Cvičení: únor teoreticky Zkoušky: 21.1.2021 od 9.00, další termín v únoru Zkouška/prezentace: Kvasinky … oblast vaší DP (ne samotná DP) - úvod do problematiky - výsledky z článku (ne starší než 5 let) - závěry, reference přednáška 10-15 + 5 minut diskuse Osnova (poslední) přednášky • Genom – Charakteristika kvasinkového genomu – Chromosomy - segmenty – Evoluce (duplikace genomu …) – DNA-opravné mechanismy – SMC komplexy a struktura chromatinu • Závěry - haploidní genom - 12Mbp, 16 chromosomů (diploidní 2n, pivní kvasinky jsou polyploidní) vs 13Mbp/3 chromosomy - délka nejdelšího chromosomu XII se u různých S.c. - dle počtu (až 200) kopii rDNA v repetici, 262 tRNA (pro 64 kodonů) - krátké centromery a ARS (100bp) vs repetitivní centromery - geny (cca 6500) reprezentují 75% celkové sekvence (kompaktní) - redundantní (2000 genů duplikováno) – cca30% genomu vzniklo duplikacemi - <5% genů (280) obsahuje introny (0.5% genomu) vs většina genů s introny (4500 genů) - 3% Ty1-5 transposony (vs 46% u člověka) - kondenzovaný heterochromatin: centromery, telomery a HMR/HML vs 3 chromosmy jsou více kondensované Základní prvky kvasinkového genomu Saccharomyces cerevisiae vs S.pombe Chromosom III CEN=centromera ARS=autosomal replicating sequence TEL=telomery tRNA Ty transposony MAT a HML/HMR lokusy Heterochromatin: centromera telomery HMR a HML (MAT je aktivní určuje haplotyp) Proc. Natl. Acad. Sci. USA 94:5213-5218. Expanze genomů hub • kvasinky mají nejmenší genomy mezi eukaryoty AscomycotaBasidiomycota • 1500 Mya: Metazoa - Fungi • 1200 Mya: Ascomycota – Basidiomycota. • 1000 Mya: S. cerevisiae – Schizosacch. pombe • 840 Mya: S. cerevisiae – C. albicans • 170 Mya: (Pichia, Candida) – Kluyveromyces aj. • 150 Mya: WGD Evoluce kvasinek Dujon et al., Nature, 2004 Chatterjee et al, PLoS Genet, 2016 sekvenčně specifická centromera se patrně vyvinula z původně repetitivní/sekvenčně nespecifické centromery Evoluce centromer Centromera S. cerevisiae sekvenčně specifická centromera se patrně vyvinula z původně repetitivní/sekvenčně nespecifické centromery Konsensní sekvence S.c. centromer Chan et al., Trends in Cell Biol, 2005 Centromera S. cerevisiae Chan et al., Trends in Cell Biol, 2005 - pouze 3 chromozomy (13 Mbp = 3.5, 4.6, 5.7) - velké repetitivní centromery (40-150kb) a 1kb počátky replikace - centromery jsou definovány strukturou chromatinu Reinhardt a Bartel, Science, 2002, http://www-bcf.usc.edu/~forsburg/main7.html Centromera S. pombe Carroll a Straight, Trends in Cell Biol, 2006 Eukaryotické centromery Centromery jsou definovány více strukturou chromatinu než jejich sekvencí Prakvasinka a duplikace genomu • srovnání kvasinkových genomů ukázalo na existenci „prakvasinky“ s 8-mi ancestrálními chromosomy (cca 4500 geny) • nejblíže anc. genomu je Lachancea kluveri (8 chromosomů, nejméně přeskupení v genomu = 15 - viz a-o) Gordon et al., PLoS Genetics, 2011 • ancestrální kvasinka prošla celogenomovou duplikací (WGD) 8->16 chromosomů •některé kvasinky chromosom ztratili (např. Z. rouxii a A. gossypii) Evoluce centromer Přeskupování chrom. bloků u L.kluveri Gordon et al., PLoS Genetics, 2011 15 přeskupení (a-o) nejblíže anc. genomu je Lachancea kluveri (8 chromosomů, nejméně = 15 přeskupení v genomu Přeskupování chrom. bloků u L.kluveri Gordon et al., PLoS Genetics, 2011 • přeskupení prostřednictvím rekombinace (mikrohomologií) po zlomení chromosomu (DSB) • L.k. neztratil chromosom patrně způsobeno absencí genů DNL4, POL4, NEJ1 – důležité pro NHEJ mechanismus (oprava poškozené DNA např. dvouřetězcových zlomů, které jsou nutné pro fůze chromosomů i přeskupovaní => omezené přeskupování) 15 přeskupení (a-o) nejblíže anc. genomu je Lachancea kluveri (8 chromosomů, nejméně = 15 přeskupení v genomu Redukce chromosomů telomera-telomera fúzemi Zygosaccharomyces rouxii ztratila 1 chromosom díky telomera-telomera fůzi 2 ancestrálních chromosomů (NHEJ) - současně ztratily centromeru (chromosom nemůže mít 2 centromery – problémy se segregací) Gordon et al., PLoS Genetics, 2011 Gordon et al., PLoS Genetics, 2011 - rozlomení v centromeře a napojení vzniklých ramen na telomery jiných chromozomů (A. gossypii) - geny v oblasti telomer (neesenciální, málo transkribovány, malý evoluční tlak - mutují více než ostatní geny - telomery jako „kotlík“ evoluce = cooking pots of evolution) - při fúzi chromozomů se geny z telomerových oblastí dostávají dovnitř chromozomu (změna míry exprese uvnitř chromozomu) Redukce chromosomů fúzemi Nehomologické spojování konců Non-homologous end joining (NHEJ) Upravené z Altmannová et al., Biomolecules, 2012 1. Vazba MRX (Mre11-Rad50-Xrs2) komplexu, Ku heterodimeru (Yku70Yku80) na zlomené konce DNA 2. Vazba DNA ligázy IV (Dnl4) a jejích pomocných proteinů Lif1 a Nej1. 3. Hledání komplementarity mezi převisy dvou konců DNA. 4. Úprava konců - syntéza DNA (Pol4 DNA polymeráza) 5. Religace konců při opravě nekompatibilních konců většinou dochází k delecím nebo inzercím – HR je lepší, ale je potřeba homologní sekvence – NHEJ v G1 zatímco HR v G2/M – dobře rostoucí kultura kvasinek má významnou frakci buněk v G2/M (proto je v kvasinkách možná integrace homologních sekvencí – genetika – použít exponenciální kultury pro transformace) cca 30% genomu S.c. vzniklo duplikacemi => cca 2000 genů duplikováno nebo došlo k celogenomové duplikací (WGD) => a poté došlo k přeskupování a redukci segmentů – 30% genomu u S.c. je pozůstatkem celogenomové duplikace (nikoli duplikace segmentů či genů) Celogenomová duplikace – Saccharomycotina Ancestrální chromosom Evoluce metabolismu galaktózy – ztráty genů Hittingeretal.,PNAS,2004 - různé kvasinky využívají různe cukry (viz přednáška o určování kvasinek) - S. cerevisiae, S. paradoxus, S. mikatae, S. bayanus, S. castellii, S. kluyveri, a K. lactis využívají galaktosu – mají všechny GAL geny - S. kudriavzevii, C. glabrata, K. waltii, a E. gossypii nemohou využívat galaktosu (vyřazení jednoho GAL genu znemožní kvasince metabolismus galaktosy – vede k degeneraci i ostatních GAL – GAL4 TF je „pleiotropní“/širší – více zachován) blízký - pouze degenerace = pseudogeny (STOP …) vzdálené částečné nebo úplné delece genů a promotorů WGD GAL4 gen kóduje transkripční faktor (aktivátor), který se váže na UAS GAL1, GAL7, GAL10 … Regulace metabolické dráhy galaktózy Hittingeretal.,PNAS,2004 Johnston,MMBR,1987 průmyslově-specifická selekce na toleranci ke stresu (vyšší obsah etanolu 7-15%), využití cukru, specifické aroma, nižší schopnost reprodukce „očkováním“ předchozích pivních kultur do nových kvasných procesů (ztráta kontaktu s přirodním prostředím - ~75 000 generací) – např. ztráta schopnosti sporulovat (stále bohaté médium), rychlejší evoluce … nebo naopak zvýšení resistence vůči sulfátům (přidávaným kvůli konzervaci) mutace a duplikace v MAL genech – zlepšení schopnosti utilizace maltosy - nonsense mutace PAD1 a FDC1 (snížení produkce 4-vinyl guaiacolu odpovídajícího za nepříjemné aroma piva) … Gallone et al, Cell, 2016 vznik klášterních pivovarů „technologie“ piva ~3000 BC amplifikace genů nejvíce amplifikací v MAL genech (IMA2, IMA3, MAL31, MAL33, MAL32) u pivních kvasinek (rostou na maltose), zatímco ve vinných kmenech došlo k mnoha delecím těchto genů (ve vinném moštu maltosa není) – obecně více delecí než amplifikací (v genomech analyzovaných kvasinek) Gallone et al, Cell, 2016 mnoho pivních kvasinek je polyploidních – stres … Aneuploidie KAR1 gen potřebný pro karyogamii tj. pro fuzi jader a::HIS3 + a::kanMX => a::specifické promotory rezistence pouze v (a) haploidních buňkách Studium vlivu aneuploidie na buňku (u člověka se podílí na kancerogenezi, aneuploidie v 90% lidských nádorů) Torres et al, Science, 2007 Aneuploidie způsobuje genomovou nestabilitu - rakovina Shelzer et al, Science (2011) - aneuploidie ve >90% rakovinných buněk - je genomová nestabilita důsledkem aneuplodie nebo je aneuploidie důsledkem genomové nestability? Torresetal,Science,2007 Richardson et al, Science, 2017 snaha vytvořit „syntetický“ eukaryontní organismus Konsorcium (jako EUROFUN … projekty) Syntetické raménko kvasinkového chromosomu Syntetické raménko vytvářeno postupně (cca 10kbp fragmenty) – střídavě URA3 vs LEU2 markery pro selekci nových kmenů Dymond et al, Nature, 2011 • Zachováno pořadí genů … wt fenotyp (testovali UV, H2O2 …) • Odstraněny destabilizující repetitivní elementy (telomery, transposony) • Redundantní tRNA (z 275 kopii na 42 kódujících – na extrachromosom) • TAG na TAA stop kodony (TAG kodon uvolněn pro novou AMK) • unikátní PCRtagy (odlišení syntetického a wt chromosomu) • LoxPsym na vyštěpení non-essenciálních genů Syntetické raménko kvasinkového chromosomu Dymond et al, Nature, 2011 • Zachováno pořadí genů … wt fenotyp (testovali UV, H2O2 …) • Odstraněny destabilizující repetitivní elementy (telomery, transposony) • Redundantní tRNA (z 275 kopii na 42 kódujících – na extrachromosom) • TAG na TAA stop kodony (TAG kodon uvolněn pro novou AMK) • unikátní PCRtagy (odlišení syntetického a wt chromosomu) • LoxPsym na vyštěpení non-essenciálních genů Syntetické raménko kvasinkového chromosomu Dymond et al, Nature, 2011 • Zachován fenotyp (teplotní citlivost, morfologie kolonií, růst na G/E …) SC=Syntetické kompletní médium SD=Syntetické minimální medium GE=glycerol/etanol Organizace chromosomů FISH – fluorescence in situ hybridization (1992) Tadei a Gasser, Genetics, 2012 SPB v mitotickém jádře jsou centromery orientovány (přichyceny) k SPB (spindle pole body) v meiotickém jádře jsou telomery blíž SPB rDNA (repetice) RABL uspořádání rDNA - repetice • rDNA kóduje geny pro ribosomální RNA (chromosom XII) • Je vysoce konzervativní • Identifikace a odlišování kvasinkových druhů • Sledování evolučních trajektorii • Až 200 kopii v řadě za sebou • Problém s homologní rekombinací (lokalizace do jadérka) • Problém s replikací – musí probíhat ve stejném směru jako transkripce (probíhá v S-fázi – kolize) rDNA (repetice) 3D organizace chromosomů v S.c. 3C – chromosome conformation capture Duan et al, Nature, 2010 Duan et al, Nature, 2010 Chromosom XII obsahuje rDNA repetice, které jsou lokalizovány do jadérka – úsek nesousedí s žádnou z „jaderných“ částí – je izolován (z „bezpečnostních“ důvodů … syntéza ribozomů) Chromosom XII intrachromosomální interakce rDNA (repetice) Duan a spol, Nature, 2010 Všechny centromery jsou blízko sebe v mitotickém jádře jsou centromery orientovány (přichyceny) k SPB (spindle pole body) interchromosomální interakce Duanetal,Nature,2010 3D rekonstrukce chromosomů v kvasinkovém jádře modrý chromXII – jadérko s rDNA izolované zelený chromIII (MAT lokus) Kondenzace chromosomů v mitóze S. pombe má 3 chromosomy – diagram zachycuje intra- i interchromosomální interakce – centromery i telomery spolu … srovnání interfázních a mitotických chromosomů Kakui et al, Nat Genet, 2017 Kakui et al, Nat Genet, 2017 Tanizawa et al., NSMB, 2017 intrachromosomální interakce v mitóze jsou smyčky větší S. pombe má 3 chromosomy – diagram zachycuje intra- i interchromosomální interakce – centromery i telomery spolu … srovnání interfázních a mitotických chromosomů Kondenzace chromosomů v mitóze Kondenzin kondenzuje chromosomy intrachromosomální interakce větší mitotické smyčky jsou závislé na kondensinu Kakui et al, Nat Genet, 2017 Tanizawa et al., NSMB, 2017 https://www.youtube.com/watch?v=dgTdNKynOpg&feature=youtu.be Tanizawa et al, NSMB, 2017 Kondenzin kondenzuje chromosomy Kakui et al, Nat Genet, 2017 Palecek a Gruber, Structure, 2015 Kondenzin – SMC komplexy SMC (Structure Maintenance of Chromosom) komplexy jsou konzervované od bakterií až po eukaryota kondensin kohesin SMC1 Scc1/Rad21 SMC3 Scc3 Marco et al, Cell, 2013 Haering et al, 2002, Mol Cell Kohesin je klíčový pro průběh mitosy – otevření kruhu v anafázi umožňuje segregaci Kohesin drží sesterské chromatidy SMC komplexy napomáhají při HR - kohesin přidržuje homologní chromosomy při sobě a napomáhá HR - SMC5/6 reguluje restart zastavených replikačních vidliček (limituje HR v repetitivních sekvencích) Palecek a Gruber, Structure, 2015