Reference manuals Gaussian Petr Kulhánek kulhanek@chemi.muni.cz National Center for Biomolecular Research, Faculty of Science Masaryk University, Kotlářská 2, CZ-61137 Brno nee manuals - Gaussian Gaussian http://www.gaussian.com Help: Support -> Gaussian 16 Documentation: • Gaussian 16 Users Reference • Keyword List !!! All outputs below are only examples !!! Their content is not related to the solved tasks. nee manuals - Gaussian Input file LinkO commands are optional commands introduced after"%". They can specify the archive name (checkpoint), amount of memory, number of processors, etc. Command line is specified after # (see Route (#)). It specifies QM method and type of calculation. basis set >QM method charge %Chk^h2o. chk # RHF/cc-pVDZ*bpt geometry optimization multiplicity M= 2S + 1 optimization of water molecule geometry 0 1 0 0.000000 0.000000 -0.154167 H 0.000000 0.854766 0.538096 H 0.000000 -0.854766 0.538096 total spin of electrons f blank line comment blank line blank line system geometry specification (Cartesian coordinates in A) terminated by a blank line nee manuals - Gaussian How to run calculations (tests only It is strictly prohibited to run calculations in Gaussian directly in home directories. All Gaussian jobs need to be submitted to a batch system (see next page). For testing in the scratch directory only: activate gaussian module $ module add qaussian , . . ^ . n (only once in a terminal) $ gib job.com ^ ^ name of input file name of gaussian program After completing the task, the result of the calculation will be saved in the job.log file, th last line of the file must state: Normal termination of Gaussian 0 9 at Sun Oct otherwise, the calculation is unsuccessful. The reason for premature termination of th calculation must be found in the output file. nee manuals - Gaussian How to run calculations on WOLF $ psubmit default job.com [ncpus=N] / batch system queue input file name [mem=XXg] resources (optional) [] is not part of specification number of CPUs for parallel execution amount of memory in GB Example: $ psubmit default job.com ncpus=2 mem=2 0g nee manuals - Gaussian Energy calculation (Single-point calculation) Geometry optimization nee manuals - Gaussian Energy calculation and optimizatio %Chk=h2o.chk # RHF/cc-pVDZ energy calculation (water molecule) 0 1 0 0.000000 H 0.000000 H 0.000000 <- 0.000000 -0.154167 0.854766 0.538096 -0.854766 0.538096 %Chk=h2o.chk # RHF/cc-pVDZ Opt geometry optimization (water molecule) 0 1 0 0.000000 H 0.000000 H 0.000000 <- 0.000000 -0.154167 0.854766 0.538096 -0.854766 0.538096 without the Opt keyword, only energy and WF are calculated including system properties (single point calculation) terminated by a blank line request geometry optimization terminated by a blank line nee manuals - Gaussian Calculation progress Single-point calculation ) ) Geometry optimization for input geometry Input geometry Q □ Estimation of the wave function (Guess) Qi Calculation of E and wave function (SCF) the WF guess for the next step is taken from the previous step gradient calculation D geometry change No a Population analysis and calculation of system properties Estimation of the wave function (Guess) Calculation of E and wave function (SCF) Population analysis and calculation of system properties nee manuals - Gaussian -8- Data extraction in CLI Geometry optimization 1) Module activation: $ module add qmutil | only once in a given terminal 2) Optimization process (energy): It is advisable to analyze the course of $ extract-gopt-ene job. log optimization, in the GUI programs such as vmd or Avogadro 3) Optimization process (all geometries): J $ extract-gopt-xyz job.log > opt.xyz 4) Obtaining optimized geometry (last = optimized geometry): $ extract-xyz-str opt.xyz last > last.xyz nee manuals - Gaussian -9- Data extraction in CLI Geometry optimization process (energy): $ extract-gopt-ene job.log # Coordinate: # Step Energy [kcal/mol] Energy [au] #-------------------------------------- 1 2 3 4 0 0 0 0 000 171 188 190 optimization step number relative energy to the first geometry 028650961 028922822 028950914 02895393 absolute energy in Hartree The energy (in a.u.) of the optimized structure, i.e., the geometry contained in opt.xyz. The opt.xyz geometry can be visualised in the programs: Avogadro, Nemesis, vmd. nee manuals - Gaussian Vibrational analysis nee manuals - Gaussian Vibrational analysis %Chk=h2o.chk # RHF/cc-pVDZ Freq vibrational analysis 0 1 0 0.0000000 H 0.0000000 H 0.0000000 <- 0.0000000 -0.0780430 0.7492420 0.5000340 -0.7492420 0.5000340 request vibrational frequency calculation terminated by a blank line For optimized geometry (stationary point on PES), the type of stationary point can be determined from the number of imaginary frequencies of normal vibrations: > 0 imaginary frequencies -> local minimum > 1 imaginary (negative) frequency -> first order transition state Vibrational analysis requires Hession calculation, which can be very computationally intensive. nee manuals - Gaussian -12- Calculation progress Single-point calculation on optimized geometry O ut geometry Estimation of the wave unction (Guess) O Calculation of E and wave function (SCF) gradient calculation E calculation Hessian E D The ideal gas model is used! Harmonic approximation i pulation analysis calculation of em properties Calculation of vibrational frequencies The harmonic approximation is valid only for a stationary point on the PES Thermodynamic properties Stationary point test nee manuals - Gaussian BSSE nee manuals - Gaussian -14- CP correction for BSSE %Chk=ene.chk # RHF/cc-pVDZ Counterpoise=2<- SP calculation with BSSE correction 0 1 0(Fragment=l H (Fragment=l )" H(Fragment=l) 0(Fragment=2) H(Fragment=2) H(Fragment=2) <- 231135 374693 074728 648273 166742 6494 0.063539 0.253491 -0.864502 1.893276 2.355543 1.311764 0 1 0 ■1 ■1 203312 116647 130817 229780 894982 -0.798971 request energy calculation with BSSE correction terminated by a blank line Fragments representing interacting molecules. Counterpoise correction of BSSE requires 5 energy calculations (AB, A(B), (A)B, A, and B), which are performed by Gaussian automatically. This correction can be used during geometry optimization. nee manuals - Gaussian -15- Calculation progress r nput geometry o Estimation of the wa function (Guess) ■n Estimation of the wa. function (Guess) J Calculation of E and wave function (SCF) o Calculation of E and wave function (SCF) o Population analysis and calculation of system properties AB Population analysis and calculation of system properties A(B) ^cp ~ EAB + (EA E Estimation of the wa. function (Guess) Calculation of E and wave function (SCF) D Estimation of the ^ wave function (Guess) Estimation of the ^ wave function (Guess) Calculation of E and wave function (SCF) o Calculation of E and wave function (SCF) o Population analysis and calculation of system properties Population analysis and calculation of system properties sis of es (A)B Population analysis and calculation of system properties B A(B) ) + (EB E(A)B) Corrected energy BSSE nee manuals - Gaussian -16- Finding a reaction path SCD Single Coordinate Driving nee manuals - Gaussian -17- Driving, strategy The goal of SCD is to find an estimate of transition state. The driving is performed by changing the selected geometric parameter and optimizing all other degrees of freedom. The parameter can be, for example, a shortening of the length between the atoms between which a bond is formed during the reaction. Selection of a suitable reaction coordinate describing the course of the reaction: • The reaction coordinate is usually very complicated. • It is necessary to use a simplified coordinate that best captures the intended change. • The coordinate is chosen from simple geometric parameters (length, angle, torsion angle, etc.) • The distances are natural choice in reactions, usually between atoms where bonds are formed or broken. • Torsional angles are usually used for conformational transitions. • The best choice for the starting geometry is to select a state with the smallest number of conformational degrees of freedom. Thus, driving need not to be necessary always performed from reactants to products. nee manuals - Gaussian -18- Driving, input %Chk=driving.chk # PM3 Opt=ModRedundant NoSymm single coordinate driving XX X X X <- B Al A2 S NStep StepSize request driving charge and multiplicity geometry terminated by a blank line terminated by a blank line distance step size (positive or negative number), the number must contain a decimal point (for distance the optimal step length is about 0.1 A) number of steps (integer) SCD indexes of atoms between which we will change the distance (indexed from one) nee manuals - Gaussian -19- Driving, example blank lines We shorten the length (B) between atoms 4 and 11 in fifteen steps, always by 0.1 A. Detailed documentation: http://gaussian.com/opt/ -section Options/ModRedundant nee manuals - Gaussian Calculation progress Q nput geometry Estimation of the wave function (Guess) Geometry optimization ■ parameter change Population analysis and calculation of system properties Q geometry optimization Calculation of E and wave function (SCF) Q D gradient calculation E geometry change local inimum? No Yes Optimized geometry 4 During optimization, the value of the SCD parameter is set a constant. nee manuals - Gaussian Data extraction in CLI 1) qmutil module activation: $ module add qmutil 's advisable to analyze the course of SCD, in the GUI programs such as vmd or 2) Display the course of SCD (energy): $ extract-gdrv-ene job.log 3) Display the course of SCD (all geometries): $ extract-gdrv-xyz job.log > drv.xyz 4) Extract given geometry (geometry with index N): $ extract-xyz-p drv^cyz^N > TS_guess.xyz The number of the structure we want to extract from the drv.xyz file. nee manuals - Gaussian -22- [Driving, results_ Example: Diels-Alder cycloaddition reaction # Coordinate: R(4,7) # Step Value Energy [kcal/mol] S Energy [au] #-------------------------------------------------- 1 1. 5380 0 .000 - 0 .002554791 2 1. 6380 2 . 648 / 0 .006774307 3 1. 7380 8 .526 / 0 .016141320 4 1. 8380 15 .826 / 0 . 027774776 5 1. 9380 23 .919 / 0 .040672342 6 2 . 0380 32 . 626 / 0 .054548199 7 2 . 1380 41 .714 / 0 .069029627 8 2 . 2380 50 .746 / 0 .083423613 9 2 . 3380 59 .194 / 0 .096886686 10 2. 4380 66 .597 / 0 .108683559 11 2. 5380 72 . 657 / 0 .118340986 2. 6380 77 / 0 . 125671188 ) 2. 7380 C"80 .400 L> 0 .130680500 14\ 2. 8380 36 .19Í \ 0 .060228061 15\ 2. 9380 35 .376\ \ 0 .058929736 16 > 1 3. 0380 34 .774] l\ 0 .057970622 Structure number Structure with maximum energy on the reaction path => estimate of transition state nee manuals - Gaussian -23- Driving, results 90 80 70 1 60 ~o E 50 ra o 40 LU 30 < 20 10 0 Example: Diels-Alder cycloaddition reaction coordinate driving product bond breaking (input state for driving) Structure with maximum energy on the reaction path => estimate of transition state The break indicates that the coordinate does not correctly describe the course of the reaction. nee manuals - Gaussian Geometry optimization of transition state nee manuals - Gaussian TS optimization, input request optimization of the transition state %Chk=ts.chk # PM3 Opt(CalcFC,TS,NoEigenTest,MaxCycle=25) transition sta\e optimization XX X......... , X......... , X......... , <- CalcFC CalcAII terminated by a blank line force constants (Hessian) are calculated on the input geometry force constants (Hessian) are calculated on each geometry during optimization (Newton-Raphson method) nee manuals - Gaussian TS optimization, output The output is processed in the same way as a regular geometry optimization. • If the maximum number of steps is exceeded, you can try to continue the optimization (extract the last coordinates and perform the optimization again). The second option is to switch from CalcFC to CalcAII. • If the TS is not found within about 30 optimization steps, it is necessary to find a better TS estimate. • The TS must have only one imaginary ("negative") frequency. • The vibrational motion corresponding to an imaginary frequency must follow the formation and termination of the bonds corresponding to the reaction step. nee manuals - Gaussian -27- Output file nee manuals - Gaussian -28- Output file: sections 1 and 2 1. Input geometry in internal coordinates ! Initial Parameters ! ! (Angstroms and Degrees) ! ! Name Definition Value Derivative Info. ! ! Rl R(l,2) 1.0999 estimate D2E/DX2 ! ! R2 R(l,3) 1.0999 estimate D2E/DX2 ! ! Al A(2,l,3) 101.9929 estimate D2E/DX2 ! 2. WF initial guess number of base siset functions = number of c coefficients, which need to be found during SCF 25 cartesian basis functions Two-elegfj^efrintegral symmetry is turned off. 24 bsreis functions, 47 primitive gaussians, 5 alpha electrons 5 beta electrons nuclear repulsion energy 8.0071357792 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 24 RedAO= T NBF= 24 NBsUse= 24 1.00D-06 NBFU= 24 Harris functional with IExCor= 205 diagonalized for initial guess. initial guess of WF nee manuals - Gaussian Output file: section 3 3. Energy and WF calculations virial theorem SCF Done: E(RHF) = -75.9901319773 A.U. after 10 cycles Convg = 0.5258D-08 -V/T = 2.0057 / total energy / Number of SCF cycles needed to find E and WF Energy change in the last cycle of SCF Energy is in a.u. (Hartree) Full SFC progress is printed, if #P is specified in the input file. nee manuals - Gaussian Output file: section 3, cont. Cycle 1 Pass 1 IDiag 1: E= -75.9710832672194 DIIS: error= 4.94D-02 at cycle 1 NSaved= 1. NSaved= 1 IEnMin= 1 EnMin= -75.9710832672194 IErMin= 1 ErrMin= 4.94D-02 ErrMax= 4.94D-02 EMaxC= 1.00D-01 BMatC= 1.08D-01 BMatP= 1.08D-01 IDIUse=3 WtCom= 5.06D-01 WtEn= 4.94D-01 Coeff-Com: 0.100D+01 Coeff-En: 0.100D+01 Coeff: 0.100D+01 Gap= 0.463 Goal= None Shift= 0.000 GapD= 0.4 63 DampG=2.000 DampE=0.500 DampFc=l.0000 IDamp=-l. RMSDP=6.04D-03 MaxDP=l.13D-01 OVMax= 1.12D-01 <- shortened Cycle 10—Pass 1 IDiag 1: E= -7 6.0418IN^4 8 07 68 Delta-E= 0.000000000000 Rises=F Damp=F DIIS: ^tfor= 2S^-08 at cycle 10 NSaved= 10. NSaved=10^EnMin=l^\^nMin= -76.0418076480768 IErMin=10 ErrMin= 2.15D-08 ErrMax= 2.^D-08 EMaxCS^l. 00D-01 BMatC= 8.09D-15 BMatP= 1.54D-13 IDIUse=l WtC%n= 1. 00D+00 Rhs^n= 0.00D+00 Coeff-Com: -0>^9D-06 0 .154D^,0 . 181D-04-0 . 155D-03 0.397D-03 0.649D-03 Coeff-Com: -O.lSoD-01 0. 669D-01^N44lD+00 0.138D+01 Coeff: -0.199^06 0.154D-05 0.lS>S^04-0.155D-03 0.397D-03 0.649D-03 Coeff: -0.110D>^ 0.669D-01-0.44lD+frss0.138D+01 Gap= 0.546 Goal=\None Shift= O^Q.0 RMSDP=4.57D-09 MaxDP=4N^2D-08 DE=-3.84D-13 OVMaNt 8 . 92D-08 SCF Done: E(RHF) = -76.0418076481 A.U. after 10 cycles Convg = 0.4573D-08 -V/T = 2.0008 nee manuals - Gaussian -31- Output file: section 4 4. Gradient calculation forces = negative energy gradient (in atomic units) \ Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z 1 8 0. 000000000 0. 000000000 0. 131133317 2 1 0. 000000000 -0. 085534245 -0 . 065566658 3 1 0. 000000000 0. 085534245 -0 . 065566658 Cartesian Forces Max 0.131133317 RMS 0.06702083! nee manuals - Gaussian Output file: section 5 5. Geometry ptimization GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.107734851 RMS 0.088033019 shortened Variable Old X Rl 2.07857 R2 2.07857 Al 1.78011 I tern Maximum Force RMS Force Maximum Displacement RMS Displacement Predicted change in En^ -DE/DX Delta X Delta X (Linear) (Quad) 0.00000 -0.21160 0.00000 -0.21160 0.00000 -0.02126 TnreshulCh 0.000450 0.000300 0 .001800 0 .001200 -J.060008D-02 ■0 . 10773 ■0 . 10773 ■0 . 00599 V '107735 0.088033 0 .177009 0.154831 Delta X (Total) -0.21160 -0.21160 -0. 02126 Lverged? New X 1.86697 1.86697 1.75885 GradGradGradGradGradGXadGradGradGradGradGradGradGradGradGradGradGradGrad convergence criteria for geometry optimization termination planned geometry change nee manuals - Gaussian Output file: section 6 6. Optimized geometry Item Value Threshold Converged? Maximum Force 0.000267 0.000450 YES RMS Force 0.000172 0.000300 YES Maximum Displacement 0.000999 0.001800 YES RMS Displacement 0.000967 0.001200 YES Predicted change in Energy=-2.315429D-07 Optimization completed. -- Stationary point found. ! Optimized Parameters ! ! (Angstroms and Degrees) ! ! Name Definition Value Derivative Info. ! ! Rl R(l,2) 0.9463 -DE/DX= -0.0001 ! ! R2 R(l,3) 0.9463 -DE/DX= -0.0001 ! ! Al A(2,l,3) 104.696 -DE/DX= -0.0003 ! GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad nee manuals - Gaussian Output file: section 7 7. Population analysis and system property calculations (shortened) ^ccupied orbiatals Alpha occ. eigenvalues --Alpha virt. eigenvalues -- -20 . 54839 0 .18742 ■1.34218 0 .25779 ■0 . 70556 0 .79793 ■0 .56822 0.86396 ■0 .49389 1.16257 energy of molecular orbitals \ virtual orbitals Mulliken atomic charges 1 1 0 -0.292462 2 H 0.146231 3 H 0.146231 Sum of Mulliken atomic charges Mulliken atomic (point) charges 0. 00000 Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= Quadrupole moment (field-independent basis, Debye-Ang): XX= -7.0085 YY= -4.1369 ZZ= XY= 0.0000 XZ= 0.0000 YZ = 2.0430 Tot= 2.0430 -5.7327 0.0000 dipol and quadrupole electrostatic moments Type of population analysis can be selected the pop keyword. nee manuals - Gaussian Output file: section 8 Differentiating once with respect to electric field. with respect to dipole field. Electric field/nuclear overlap derivatives assumed to be zero Keep Rl ints in memory in canonical form, NReq=873499. There are 3 degrees of freedom in the 1st order CPHF. 3 vectors produced by pass 0 Testl2= 3.17D-15 3.33D-08 XBigl2 AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Testl2= 3.17D-15 3.33D-0 IDoFFX=0. 1.15D+00 3 vectors produced by pass 2 Testl2 3 vectors produced by pass 3 Testl2 3 vectors produced by pass 4 Testl2 3 vectors produced by pass 5 Testl2 3 vectors produced by pass 6 Testl2 2 vectors produced by pass 7 Testl2 1 vectors produced by pass 8 Testl2 Inverted reduced A of dimension 24 End of Minotr Frequency-dependent properties file End of Minotr Frequency-dependent properties file Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 4 centers at a time, making 3.17D-15 3.33D-0S 3.17D-15 3.33D-0S 3.17D-15 3.33D-0S 3.17D-15 3.33D-0S 3.17D-15 3.33D-0S 3.17D-15 3.33D-0S 3.17D-15 3.33D-0S XBigl2 = XBigl2 = XBigl2 = XBigl2 = XBigl2 = XBigl2 = XBigl2 = XBigl2 = 5.63D-02 7.24D-03 2.25D-04 4.04D-06 2.96D-08 3.37D-10 1.95D-12 2D-15 9.8: with in-core refinement. 721 does not exist 722 does not exist 1 passes doing MaxLOS=2 Calling FoFCou, ICntrl= 3107 FMM=F IlCent= FoFDir/FoFCou used for L=0 through L=2. End of G2Drv Frequency-dependent properties file End of G2Drv Frequency-dependent properties file 0 AccDes= 0.00D+00 721 does not exist. 722 does not exist. 6.84D-01 1.22D-01 3.79D-02 7.06D-03 8.17D-04 7.41D-05 9.10D-06 5.99D-07 4.57D-08 nee manuals - Gaussian Output file: section 9 6(5) vibrací musí mít nízké frekvence (ideálně nulové) - 3 translační a 3 rotační stupně volnosti systému Full mass-weighted force constant matrix: Low frequencies --- -40.7995 -0.0019 -0.0015 0.0005 37.6815 Low frequencies --- 1774.9584 4112.7795 4211.8138 Harmonic frequencies (cm**-l), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: 55.2358 Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar (P) Depolar (U) Atom AN 1 8 2 1 3 1 1 Al 1774.9584 1 2 SO 4 0 0 0818 0080 8414 7861 5271 6903 v 2 4112.7795 1 10 21 68 0 X 0.00 0. 00 0. 00 0460 4246 1644 9225 1703 0.2910 Y 0.00 0 . 58 -0.58 B2 4211.8137 1. 0821 11.3093 60 34 0 0 Z 0 . 05 -0.40 -0.40 X 0.00 0. 00 0. 00 8089 7495 7500 8571 Y 0.07 -0 .56 -0 .56 frequencies of normal vibrational modes z 0 . 00 0.43 -0.43 direction of atom movements during the normal mode vibration nee manuals - Gaussian Output file: section 10 E(RHF) -76.0270533118 IDEAL GAS MODEL Ek ~ Em (R0pt,m ) + EyRTJ - Thermochemistry - Temperature Zero-point correction Thermal correction to Thermal correction to Thermal correction to Sum of electronic and Sum of electronic and Sum of electronic and Sum of electronic and aceno Energy= Enthalpy= Gibbs Free Energy= zero-point Energies= thermal Energies= thermal Enthalpies= thermal Free Energies 0.02300! 0.025843 0 . 026787 0.005411 -76 . 004045 -76 . 001211 -76.000267 -76.021642 zero-point vibrational energy Gibbs energy Total Electronic Translational Rotational Vibrational E (Thermal) KCal/Mol 16.216 0.000 0.889 0.889 14 .439 CV Cal/Mol-Kelvin 5. 989 0. 000 2 . 981 2 . 981 0. 028 S Cal/Mol-Kelvin 44 . 988 0.000 34.608 10.376 0.004 http://gaussian.com/g_whitepap/thermo.htm nee manuals - Gaussian Output file: section 11 7. Calculations with BSSE corrections Counterpoise: corrected energy Counterpoise: BSSE energy = -152.060077655641 0.002829142358 BSSE correction final interaction energy with BSSE correction nee manuals - Gaussian Output file: section 12 ! Initial Parameters ! ! (Angstroms and Degrees) ! ! Name Definition Value Derivative Info. ! ! Rl R(l,2) 1.4982 estimate D2E/DX2 , ! R2 R(l,6) 1.3351 estimate D2E/DX2 ! ! R3 R(l,17) 1.0954 estimate D2E/DX2 ! ! R4 R(2,3) 1.4982 estimate D2E/DX2 ! ! R5 R(2,7) 1.6028 estimate D2E/DX2 ! ! R6 R(2,13) 1.5363 estimate D2E/DX2 ! ! R7 R(3,4) 1.3351 estimate D2E/DX2 ! ! R8 R(3,18) 1.0954 estimate D2E/DX2 ! ! R9 R(4,5) 1.5075 estimate D2E/DX2 ! ! RIO R(4,ll) 3.7721 Scan ! ! Rll 1.0^24 esmmate D2E/DX2 ! R - distance between atoms 4 and 11 initial value indicates that the coordinate is subject of SCD rence manuals - Gaussian