Lecture 7

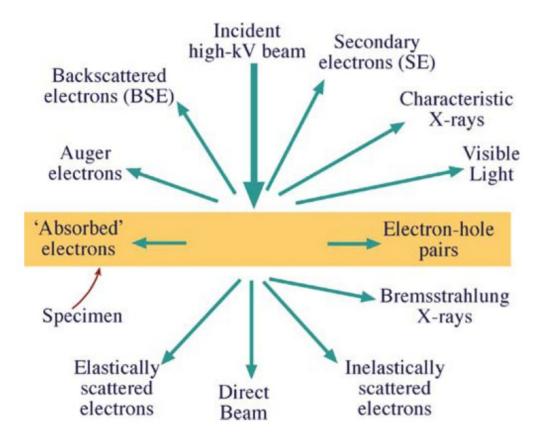
Analysis of electron micrographs

25th November 2020 Jiri Novacek

Content

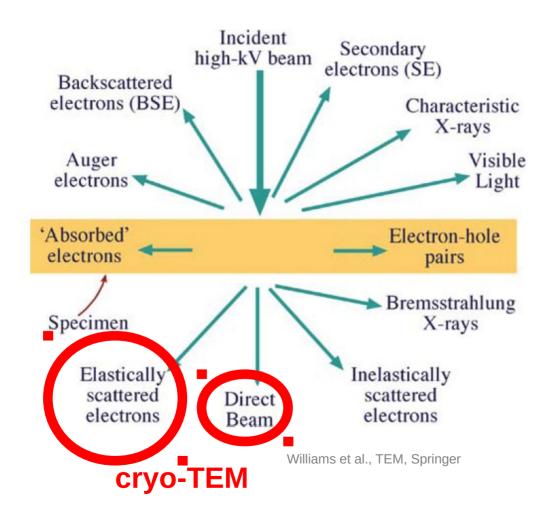
- interaction of electrons with matter, radiation damage
- data acquisition, image filtering
- projection theorem
- image averaging in 2D
- principal component analysis

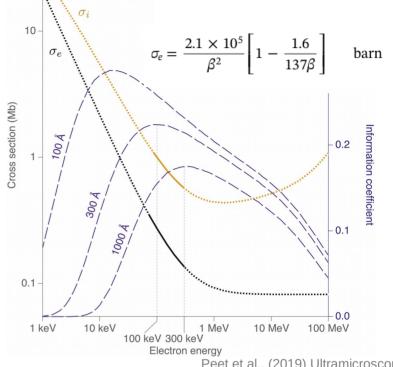
Interaction of electrons with specimen



Williams et al., TEM, Springer

Interaction of electrons with specimen



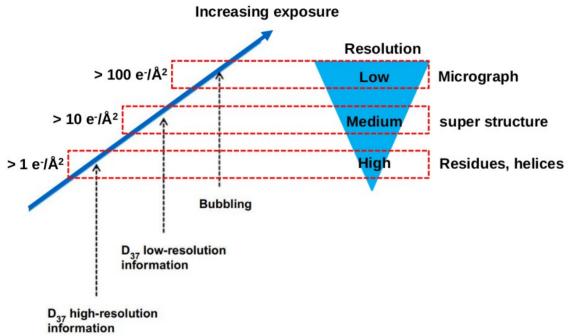


Peet et al., (2019) Ultramicroscopy

mean free path
$$\lambda = \frac{1}{\sigma_{total}} = \frac{A}{N_0 \sigma_{atom}}$$

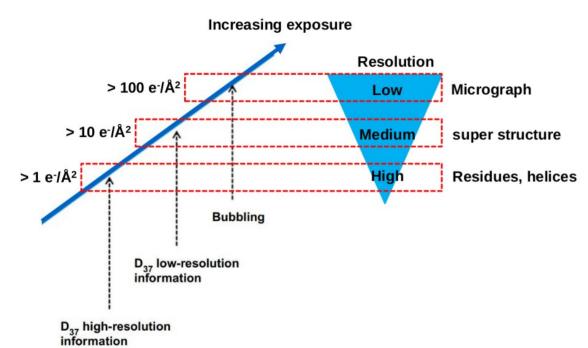
- mean free path of inelastic scattering in vitrified biological specimens: ~395nm

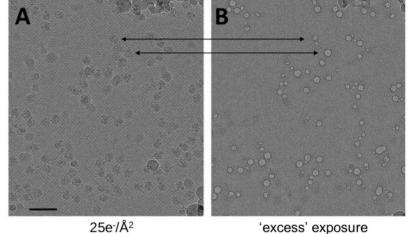
Radiation damage



Glaser R. (2016), Meth. Enzym.

Radiation damage

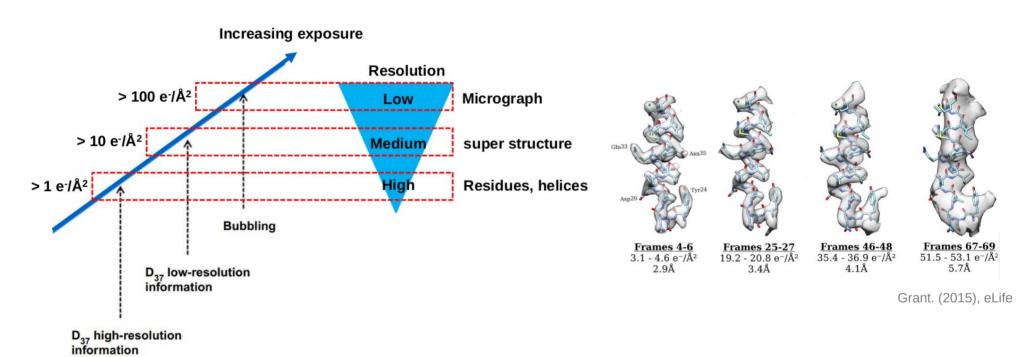




Glaser R. (2016), Meth. Enzym.

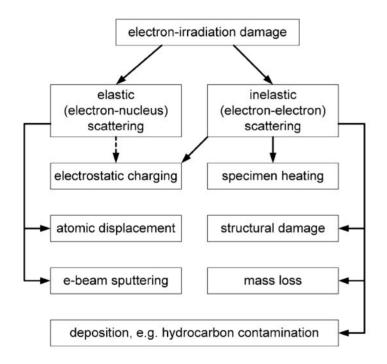
Glaser R. (2016), Meth. Enzym.

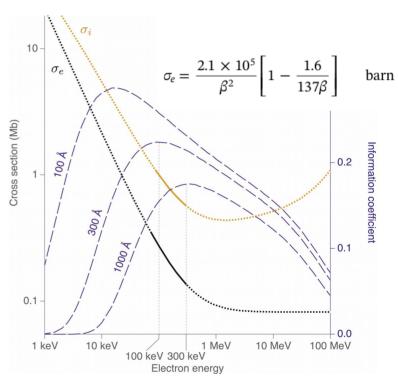
Radiation damage



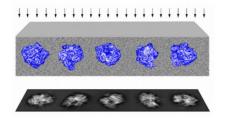
Glaser R. (2016), Meth. Enzym.

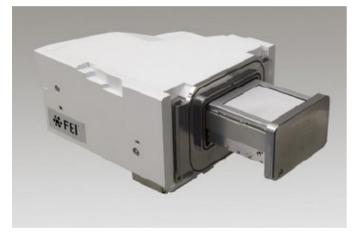
Interaction of electrons with specimen

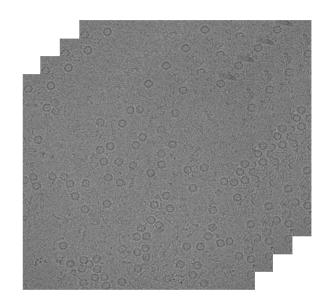




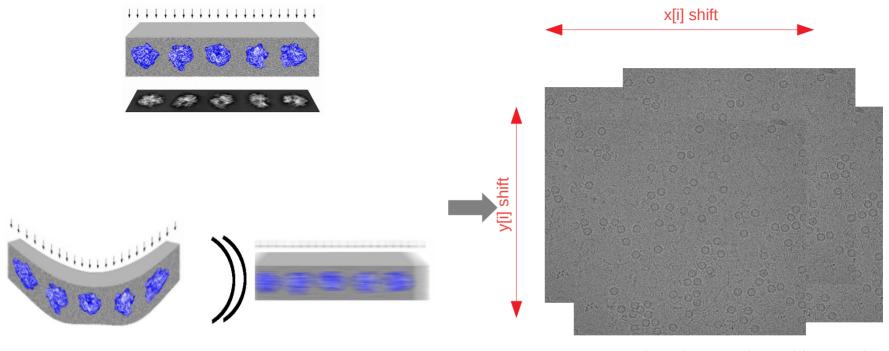
Peet et al., (2019) Ultramicroscopy







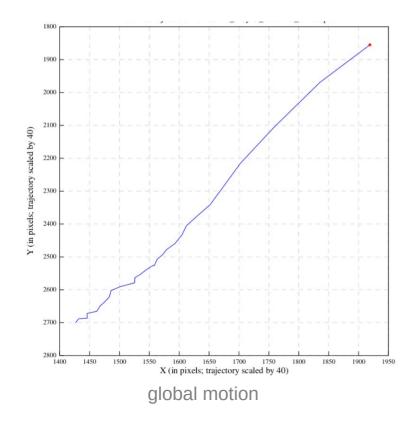
- data fom each position on the sample stored as a short movie
- compensation of sample radiation damage
- compensation of the sample motion during exposure

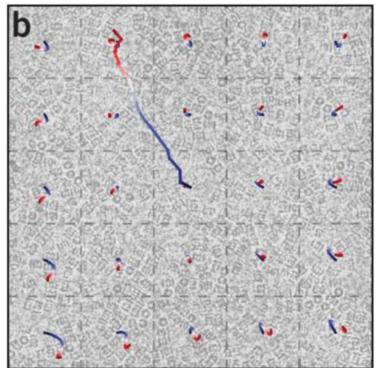


- beam induced motion (sample geometry, local)
- drift, vibration(external sources, global)

- data fom each position on the sample stored as a short movie
- compensation of sample radiation damage
- compensation of the sample motion during exposure

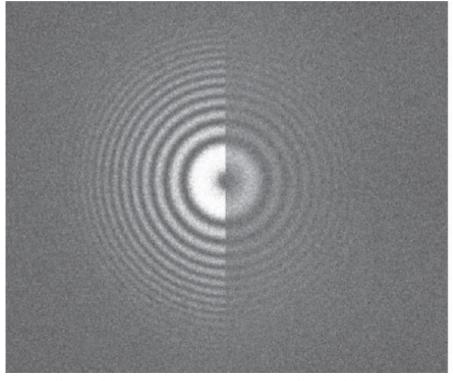
- averaging of the movie into single image increase S/N
- compensation for the global and local motion between the frames minimize image blur, maximize high-res. Info
- dose-weighting frame filtering based on acquired radiation damage



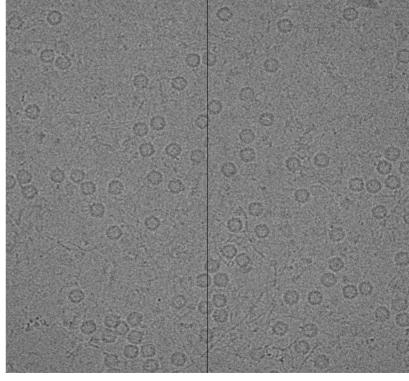


additional local motion

- averaging of the movie into single image increase S/N
- compensation for the global and local motion between the frames minimize image blur, maximize high-res. Info
- dose-weighting frame filtering based on acquired radiation damage

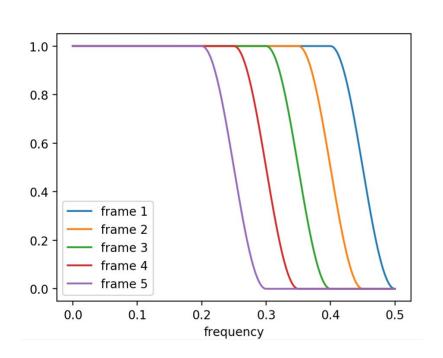


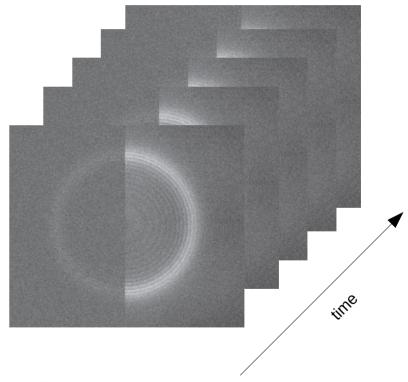
aligned image unaligned image



aligned image unaligned image

- averaging of the movie into single image increase S/N
- compensation for the global and local motion between the frames minimize image blur, maximize high-res. Info
- dose-weighting frame filtering based on acquired radiation damage





- application of adaptive per-frame low pass filter before averaging

Image filtering

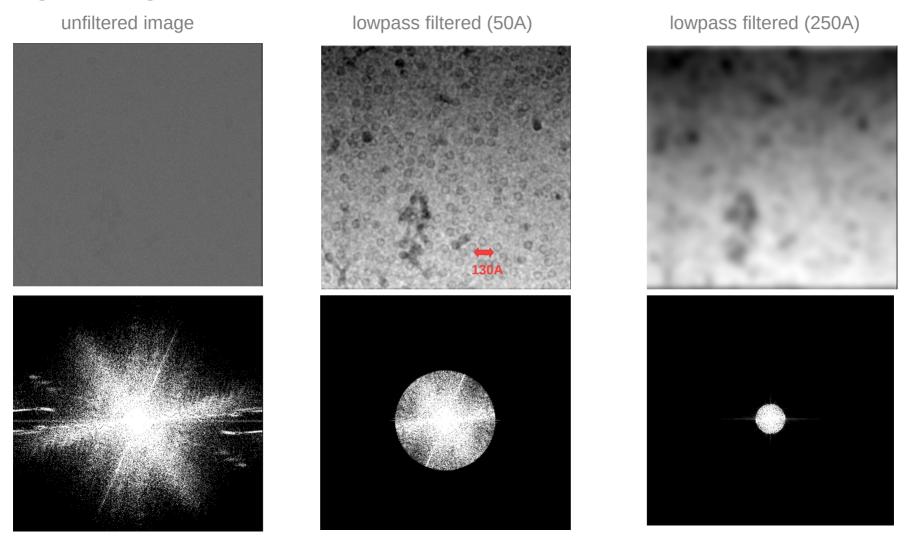


Image filtering

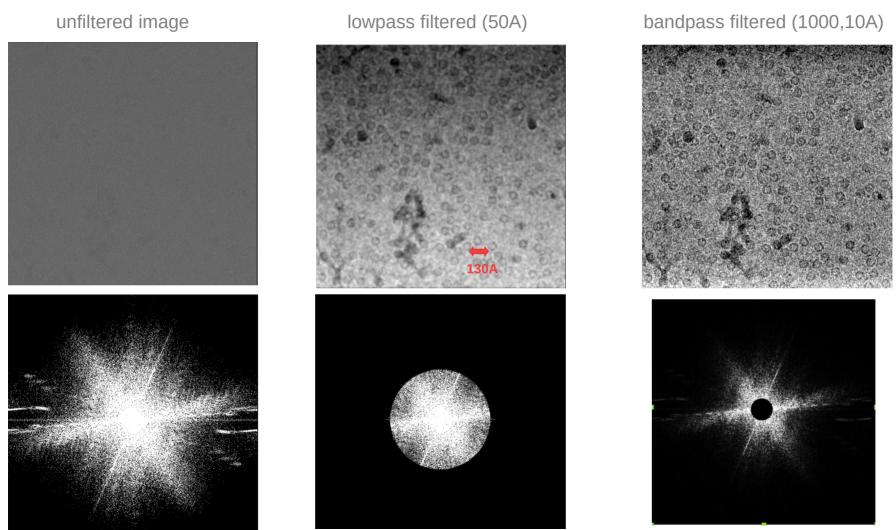


Image formation

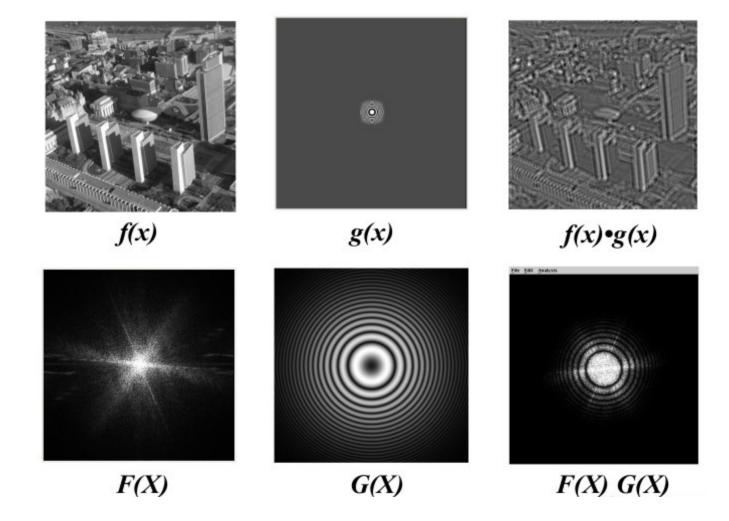
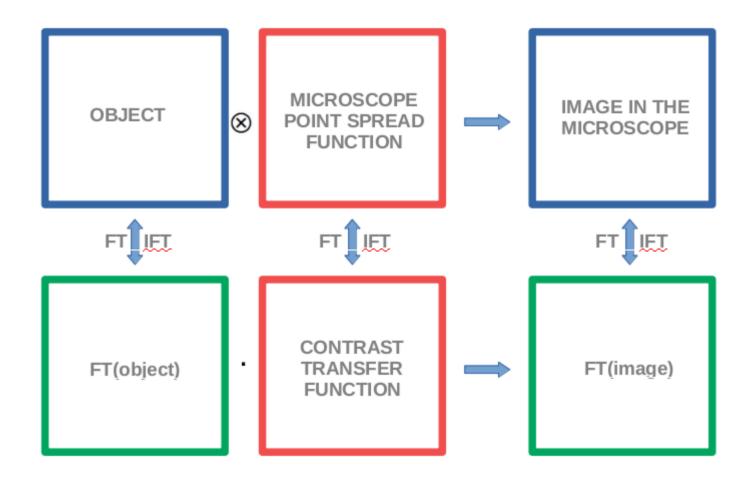


Image formation



CTF
$$(\vec{s}) = -\sqrt{1 - A^2} \cdot \sin(\gamma(\vec{s})) - A \cdot \cos(\gamma(\vec{s}))$$

$$\gamma(\vec{s}) = \gamma(s,\theta) = -\frac{\pi}{2}C_s\lambda^3 s^4 + \pi\lambda z(\theta)s^2$$

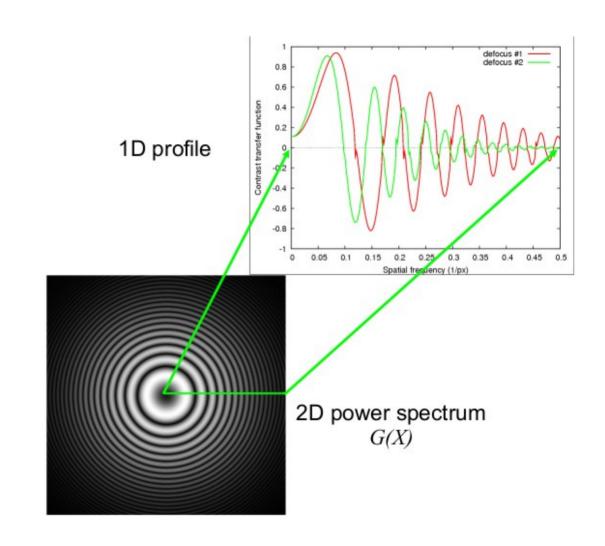
A – amplitude contrast

s – spatial frequency

Cs – spherical abberation

 λ – electron wavelength

z – defocus



Envelope function

- Finite source size

$$E_{\rm pc}(k) = \exp\left[-\pi^2 q^2 (k^3 C_{\rm s} \lambda^3 - \Delta z k \lambda)^2\right],$$

- Energy spread (defocus)

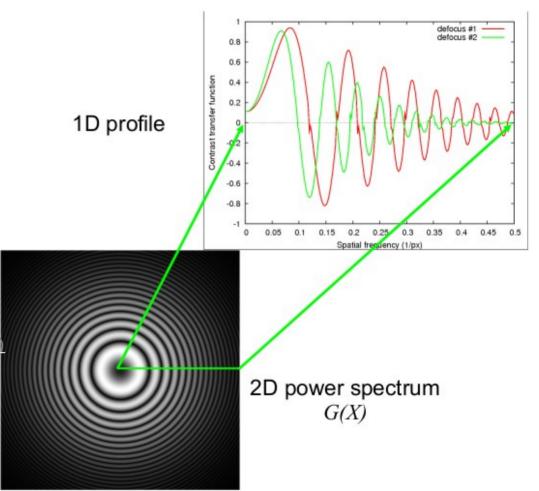
$$E_{\rm es}(k) = \exp\left[-\frac{1}{16 \ln 2} \pi^2 \delta z^2 k^4 \lambda^2\right],$$

- MTF of the camera

$$E_{\rm f}(k) = 1/[1 + (k/k_{\rm f})^2],$$

- Generic envelope (drift, charging, multiple scattering)

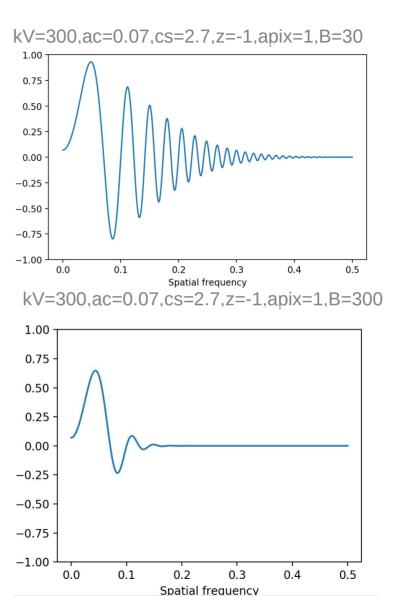
$$E_{g}(k) = \exp\left[-(k/k_{g})^{2}\right],$$

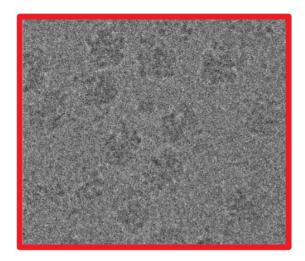


Envelope function

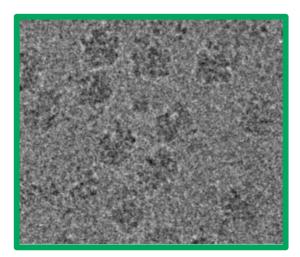
$$I(\mathbf{k}) = E_{pc}(k)E_{es}(k)E_{f}(k)E_{g}(k)H(k)\Phi(\mathbf{k}) + N(\mathbf{k}).$$

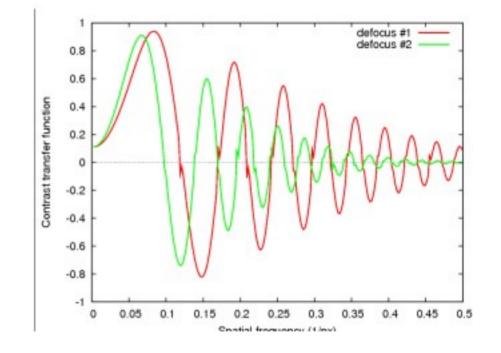
$$e^{-Bk^{2}}$$





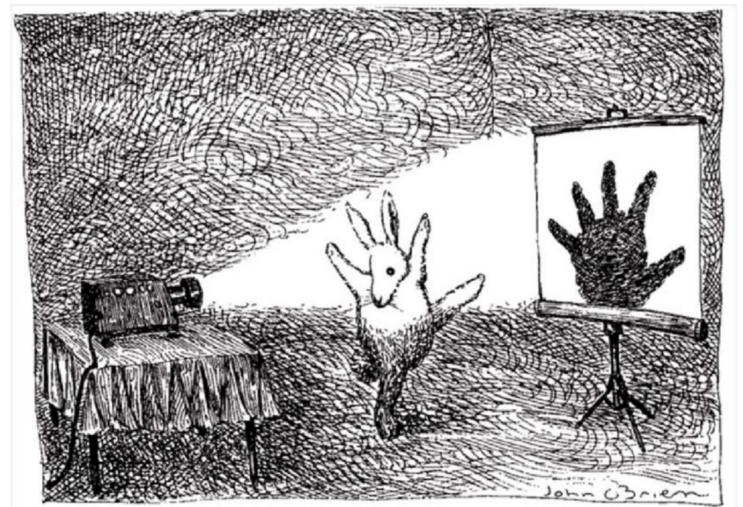
Low defocus





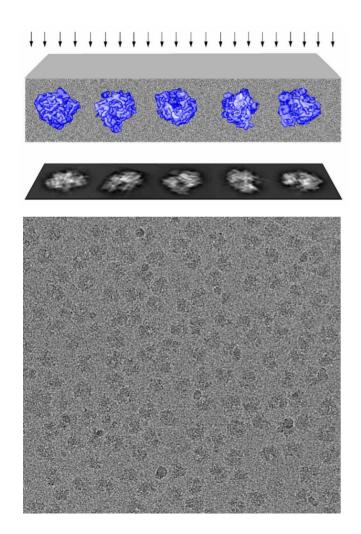
High defocus

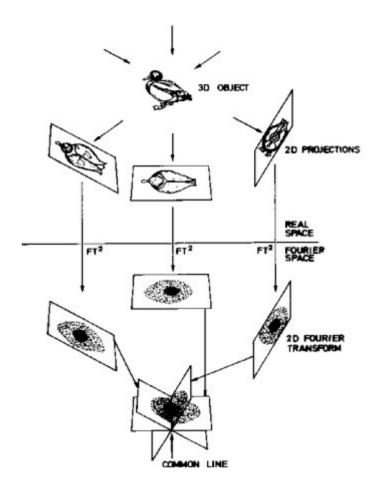
Projection theorem



John O'Brien (1991). The New Yorker

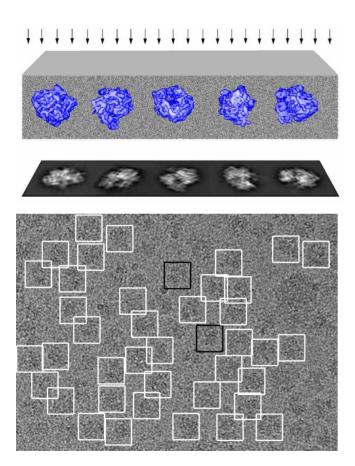
Projection theorem

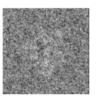




The 2D Fourier transform of the projection of a 3D density is a central section of the 3D Fourier transform of the density, perpendicular to the direction of projection.

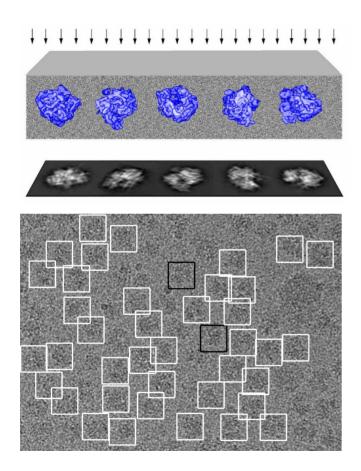
Particles (regions of interest)

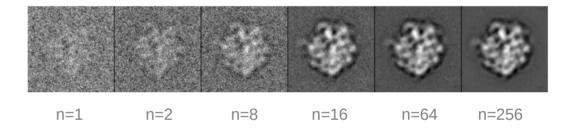




n=1

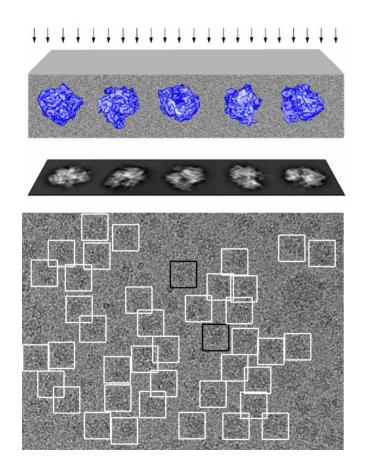
Particles (regions of interest)





Signal to noise ratio increases with square-root of n

Image alignment in 2D



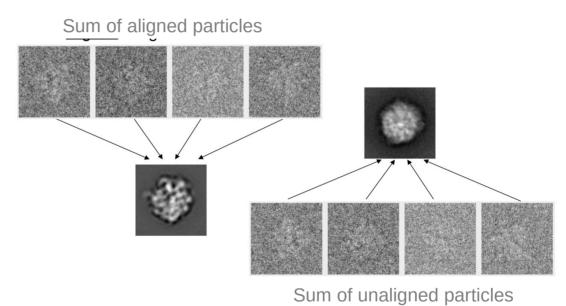
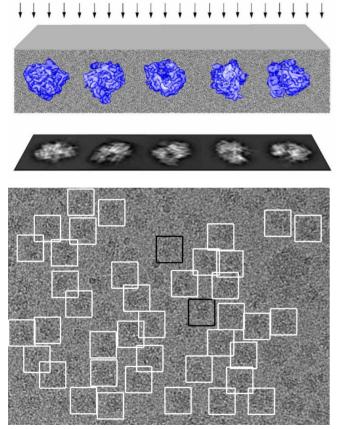
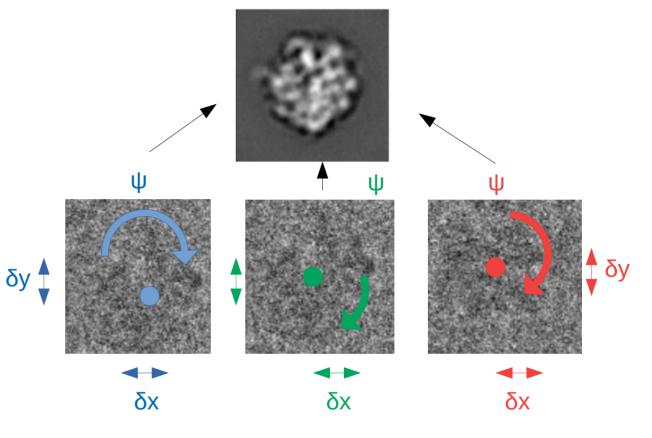


Image alignment in 2D

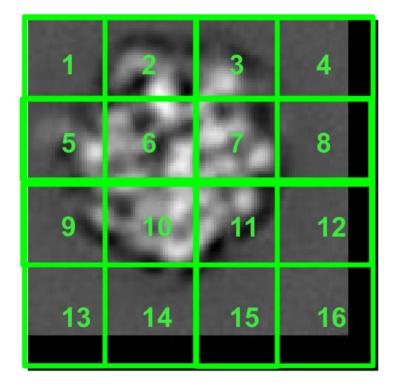




In order to align the particles in 2D, we need to determine three parameters:

- two translational
- one rotational (on of the Euler angles)

Image alignment in 2D



1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Cross correlation

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

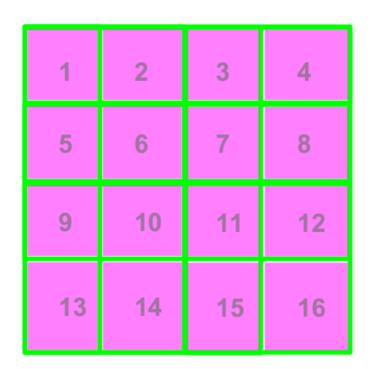


Image f

Image g

Unnormalized CCC =
$$f_1g_1 + f_2g_2 + f_3g_3 + f_4g_4 + f_5g_5 + f_6g_6 + f_7g_7 + f_8g_8 + f_9g_9 + f_{10}g_{10} + f_{11}g_{11} + f_{12}g_{12} + f_{13}g_{13} + f_{14}g_{14} + f_{15}g_{15} + f_{16}g_{16}$$

Cross correlation

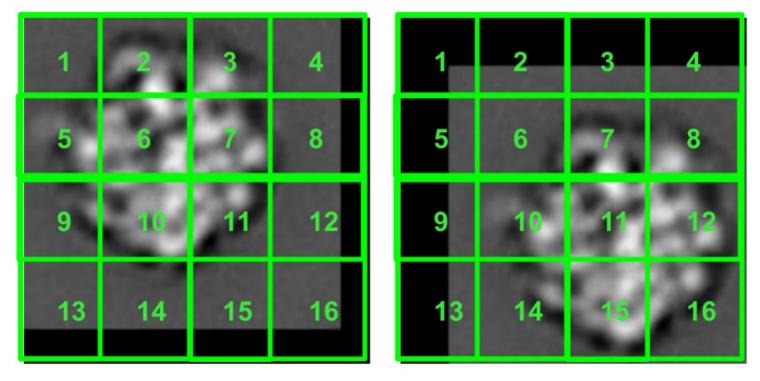
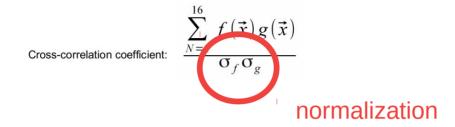


Image f Image g

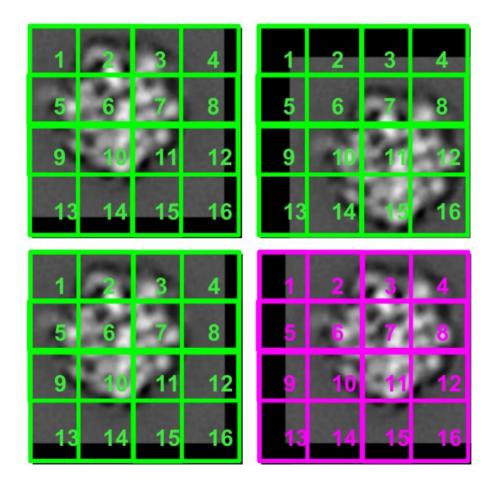
Unnormalized CCC =
$$f_1g_1 + f_2g_2 + f_3g_3 + f_4g_4 + f_5g_5 + f_6g_6 + f_7g_7 + f_8g_8 + f_9g_9 + f_{10}g_{10} + f_{11}g_{11} + f_{12}g_{12} + f_{13}g_{13} + f_{14}g_{14} + f_{15}g_{15} + f_{16}g_{16}$$

Cross correlation coefficient

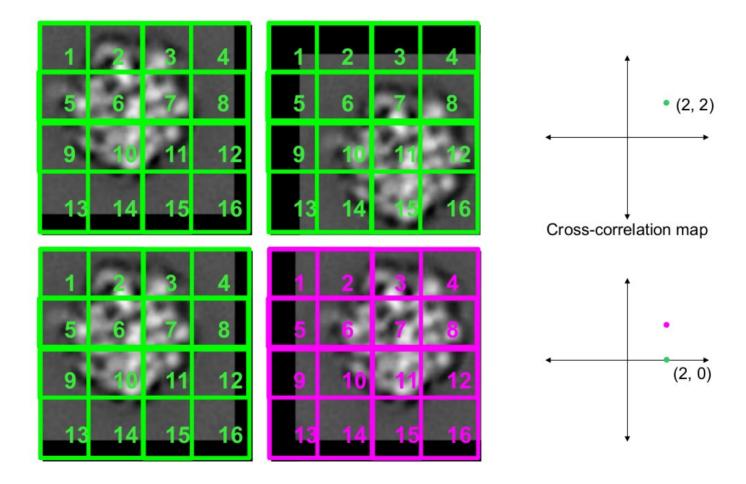


If the alignment is perfect, the cross-correlation coefficient will be 1

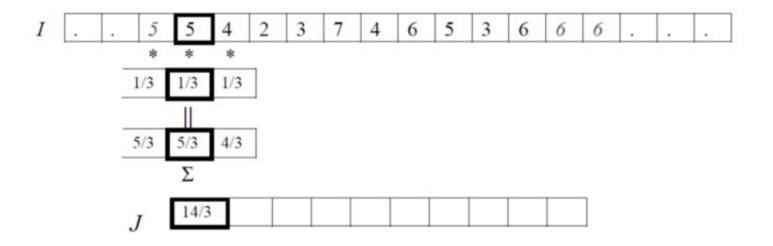
Cross correlation



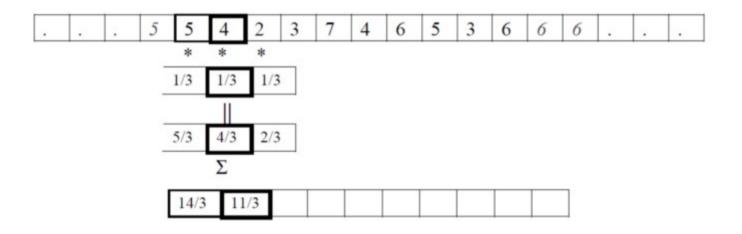
Cross correlation



Cross correlation function in 1D



Cross correlation function in 1D



$$F \circ I(x) = \sum_{i=-N}^{N} F(i)I(x+i)$$

Cross correlation function in 2D

$$F \circ I(x,y) = \sum_{i=-N}^{N} \sum_{i=-N}^{N} F(i,j)I(x+i,y+j)$$

Cross correlation function in 2D

$$F \circ I(x,y) = \sum_{j=-N}^{N} \sum_{i=-N}^{N} F(i,j)I(x+i,y+j)$$

$$F * I(x, y) = \sum_{i=1}^{N} \sum_{j=1}^{N} F(i, j)I(x - i, y - j)$$
 Convolution

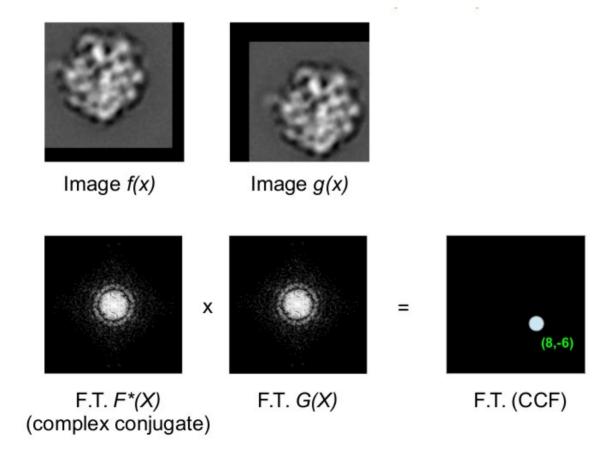
Cross correlation function in 2D

$$F \circ I(x,y) = \sum_{j=-N}^{N} \sum_{i=-N}^{N} F(i,j)I(x+i,y+j)$$

$$F * I(x, y) = \sum_{i=-N}^{N} \sum_{i=-N}^{N} F(i, j) I(x - i, y - j)$$
 Convolution

$$FT(F*I) = FT(F) . FT(I)$$
 Convolution theorem $FT(F \circ I) = FT(F)* . FT(I)$

Cross correlation function



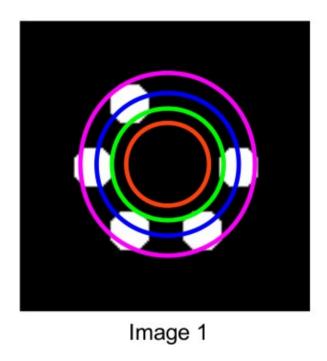
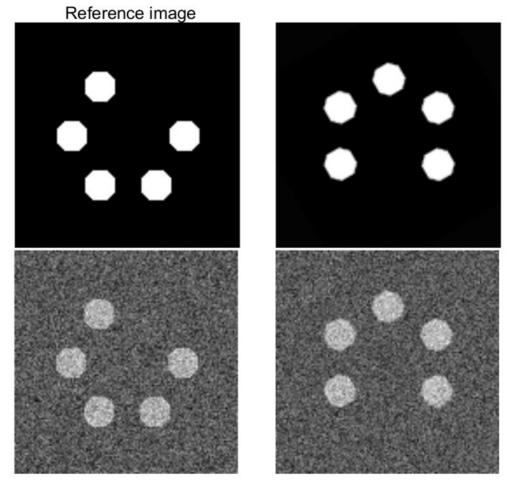


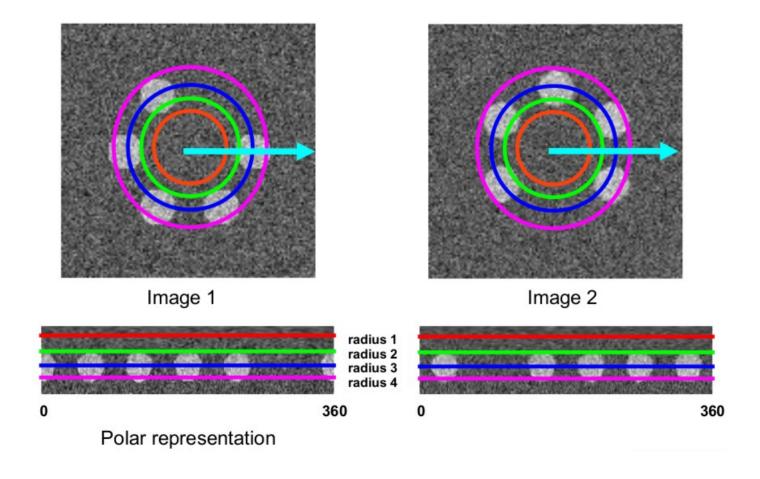
Image 2

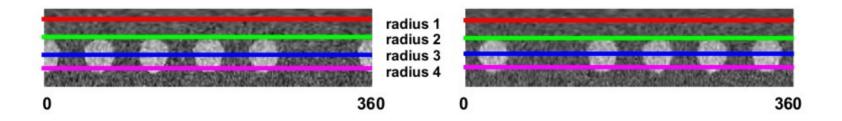
We take a series of rings from each image, unravel them, and compute a series of 1D cross-correlation functions.

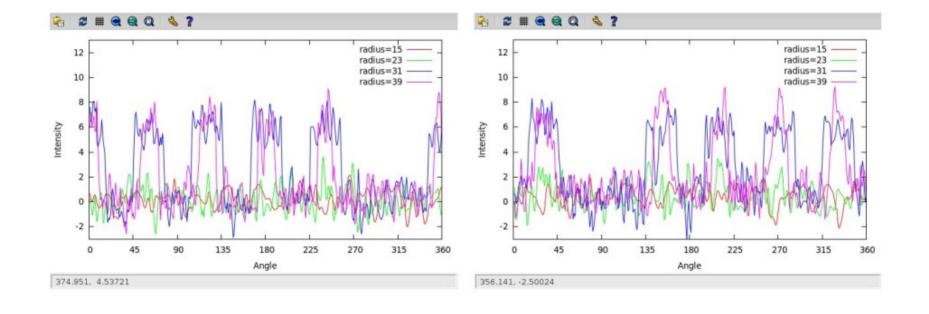
Shifts along these unraveled CCFs is equivalent to a rotation in Cartesian space.



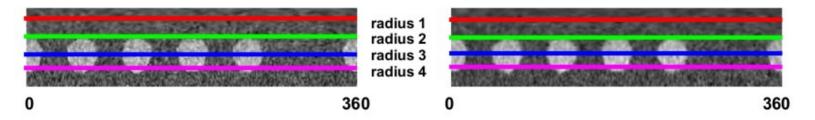
Noise added







- after rotation



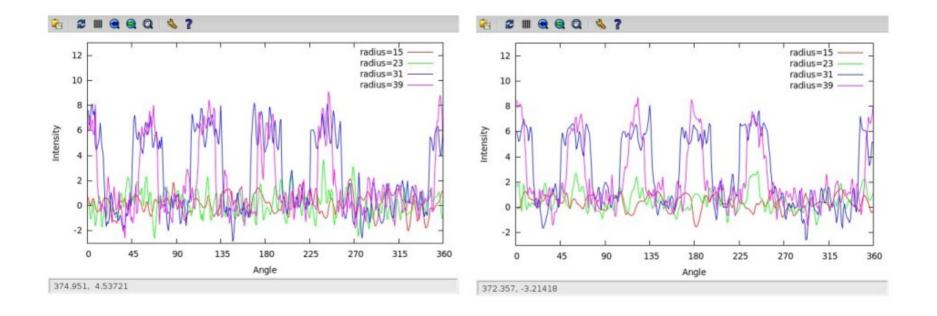


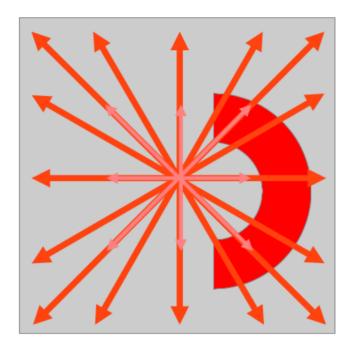
Image alignment in 2D



Translational and orientation alignment are interdependent

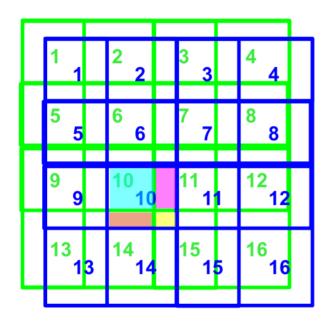
SOLUTION: You try a set of reasonable shifts, and perform separate orientation alignments for each.

Image alignment in 2D



Set of all shifts of up to 1 pixel Set of all new shifts of up to 2 pixels Shifts of (0, +/-1, +/-2) pixels results in 25 orientation searches.

Shift

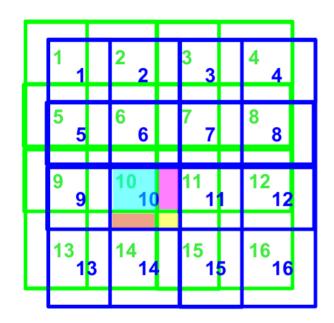


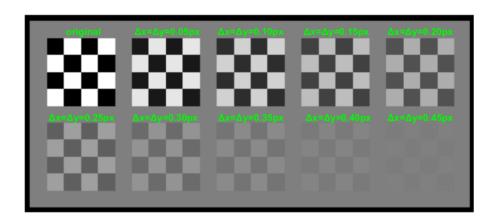
Suppose we shift the image in x & y.

The new pixels will be weighted averages of the old pixels.

The more the mix the pixels, the worse the result will be.

Shift



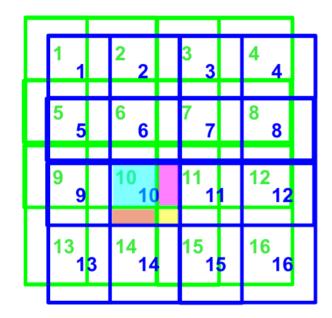


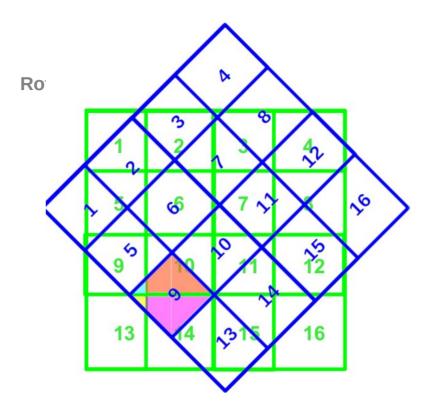
Suppose we shift the image in x & y.

The new pixels will be weighted averages of the old pixels.

The more the mix the pixels, the worse the result will be.

Shift

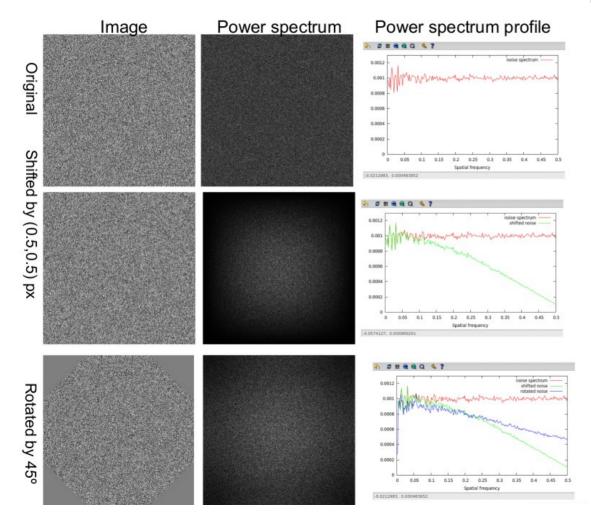




Suppose we shift the image in x & y.

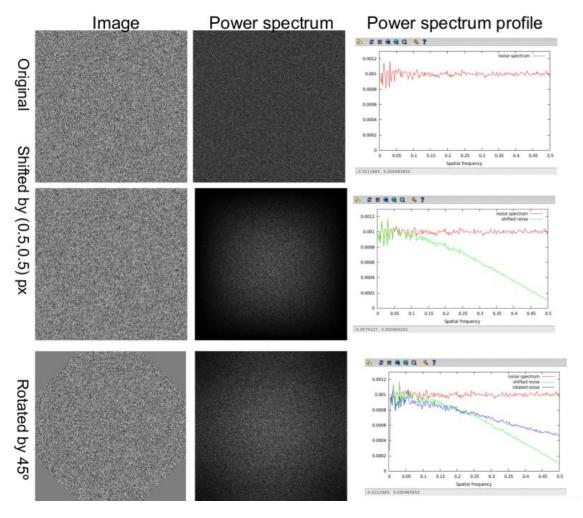
The new pixels will be weighted averages of the old pixels.

The more the mix the pixels, the worse the result will be.



The Fourier transform of noise is noise

- "White" noise is evenly distributed in Fourier space
- "White" means that each pixel is independent

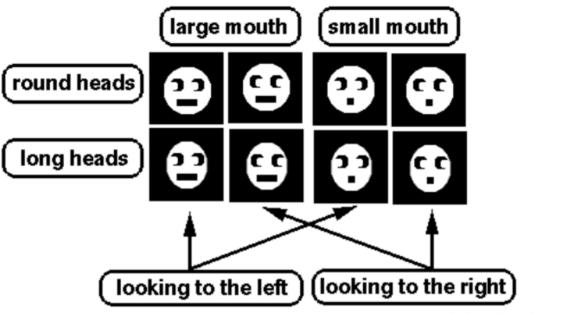


The Fourier transform of noise is noise

- "White" noise is evenly distributed in Fourier space
- "White" means that each pixel is independent

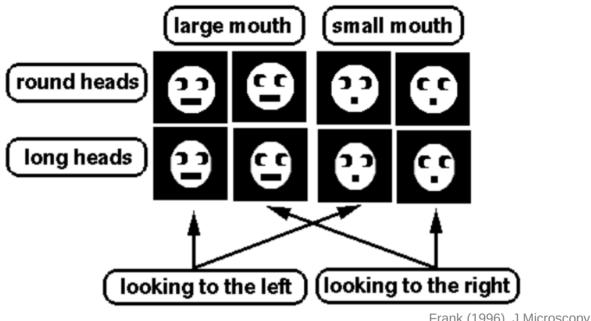
The degradation of the images means that we should minimize the number of interpolations.

Classification



Frank (1996), J.Microscopy

Classification



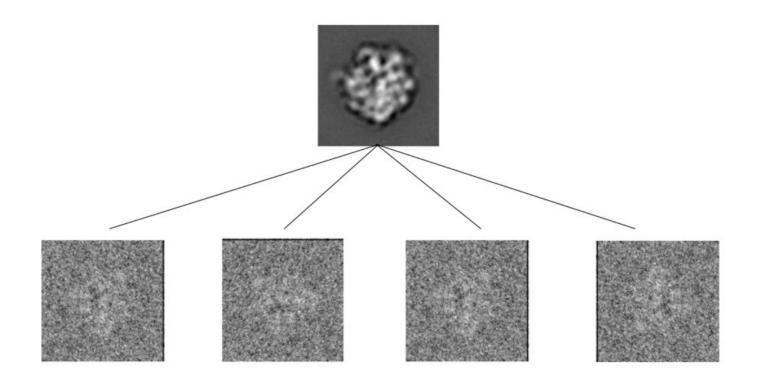
Frank (1996), J.Microscopy

Classification methods are divided into those that are "supervised" and those which are "unsupervised":

- Supervised: divide or categorize according to similarity with "template" or "reference" (e.g. projection mathing
- Unsupervised: divide according to intrinsic properties (e.g. find classess of projections representing the same view

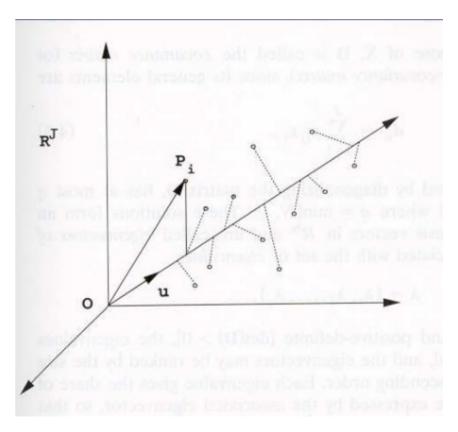
Classification

Reference based alignment



Multivariate data analysis (MDA) or multivariate statistical analysis (MSA)

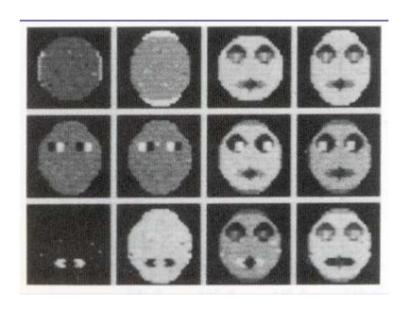
- find new coordinate system tailored to the data
- find a space with reduced dimensionality for the representation of the objects. This greatly simplifies classification.



eigenvectors

Multivariate data analysis (MDA) or multivariate statistical analysis (MSA)

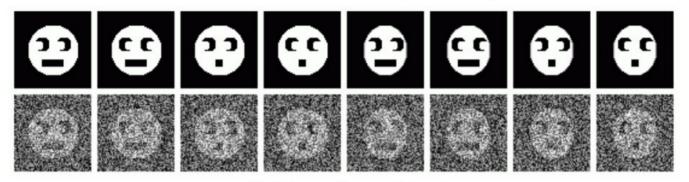
- find new coordinate system tailored to the data
- find a space with reduced dimensionality for the representation of the objects. This greatly simplifies classification.



eigenimages

Principle component analysis (PCA), Correspondence analysis (CA)

8 classes of faces, 64x64 pixels



With noise added

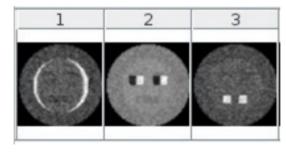
Average:

Principle component analysis (PCA), Correspondence analysis (CA)

For a 4096-pixel image, we will have a 4096x4096 covariance matrix.

Row-reduction of the covariance matrix gives us "eigenvectors."

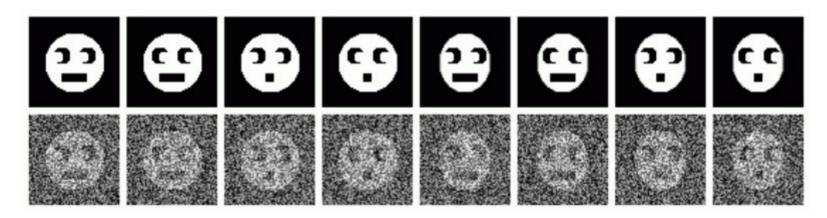
- The eigenvectors describe correlated variations in the data.
- The eigenvectors have 4096 elements and can beconverted back into images, called "eigenimages."
- The first eigenvectors will account for the most variation. The later eigenvectors may only describe noise.
- Linear combinations of these images will give us approximations of the classes that make up the data.



eigenimages

Principle component analysis (PCA), Correspondence analysis (CA)

$$\mathbf{c_0} = \mathbf{c_1} = \mathbf{c_1} = \mathbf{c_2} = \mathbf{c_3} = \mathbf{c_3} = \mathbf{c_1} = \mathbf{c_2} = \mathbf{c_3} = \mathbf{c_3} = \mathbf{c_3} = \mathbf{c_4} = \mathbf{c_3} = \mathbf{c_5} = \mathbf$$



Linear combinations of these images will give us approximations of the classes that make up the data.