CG020 Genomika Přednáška 5 RNA interference a editování genomu Jan Hejátko Funkční genomika a proteomika rostlin, Středoevropský technologický institut (CEITEC) a Národní centrum pro výzkum biomolekul, Přírodovědecká fakulta, Masarykova univerzita, Brno hejatko@sci.muni.cz, www.ceitec.eu 2 2  Umlčování genů pomocí RNA interference  Mechanismus RNAi Osnova  Editace genomu  Princip editace genomu prostřednictvím místně specifických nukleáz (Site Directed Nucleases, SDNs)  Zinc-Finger Nucleases (ZFNs)  Transcription Activator-Like Effectors (TALENs)  Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/Cas9) 3 3  Umlčování genů pomocí RNA interference  Mechanismus RNAi Osnova 4  Molekulární podstata posttranskripčního umlčování genů (PTGS)  RNAi objevena u rostlin, později u Coenorhabditis elegans  U rostlin identifikována jako „sense effect“ v systémové negativní regulaci genové aktivity RNA interference Analysis of GUS expression of supertransformed rice callus. Transgenic rice tissue containing a single Gus transgene supertransformed with UbiDGus[s], UbiDGus[ays], UbiDGus[iyr], DGus[iyr]. 4 5 Umlčování exprese vnesením další kopie genu pro biosyntézu flavonoidů van der Krol et al., Plant Cell (1990) p35S::DFR Flowers on petunia VR plants transformed with the dihydroflavonol-4-reductase (DFR) sense gene construct VIP178 showed either an unaffected flower pigmentation (top left) or a reduction in pigment synthesis. Shown from top left to bottom right: 178-1, 178-14, 178-6, 178-16, 178-10, and 178-15. On transformant 178-16, flower pigmentation varies from fully pigmented to white. Transformant 178-15 shows an ectopic expression pattern, resulting in a white ring at the edge of corolla tissue. 6 Systémový efekt na regulaci exprese GFP  Nicotiana benthamiana exprimující GFP  Retransformace jednoho z listů konstruktem pro expresi GFP  Absence GFP je viditelná jako červená fluorescence chlorofylu Voinnet and Baulcombe, Nature (1997) We studied Nicotiana benthamiana plants carrying a jellyfish green fluorescent protein (GFP) transgene5. We infiltrated leaves with strains of Agrobacterium tumefaciens carrying a GFP reporter gene.Intact GFP transgenic plant infiltrated 18 days previously in a lower leaf (arrow) showing the progression of GFP- silencing. 7  Molekulární podstata posttranskripčního umlčování genů (PTGS)  RNAi objevena u rostlin a později u Coenorhabditis elegans  U rostlin identifikována jako „sense effect“ v systémové negativní regulaci genové aktivity  umlčování bylo indukováno jak sense tak antisense RNA (pravď. kontaminace obou při in vitro transkripci)  dsRNA indukovala umlčování cca 10-100x účinněji RNA interference Analysis of GUS expression of supertransformed rice callus. Transgenic rice tissue containing a single Gus transgene supertransformed with UbiDGus[s], UbiDGus[ays], UbiDGus[iyr], DGus[iyr]. 7 8 Waterhaus et al., PNAS (1998) Posttranskripční umlčování u rostlin je zprostředkováno dsRNA Kalusy rýže nesoucí konstrukt pro expresi uidA (GUS), který způsobuje modré zbarvení (1. řádek) byly retransformovány konstrukty pro expresi uidA v sense (2. řádek), anti-sense (3. řádek) a přímé a obrácené repetici (4. resp. 5. řádek). Všimněte si silné represe zbarvení a tedy i exprese uidA genu v případě retransformace konstruktem vedoucím k tvorbě dsRNA (obrácené repetice, 5. řádek). 9  Molekulární podstata posttranskripčního umlčování genů (PTGS)  Umlčování genové exprese prostřednictvím dsRNA je závislé na vlastních genech  vyhledávání pomocí přímé genetiky RNA interference RNAi rnai Mello and Conte, Nature (2004) 9 10  Molekulární podstata posttranskripčního umlčování genů (PTGS)  je to přirozený mechanismus regulace genové exprese u všech eukaryot  podstatou je tvorba dsRNA, která může být spuštěna několika způsoby:  přítomnost cizí „aberantní“ DNA  specifické transgeny obsahující obrácené repetice částí cDNA  transkripce vlastních genů pro shRNA (short hairpin RNA) nebo miRNA (micro RNA, endogenní „vlásenková“ RNA)  dsRNA je procesována enzymovým komplexem (DICER), což vede k tvorbě siRNA (short interference RNA), která se pak váže buď na enzymový komplex RITS (RNAInduced Transcriptional Silencing complex) nebo RISC (RNA-Induced Silencing Complex)  RISC zprostředkovává buď degradaci mRNA (v případě úplné similarity siRNA a cílové mRNA) nebo vede pouze k zastavení translace (v případě neúplné homologie jako je tomu např. v případě miRNA  RITS zprostředkovává reorganizaci genomové DNA (tvorba heterochromatinu a inhibice transkripce) RNA interference 10 11 RNA-dependent RNA polymerase short hairpin RNA micro RNA Mechanism of RNA interference + tasiRNAs (trans-acting siRNA) 21-25 bp Mello and Conte, Nature (2004) It has been found that dsRNA might be either an intermediate or a trigger in PTGS. In the first case, dsRNA is formed by the action of RNA-dependent RNA polymerases (RdRPs), which use specific transcripts as a template. It is still not clear, how these transcripts are recognized, but it might be e.g. abundant RNA that is a result of viral amplification or transcription of foreign DNA. It is not clear, how the foreign DNA might be recognized, possibly, lack of bound proteins on the foreign “naked” DNA and its subsequent “signature” (e.g. by specific methylation pattern) during packing of the foreign DNA into the chromatin structure might be involved. The highly abundant transcripts might be recruited to the RdRPs by the defects in the RNA processing, e.g. lack of polyadenylation. In the case when dsRNA is a direct trigger, there are two major RNA molecules involved in the process: Short interference RNA (siRNA) and micro RNA (miRNA), both encoded by the endogenous DNA. These two functionally similar molecules differ in their origin: siRNAs are dominantly product of the cleavage of the long dsRNA that are produced by the action of cellular or viral RdRPs. However, there are also endogenous genes, e.g. short hairpin RNAs (shRNAs) allowing production of the siRNA (see the figure). miRNAs are involved in the developmental-specific regulations and are product of transcription of endogenous genes encoding for small dsRNAs with specific structure (see the figure). In addition to siRNAs, there are trans-acting siRNAs (tasiRNAs) that are a special class of siRNAs that appear to function in development (much like miRNAs) but have a unique mode of origin involving components of both miRNA and siRNA pathways. Developmental regulations via miRNAs are more often used in animals then in plants. The dsRNAs of all origins and pre miRNAs are cleaved by DICER or DICER-like (DCL) enzyme complexes with RNAse activity, leading to production of siRNAs and miRNA, respectively. These small RNAs are of 21-24 bp long and bind either to RNA-induced transcriptional silencing complex (RITS) or RNA-induced silencing komplex (RISC). 11 12 From MacRae, I.J., Zhou, K., Li, F., Repic, A., Brooks, A.N., Cande, W.., Adams, P.D., and Doudna, J.A. (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311: 195 -198. Reprinted with permission from AAAS. Photo credit: Heidi Dicer and Dicer-like proteins In siRNA and miRNA biogenesis, DICER or DICER-like (DCL) proteins cleave long dsRNA or foldback (hairpin) RNA into ~ 21 – 25 nt fragments. Dicer’s structure allows it to measure the RNA it is cleaving. Like a cook who “dices” a carrot, DICER chops RNA into uniformly-sized pieces. Note the two strands of the RNA molecule. The cleavage sites are indicated by yellow arrows. 12 13 Reprinted by permission from Macmillan Publishers Ltd: EMBO J. Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., and Benning, C. (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17: 170–180. Copyright 1998; Reprinted from Song, J.-J., Smith, S.K., Hannon, G.J., and Joshua-Tor, L. (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305: 1434 – 1437. with permission of AAAS. Argonauta argo argonaut pelagickýago1 Argonaute proteins ARGONAUTE proteins bind small RNAs and their targets and it is an important part of both RITS and RISC complexes. ARGONAUTE proteins are named after the argonaute1 mutant of Arabidopsis; ago1 has thin radial leaves and was named for the octopus Argonauta which it resembles (see the figure). ARGONAUTE proteins were originally described as being important for plant development and for germline stem-cell division in Drosophila melanogaster. ARGONAUTE proteins are classified into three paralogous groups: Argonaute-like proteins, which are similar to Arabidopsis thaliana AGO1; Piwi-like proteins, which are closely related to D. melanogaster PIWI (P-element induced wimpy testis); and the recently identified Caenorhabditis elegans-specific group 3 Argonautes. Members of a new family of proteins that are involved in RNA silencing mediated by Argonaute-like and Piwi-like proteins are present in bacteria, archaea and eukaryotes, which implies that both groups of proteins have an ancient origin. The number of Argonaute genes that are present in different species varies. There are 8 Argonaute genes in humans (4 Argonaute-like and 4 Piwi-like), 5 in the D. melanogaster genome (2 Argonaute-like and 3 Piwi-like), 10 Argonaute-like in A. thaliana, only 1 Argonaute-like in Schizosaccharomyces pombe and at least 26 Argonaute genes in C. elegans (5 Argonaute-like, 3 Piwi-like and 18 group 3 Argonautes). http://youdpreferanargonaute.com/2009/06/ 13 14 MIR gene RNA Pol AAAn AGO AAAn RNA Pol mRNA AGO AGO RNA Pol AGO AGO AAAn siRNA miRNA post-transcriptional gene silencingtranscriptional gene silencing transcriptional slicing translational repression binding to DNA binding to specific transcripts MicroRNAs are encoded by MIR genes, fold into hairpin structures that are recognized and cleaved by DCL (Dicer-like) proteins. In summary, siRNAs-mediates silencing via post-transcriptional and transcriptional gene silencing, while miRNAs -mediate slicing of mRNA and translational repression. 14 15 The Nobel Prize in Physiology or Medicine 2006 Andrew Z. Fire Craig C. Mello USA USA Stanford University School of Medicine Stanford, CA, USA University of Massachusetts Medical School Worcester, MA, USA b. 1959 b. 1960 In 2006, Andrwe Z. Fire and Craig C. Mello were honored by the Nobel prize “for their discovery of RNA interference - gene silencing by double-stranded RNA“. 15 16 The Nobel Prize in Physiology or Medicine 2006 Andrew Z. Fire Craig C. Mello USA USA Stanford University School of Medicine Stanford, CA, USA University of Massachusetts Medical School Worcester, MA, USA b. 1959 b. 1960 David Baulcombe UK ? In 2006, Andrwe Z. Fire and Craig C. Mello were honored by the Nobel prize “for their discovery of RNA interference - gene silencing by double-stranded RNA“. 16 17 17  Umlčování genů pomocí RNA interference  Mechanismus RNAi Osnova  Editace genomu  Princip editace genomu prostřednictvím místně specifických nukleáz (Site Directed Nucleases, SDNs) 18 Editace genomu pomocí SDNs Pandey et al, Journal of Genetic Syndromes & Gene Therapy (2011) CRISPR–Cas9, TALEN and ZFN mediated genome editing. (A) ZFN-fok1, TALEN domain and Cas9ꞏsgRNA-induced DSBs can be repaired by either NHEJ or by HDR pathways. NHEJ mediated repair is highly efficient but error-prone process, which causes small insertions and/or deletions (indels) at the cleave site. HDR requires a donor DNA homologous template to repair the cleavage site and this process can be used to introduce specific point mutations, correction of mutation or to knock-in of corrected DNA sequences at cleavage site. Abbreviations CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; HDR: Homology Directed Repair; NHEJ: Non- Homologous End Joining; TALENs: Transcription Activator-Like Effectors; ZFN: Zinc Finger Nucleases. 19 19  Umlčování genů pomocí RNA interference  Mechanismus RNAi Osnova  Editace genomu  Princip editace genomu prostřednictvím místně specifických nukleáz (Site Directed Nucleases, SDNs)  Zinc-Finger Nucleases (ZFNs) 20  Každý zinkový „prst“ je schopen rozpoznat nukleotidový triplet  Nukleázová doména funguje jako heterodimer – možnost zvýšení specifity navržením sady „prstů“ rozpoznávajícíh 9 bp z každé strany cílové sekvence  Nevýhody  Špatně se „programuje“  Omezená specifita Zinc-Finger Nucleases - ZFNs  Místně specifické endonukleázy, schopné rozpoznat cílovou sekvenci prostřednictvím sady „zinkových prstů“ K zásadním nevýhodám ZFNs poatří omezená specifita – některé ‚prsty“ rozpoznávají více tripletů, pro některé trilplety naopak nejsou známy „prsty“ žádné. 20 21 Zinc-Finger Nucleases Carroll, Science (2011) Wikipedia 22 22  Umlčování genů pomocí RNA interference  Mechanismus RNAi Osnova  Editace genomu  Princip editace genomu prostřednictvím místně specifických nukleáz (Site Directed Nucleases, SDNs)  Zinc-Finger Nucleases (ZFNs)  Transcription Activator-Like Effectors (TALENs) 23 Transcription Activator-Like Effectors - TALENs  Proteiny odvozené od sekvenčně specifických transkripčních aktivátorů  Identifikovány (zatím pouze) u rostlinných patogenních bakterií Xanthomonas sp. jako bakteriální efektory, schopné regulovat transkripci cílových genů rostlin  Sekvenční specifita určena aminokyselinovou sekvencí DNA vazebných repetic  Lze využít k různým typům modifikací  Nevýhody  Špatně se „programuje“  Omezená specifita Specifita některých RVDs je omezena na na in vitro podmínky, RVDs na 5’ konci vazebného motivu přispívají ke specifitě více než ty na 3’ konci (možnost vzniku „mismatches“ na 3’ konci, atd.). 23 24 TALENs, původ Fichtner et al. Planta (2014) Discovery of Xanthomonas TAL effectors and the proposed mode of action of AvrBs3. AvrBs3 TAL effector protein is secreted into the plant cell via a Type III secretion system. The internal natural nuclear localization signal of AvrBs3 leads to import to the nucleus, where this TALE searches for the base pair sequence recognised by the internal RVD structure of the DNA binding region. Upon binding of the TAL effector to its recognised EBE-box (Effector Binding Element), also known as upa-box, transcription is initiated, leading to physiological effects in the infected plant cell such as hypertrophy. Plant resistance to Xanthomonas derives from resistance (R) genes having a similar EBE-box and mimicking the natural TALE target site. This leads to enhanced expression of R genes upon infection. 25 TALENs, určení specifity Fichtner et al. Planta (2014) 26 TALENs, využití Bogdanove and Voytas, Science (2011) 27 27  Umlčování genů pomocí RNA interference  Mechanismus RNAi Osnova  Editace genomu  Princip editace genomu prostřednictvím místně specifických nukleáz (Site Directed Nucleases, SDNs)  Zinc-Finger Nucleases (ZFNs)  Transcription Activator-Like Effectors (TALENs)  Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/Cas9) 28 Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 - CRISPR/Cas9  Objevena jako součást imunitního systému bakterií  Principem je cílené začlenění cizorodé DNA (typicky fágové DNA) do specifických oblastí genomu bakterií  Po přepisu genů pro trans-activating CRISPR RNA (tracrRNA) a oblasti se začleněnými částmi cizorodé DNA a následném procesování vzniklé RNA dojde k tvorbě komplexu crRNA– tracrRNA  crRNA–tracrRNA váže Cas9 nukleázu a navádí ji na komplementární (cizorodou/fágovou) DNA, kterou pak Cas9 štěpí  crRNA–tracrRNA je v cíleném editování genomu nahrazována single guide RNA (sgRNA nebo také gRNA)  Výhody  Snadno se „programuje“  Značná specifita  Možná celá řada dalších aplikací Specifita některých RVDs je omezena na na in vitro podmínky, RVDs na 5’ konci vazebného motivu přispívají ke specifitě více než ty na 3’ konci (možnost vzniku „mismatches“ na 3’ konci, atd.). 28 29  Clustered Regularly Interspaced Short Palindromic Repeats CRISPR/Cas9 - Mechanism Jiang and Doudna, Cell (2017) trans-activating CRISPR RNA CRISPR-associated (Cas) genes CRISPR RNA 20 bp of guide sequence preceding the Protospacer Adjacent Motif CRISPR–Cas9-mediated DNA interference in bacterial adaptive immunity. A typical CRISPR locus in a type II CRISPR–Cas system comprises an array of repetitive sequences (repeats, brown diamonds) interspaced by short stretches of nonrepetitive sequences (spacers, colored boxes), as well as a set of CRISPRassociated (cas) genes (colored arrows). Preceding the cas operon is the transactivating CRISPR RNA (tracrRNA) gene, which encodes a unique noncoding RNA with homology to the repeat sequences. Upon phage infection, a new spacer (dark green) derived from the invasive genetic elements is incorporated into the CRISPR array by the acquisition machinery (Cas1, Cas2, and Csn2). Once integrated, the new spacer is cotranscribed with all other spacers into a long precursor CRISPR RNA (pre-crRNA) containing repeats (brown lines) and spacers (dark green, blue, light green, and yellow lines). The tracrRNA is transcribed separately and then anneals to the pre-crRNA repeats for crRNA maturation by RNase III cleavage. Further trimming of the 5’ end of the crRNA ( gray arrowheads) by unknown nucleases reduces the length of the guide sequence to 20 nt. During interference, the mature crRNA–tracrRNA structure engages Cas9 endonuclease and further directs it to cleave foreign DNA containing a 20-nt crRNA complementary sequence preceding the PAM sequence. Asterisks denote conserved, key residues for Cas9-mediated DNA cleavage activity. Abbreviations: Arg, arginine-rich bridge helix; crRNA, CRISPR RNA; CTD, C-terminal domain; nt, nucleotide; NUC, nuclease lobe; PAM, protospacer adjacent motif; REC, recognition lobe; tracrRNA, trans-activating CRISPR RNA. 29 30 CRISPR/Cas9 – Genome Editing Jiang and Doudna, Cell (2017) (single guide RNA) The mechanism of CRISPR–Cas9–mediated genome engineering. The synthetic single guide (sgRNA) or crRNA–tracrRNA structure directs a Cas9 endonuclease to almost arbitrary DNA sequence in the genome through a user-defined 20-nt guide RNA sequence and further guides Cas9 to introduce a double-strand break (DSB) in targeted genomic DNA. The DSB generated by two distinct Cas9 nuclease domains is repaired by host-mediated DNA repair mechanisms. In the absence of a repair template, the prevalent error-prone nonhomologous end joining (NHEJ) pathway is activated and causes random insertions and deletions (indels) or even substitutions at the DSB site, frequently resulting in the disruption of gene function. In the presence of a donor template containing a sequence of interest flanked by homology arms, the error-free homology directed repair (HDR) pathway can be initiated to create desired mutations through homologous recombination, which provides the basis for performing precise gene modification, such as gene knock-in, deletion, correction, or mutagenesis. CRISPR–Cas9 RNA-guided DNA targeting can be uncoupled from cleavage activity by mutating the catalytic residues in the HNH and RuvC nuclease domains, making it a versatile platform for many other applications beyond genome editing. Abbreviations: crRNA, CRISPR RNA; nt, nucleotide; PAM, protospacer adjacent motif; sgRNA, single-guide RNA; tracrRNA, trans-activating CRISPR RNA. 30 31 CRISPR/Cas9 – Nobel Prize in 20..2x? Francisco Mojica Emmanuelle Charpentier Jenifer Doudna Martin Jinek Jinek et al, Science (2012) 2020! 31 32 32  Editování genomu  Sekvenčně-specifické modifikace genomu s velkou přesností  Umožňuje jak vznik náhodných mutací v daném lokusu, tak  Cílené vkládání definovaných sekvencí – ideální nástroj pro cílené modifikace genomu včetně genové terapie  CRISPR/Cas9 otevřel cestu snadné, rychlé a zejména přesné editaci genomu a dalším odvozeným modifikacím s velkým aplikačním potenciálem  RNAi  Přirozený způsob regulace genové exprese, vyžadujcí vlastní geny a vysvětlující přítomnost velkého množství DNA nekódujcí proteiny  Možno využít pro cílenou regulaci genové exprese Základní koncepty 33 33 Diskuse