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Phase problem
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Phase problem

1
plrya) = Y | F(h k1)) exp[—2mi(hx + ky + I2) + ia(h k)] (7.1)
hkl

Patterson function

P(uvw) = % Y |F(h kD) cos[2m(hu + kv + lw)]; (7.2)
hkl

or, shorter,

P(u) = % Z |F(S)|? cos[27u - S] (7.3)
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Figure 7.1. (a) A two-dimensional unit cell with only two atoms. (b) The corresponding
Patterson cell.
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Figure 7.2. (a) A two-dimensional unit cell with three atoms. (b) The corresponding Patter-
son map. Note the large increase in the number of Patterson peaks compared with Figure 7.1.
The total number of peaks is N2, but the N self-peaks overlap at the origin and, therefore,
N (N — 1) nonorigin peaks are found in a Patterson map. Because of the centrosymmetry in
the map, the number of unique peaks is [N(N— 1)]/2; in this figure, 1 — 2,1 — 3, and 2
— 3 are unique peaks.



. The Patterson map has peaks at end points of vectors u equal to vectors between

atoms in the real cell.
. For every pair of atoms in the real cell, there exists a unique peak in the Patterson

map.
. A Patterson map is always centrosymmetric.

. Symmetry elements can cause a concentration of peaks in certain lines or planes:
“Harker lines” or “Harker planes.”

. In locating Patterson peaks of heavy atoms in the isomorphous replacement
method, it 1s useful to realize that the height of a peak is proportional to
the product of the atomic numbers of the atoms that are responsible for the

peak.

Patterson map of a macromolecule is a mess!



Isomorphous replacement method




. Preparation of at least one, but preferably a few heavy-atom-containing deriva-
tives of the protein in the crystalline state. A first check for isomorphism is
measuring the cell dimensions.

. X-ray intensity data must be collected for crystals of the native protein as well
as for crystals of the derivatives.

. Application of the Patterson function for the determination of the heavy atom
coordinates.

. Refinement of the heavy atom parameters and calculation of the protein phase
angles.

. Calculation of the electron density of the protein.



Isomorphous replacement method

Figure 7.6. A comparison of the diffraction photographs of the same reciprocal lattice plane
for a native papain crystal and a heavy atom derivative in which one mercury atom was
attached to each protein molecule. Appreciable differences in intensity between correspond-
ing diffraction spots can be seen.



Figure 7.8. Structure factors in
the isomorphous replacement
method for noncentric reflec-
tions; the horizontal direction of
Fp is arbitrary.
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Figure 7.7. Structure factors in the iso-
morphous replacement method for cen-
tric reflections. F'p is for the protein, Fpy
1s for the derivative, and Fy is for the
heavy atom contribution.




Isomorphous replacement method




Determination of heavy atom positions from centric
reflections (centro-symmetric projections)

Fpu=Fp +Fpy
is simplified to

|Fpu| = |Fp| £ | FH|,
|Fy| = |Fpul| — | Fp|

or
|Fy| = |Fp| — | Fpul
and
|Ful* = (| Fpul — |Fpl)*.
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We have made the assumption that Fpy and Fp have the same sign, either both
positive or both negative. With this assumption, the Patterson summation with the
coefficients (| Fpy| — | Fp|)? will give a Patterson map of the heavy atom arrange-
ment in the unit cell. For the majority of the reflections, the assumption will be
true, because, in general, Fy will be small compared with Fp and Fpy. If, how-
ever, Fp 1s small, Fpy could have the opposite sign and Fy would be Fp + Fpy.
Fortunately, this does not occur often enough to distort the Patterson map
seriously.

P _ ! 2
wvw) = Y IF(hk D) cos2m(hu + kv + [w)]
hkl

Puvw) = < 3 (A Il cosi2m(hu + kv + )] Scale!
h



Determination of heavy atom positions from

acentric reflections
A|F|iso = |FPH| - |FP|

We will now see that the coordinates of the heavy atoms can generally be derived
from a Patterson map calculated with (A|F |;s)?. The triangle ABC in Figure 7.9
expresses the vector sum: Fpy = Fp + Fy. However, for the time being, only the
lengths of Fpy (| Fpy|) and that of Fp(| Fp|) are known, but not their directions. For
Fy, both the length and direction are unknown.

In Figure 7.9, CE = | Fy| cos(apy — ay). In general, ap — apy 1s small, because
formostreflections, | Fy| < | Fp| and | Fpy|. Therefore, CE = A|F|;s, and the result
is

A |Fliso = | Ful cos(opa — an). (7.20)
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The result is that a Patterson summation with (A| F |is,)? as the coefficients will in
fact be a Patterson summation with coefficients | Fy|* cos?(opy — ay). Because

1 1
cosz(apH — Q) = > + 5 cos 2(opy — ),

we obtain
) 1 2 2
| Fg|” cos“(apg — o) = 5 | Fu|” + > | Fz|” cos 2(apy — ag).

Because the angles apy and oy are not correlated, the second term on the right-
hand side will contribute only noise to the Patterson map. However, the first term,
15| Fy|?, will give the Patterson function for the heavy atom structure on half of
the scale.

Pluvw) = % Z(A |F|:e. )% cos[2m(hu + kv + [w)]
h



a b

Figure 7.1. (a) A two-dimensional unit cell with only two atoms. (b) The corresponding
Patterson cell.



. Preparation of at least one, but preferably a few heavy-atom-containing deriva-
tives of the protein in the crystalline state. A first check for isomorphism is
measuring the cell dimensions.

. X-ray intensity data must be collected for crystals of the native protein as well
as for crystals of the derivatives.

. Application of the Patterson function for the determination of the heavy atom
coordinates.

. Refinement of the heavy atom parameters and calculation of the protein phase
angles.

. Calculation of the electron density of the protein.



Determination of protein phase angles

Figure 7.17. Harker construction for protein
phase determination. In the isomorphous re-
placement method, each heavy atom derivative
gives two possibilities for the protein phase an-
gle ap, corresponding to the two vectors Fp(1)

and F »(2). »
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The “lack of closure" error

|deal:

Real life:




Phase probability
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Anomalous scattering

Figure 7.11. The atomic scattering
factor for a completely free electron §

(@) and for a bound electron (b). e —————

The anomalous contribution consists
of two parts: a real part Af and an
imaginary part if . The direction of
the primary beam is pointing to the left;
it has a 180° phase difference with f.

f

anomalous




F..(+) without anomalous scattering

F.(+) with anomalous scattering

34

Fe(— ;
p(—) + Fy(—) without anomalous scattering

F.(—) with anomalous scattering



The anomalous Patterson map

The heavy atom contribution to the structure factor consists of a normal part, F;,
and an anomalous part, Fy~. In Figure 7.13 this is drawn for a reflection (h k)
and for (h k[). However, for convenience, the structure factors for (A k) have
been reflected with respect to the horizontal axis. It can be derived that a Patterson
summation with the coefficients (A|F|.0)* can be approximated by a summa-
tion with the coefficients |Fy|* sin*(apn — agr) = 5|Fu|® — 5 cos 2(apy — ag).
This will give a Patterson map of the anomalous scatterers (the heavy atoms, see
below).

Figure 7.13. In this drawing, the structure factors F (=), Fpy (=), F (=), and F, (=) have
been reflected with respect to the horizontal axis and combined with the structure factors
for the reflection (h k[). Note that ay is the phase angle for the nonanomalous part of F ;.
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Figure 9.2. This figure gives the same information as Figure 9.1. The difference is that the
vector —Fg(—) is now drawn with the opposite phase angle (mirror image with respect
to the horizontal axis). The consequence is a different position for the Fpy(—) circle. The
advantage of this drawing is that the three circles have one common point of intersection.
The dashed line indicates the direction of the nonanomalous scattering part of the heavy
atoms.



Molecular Replacement

Known crystal structure New crystal structure

Given: * Crystal structure of a homologue
* New X-ray data

Determine: < The new crystal structure

27



MR Technique

Known crystal structure New crystal structure

Search model

Method: * 6-dimensional global optimisation
— one 6-d search for each molecule in the AU
>> gplit further to orientation + translation searches = 3 + 37?

Required:  * Scoring
— the match between the data and (incomplete) model
— ideally: the highest score = the correct model

28



ROTATION FUNCTION

First, consider the model Patterson

We put the model in a large P1 box and calculate the Patterson
from the structure factors of the model in the P1 box.

model in large P1 box
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ROTATION FUNCTION

The Patterson of our unknown structure contains self-vectors and cross-vectors, but
because the cell was large, the self-vectors and cross vectors are well separated from
one another.
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ROTATION FUNCTION

Just as we generated the Patterson for our model in the first orientation, we can
generate the Patterson for the model in any orientation in any sized box.

. 7
model in same large P1 box
in different orientation Patterson of o o
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ROTATION FUNCTION

When the models are in different orientations the Pattersons will not match one
another.
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ROTATION FUNCTION

However, when the second model is in the same orientation parts of the Pattersons
will match one another, and we can “solve” the rotation function for the model.
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ROTATION FUNCTION

If the model were in a different sized box, the Patterson of the intramolecular
vectors, which are located in a sphere centred on the origin, can be overlaid. We can
cut out the peaks corresponding to the inter-molecular vectors from each Patterson
and just compare the central parts of the Pattersons.




ROTATION FUNCTION

Now, the Pattersons of
the intra-molecular
vectors will match
when the model is in

the correct orientation.



Rotation function

Xr1 = C11X1 + Ci12X2 + C13X3
Xr2 = C€21X1 + C22X2 + C23X3 or 1n matrix notationx, = [C]x.
Xr3 = C31X] + C32X2 + C33X3

R(a, B, y) = f P(u) x P.(u,)du. (10.1)
U

1
R(a, B,y) = 77 Z Z |F(h)|2|F([C]h’)|2 X f exp[—2mi(h + h')uldu
h N

U



Rotation function

1
R(a, B,y) = 73 Z Z |F(h)|2|F([C]h’)|2 X f exp[—2i(h + h')uldu
h N

U
Jorigin [C]h
/
/
hl | —1

Figure 10.1. The effect of arotation [C] in reciprocal space is that an integral lattice point h’'
ends up at a nonintegral lattice position ([C]h’). This is illustrated here for a two-dimensional
lattice.
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Figure 10.1. The effect of arotation [C] in reciprocal space is that an integral lattice point h’'
ends up at a nonintegral lattice position ([C]h’). This is illustrated here for a two-dimensional
lattice.

G — 3(sin2mwx — 2mx cos 27Xx)
N (2mx)3




G — 3(sin2mwx — 2mx cos 27Xx)

(2mx)3

Figure 10.3. The function G = [3(sin 2mx— 2mx cos 2mx)]/(2mx)’ is plotted as a function
of x. Note the rapid fading away for increasing x.



Translation function

PLa@) = [ 913 x palx+w)d:

Vv

T(t) = f P 2(u, t) x P(u)du
Vv

’% || F(obs)| — k| F(calc)||

>~ | F(obs)|

hkl

R =

(10.7)



Phase improvement

When to use:

[—

. The structure is partially known.

The protein molecules distinguish themselves as relatively high regions of elec-
tron density and their boundaries can be estimated. The electron density between
them is then set to a constant value or adjusted otherwise.

. Noncrystallographic symmetry within the asymmetric unit is present. As in

method 2, molecular boundaries must then be determined and the solvent region
modified. Moreover, the density of all molecules (or subunits of a molecule)
related by noncrystallographic symmetry is averaged.

Correct protein electron density maps have a characteristic frequency distribu-
tion for the values of the electron density (histogram matching).



Refinement of the Model Structure

Z "Fobsl — lecalc"
hkl

ZlFobsl

hkl

R = x 100%

Parameter to measurement ratio — x, y, z, B (anisotropic B-> 8 parameters)

- other data than |Fobs|:  stereochemical data (bond lengths and angles)
solvent flattening
NCS



Constrains X Restrains

e They are taken as rigid and only dihedral angles can be varied. In this case, the
geometry and the refinement are called constrained. This effectively reduces
the number of parameters to be refined. In the application of this method, it
is difficult to move small parts of the structure to a “best fit” position because
many angular motions are involved.

¢ If, on the other hand, the stereochemical parameters are allowed to vary around a
standard value, controlled by an energy term, the refinement is called restrained.
The atomic coordinates are the variables and the restraints are on bond lengths,
bond angles, torsion angles, and van der Waals contacts. Restraints are “obser-
vations” because a penalty is included for disagreement with a restraint. This
allows an easy movement of small parts of the structure, but it is difficult to
move large parts (e.g., an entire molecule or domain).



Common Crystallographic R-Factor for Indicating the
Correctness of a Model Structure

D 1 Fobs| — k| Feacl|

hkl
Z: IFobsl

hkl

R =

The Free R-Factor
> N Fops| — k| Fear|

Rowe = hklCT ’
Z: |F obsl
hklCT
where 2 kI C T means all reflections belonging to test set 7" of unique reflections.
The refinement is carried out with the remaining reflections: the working set W.
The advantage of using this R-factor over the regular crystallographic R-factor is
that it is unbiased by the refinement process.
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Figure 15.1. Real-space R-factor (lower panel) and average B-factor (upper panel) of the
Azotobacter vinelandii lipoamide dehydrogenase. Misplaced loops are indicated by a thin
line, and after their correction, they are indicated by a thick line. Note the correspondence
between the R-factor and the B-factor at the problem sites. (Courtesy of Dr. Andrea Mattevi.)
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The Ramachandran Plot

& (R

Figure 15.2. A schematic of a fully stretched polypeptide chain. The rotations around the
C.—NH bonds are given by the angle ¢ and around the C,—C=0 bonds by the angle W.
The peptide planes are usually flat, with @ = 180°.



The Ramachandran Plot

Ramachandran Plot
l1abc

The Ramachandran Plot.
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Quality of diffraction data

R-Factor for Comparing the Intensity
of Symmetry-Related Reflections

> ) ihkl) — T(REKD)|

hkl i

Z Zl,-(h k1)

hkl i

Rsym(l) -

for n independent reflections and i observations of a given reflection. /(h k [)is the
average intensity of the i observations.



