

. ‘ origin is f./n.

\/IF(hkl)|2=fxﬁ and |F(hkD))* = f* x n.

Combining the effect of the unit cell volume V and |F(h k)| in the scattering
equation (4.32) leads to

|F(hkD)*  f?
= —2 Xn

I(int., h k) is proportional to 72

(4.36)



Friedel pairs

Fhkl) = Vf p(x yz)exp[2mi(hx + ky + Iz)]dxdydz

cell

F(hk) =V f p(x yz)exp[2mi(—hx — ky — I2)]dx dy dz. (4.25)

cell

Figure 4.24. Argand diagram for the struc-
ture factors of the reflections F(h k[) and
F(hkl).

+00

0(xyz) = % 3" |F(hk )| cos[2m(hx + ky + I2) — a(h k I)]
hkl=0




One more comment on lattice planes: If the beam 4 k I corresponds to reflection
against one face (let us say the front) of a lattice plane, then (hk [) [or (—h, —k, —I)
corresponds to the reflection against the opposite face (the back) of the plane

(Figure 4.20). reciprocal lattice line
with h k | in reflection position

hkl

front face of

lattice plane Ewald sphere

origin of the
reciprocal lattice

opposite face of
lattice plane

= |
|

same reciprocal lattice line

with h k| in reflection position



Symmetry in the diffraction pattern
4.12.1. A 2-Fold Axis Along y

If a 2-fold axis through the origin and along y is present, then the electron density
p(x yz) = p(x y z) (Figure 4.25). Therefore,

Fhkl)=V / p(x y 2){exp[2mi(hx + ky + [2)]

asymm
unit

+ exp[2mi(—hx + ky — Iz)]}dx dydz (4.26)

The integration in Eq. (4.26) is over one asymmetric unit (half of the cell), because
the presence of the second term under the integral takes care of the other half of
the cell.

Fhkl) =V f p(x y 2){exp[2mi(—hx + ky — [2)]

asymm
unit

+ exp[2mi(hx + ky + [z)]} dx dydz 4.27)

It follows that F(h k) = F(h k) and also I(hkl) = I(hk]),






4.12.2. A 2-Fold Screw Axis Along y

For a 2-fold screw axis along y (Figure 4.26),

p(xyz)=p{x(y +1/2)z}
term I |

Fhkl)=V / p(x yz){exp[2mi(hx + ky + [2)]

asymm
unit

+ exp2mi(—hx + k(y +1/2) —I2)]}dxdydz  (4.28)
term II 4

term I |
F(hkl)=V / p(x y 2){exp[2mi(—hx + ky — I2)]

asymm
unit

+ exp[2mi(hx + k(y + 1/2) + Iz)]} dx dy dz. (4.29)
term IV %4



In Equation (4.28), term II is

exp{2mi[—hx + k(y + 1/2) — Iz]} = exp[2mi(—hx + ky — Iz + 1/2k)].

For k even, this is equal to term Il in Equation (4.29). The same is true for term IV in
Equation (4.29) and term [ in Equation (4.28). Therefore, when kiseven,F(h k [) =
F(hkl)and I(hkl = I(hkl). When k is odd, terms I and IV have a difference
of m in their phase angles: 2mw(hx + ky + [z) and 2w(hx + ky + [z + 1/2k).

For F(hkl) with k odd:

F(hkI)

F(hk])
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Systematic absences in P2(1)

F(0k0) =V j o (x y 2){exp[2miky] + exp[2mik(y + 1/2)]} dx dy dz.

asymm
unit

(4.30)

When k is even, this is 2 x V [fp(x yz)exp[2mikyldxdydz. However,
when k is odd, the two terms in Equation (4.30) cancel and F(0k0) =0
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