

Definice

Systémová biologie je vědecký směr v biologii využívající přístupy dalších věd, především biochemie, chemie, informatiky a matematiky. Zabývá se studiem biologických funkcí a mechanizmů vzniklých následkem komplexních interakcí v biologických systémech.

Základní myšlenkou je komplexní pohled, opak *redukcionismu* (který je převládajícím paradigmatem například v molekulární biologii), tedy předpoklad, že systém je víc než součet jeho částí.

Systémová biologie často pracuje s modely, které jsou vytvářeny matematickými a informatickými přístupy na základě biologických dat, jejichž vlastnosti jsou posléze porovnávány s vlastnostmi živých systémů (Wikipedia).

Definice

Systémová biologie se zabývá studiem biologických systémů, jejichž chování nelze redukovat na *lineární* součet funkcí jejich částí. Systémová biologie nemusí nutně zahrnovat velké množství komponent nebo rozsáhlých datových souborů, jako je tomu v genomice nebo konektomice, ale často vyžaduje metody kvantitativního modelování vypůjčené z fyziky (Nature).

5

	Vy bio	vsledky Dlogicky Výsledky –omi dat, např. gen biologicky rele	–Oľ rel ckých by s ro evantní	mi ev stu zdíli záv	iCł /a dií nou řěry	ري n rep e>		S Za entují	tud ávě enorn le jak	ií V ry nní r z nic	/S.	žstv íska	í t
gene			ocus	sample 1	sample 2	status	value 1	value 2	log2(fold_change)	test stat	n value	a value	signific
AT1C07705			2414285 2414067	WT	MT	OK		1 1904	1 707600+209	1.79769e+3	6 999960 06	0,00039180	0
1004			.4550004 4550700	WT	MT	OK		0 000500	4 70700 200	1.79769e+3	0.000036-03	4.67708e-	i yes
HRS1			:4556891-4558708	WI	MI	UK		0,696583	1./9/696+308	1.79769e+3	6.61994e-06	0,00053505	yes 5
ATMLO14			.:9227472-9232296	WT	MT	ок		0,514609	1.79769e+308	08 1.79769e+3	9.74219e-05	3.50131e-	5 yes
NRT1.6			:9400663-9403789	WT	MT	ок		0,877865	1.79769e+308	08 1.79769e+3	3.2692e-08	07	yes
AT1G27570			:9575425-9582376	WT	MT	ок		2,0829	1.79769e+308	08 1 79769e+3	9.76039e-06	6.647e-05	yes
AT1G60095			:22159735-22162419	WT	MT	ок		0,688588	1.79769e+308	08	9.95901e-08	07	yes
AT1G03020			:698206-698515	WT	MT	ок		1,78859	1.79769e+308	1.797698+3	0,00913915	0,0277958	Byes
AT1G13609			:4662720-4663471	WT	мт	ок		3,55814	1.79769e+308	1.79769e+3 08	0,00021683	3 0,00108079	9 yes
AT1G21550			:7553100-7553876	wт	мт	ок		0,562868	1.79769e+308	1.79769e+3 08	0,00115582	2 0,0047149	7 yes
AT1G22120			1:7806308-7809632	wт	MT	ок		0,617354	1.79769e+308	1.79769e+3 08	2.48392e-06	1.91089e- 05	yes
AT1G31370			:11238297-11239363	wт	MT	ок		1,46254	1.79769e+308	1.79769e+3 08	4.83523e-05	0,00028514	4 3 yes
APUM10			1-13253397-13255570	WT	MT	ок		0.581031	1 79769e+308	1.79769e+3	7 878558-06	5.46603e-	Ves
AT1G48700			1-18010728-18012974	wT	мт	OK		0.556525	1 70760+308	1.79769e+3	6 530170.05	0,00037473	3
AT4050077				WT.		OK		400.000	4 70700 200	1.79769e+3	0.0039176-05	0.0040604	
A11009077			.21140209-21033195	**1	nd .	UK.		130,886	1.1810987300	1.79769e+3	0,00122789	0,00490816	o yes
A11G60050			:22121549-22123702	WT	MT	UK		0,370087	1.79769e+308	U8	0,00117953	0,004800	1 yes
AT4G15242			.:8705786-8706997	WT	MT	OK	0,0093071	17,9056	10,9098	-4,40523	1.05673e-05	7.13983e-05	5 yes
AT5G33251 AT4G12520			12499071-12500433 17421055-7421738	WT WT	MT	OK OK	0,049837	52,2837 15,8516	10,0349 9,66612	-9,8119 -3,90043	0.60217e-05	0,0005289	0 yes 04 yes
AT1G60020			22100651-22105276	WT	MT	OK	0.011837	7 18823	9 24611	-7 50,382	6 19504e-14	1 49888-12	Ves

Excample of an output of transcriptional profiling study using Illumina sequencing performed in our lab. Shown is just a tiny fragment of the complete list, copmprising about 7K genes revealing differential expression in the studied mutant.

gene locut sample 1 sample 2 status value 2 log21/old_shamp rest, stat y-sulu Q-sulus significant AT1007795 1241428-5414067 WT WT WT OK 0 1.1804 1.79769-30 CB 6.8835.00 0.00003191 yes HRS1 1.455881-4558708 WT MT OK 0 0.668581 7.9769-30 CB 6.51994-00 5.51914-00 5.51		Vý bie	ýsledky ologicky Transkripční p regulovaných	—ON / rel profilová genů	nic ev	ck /a	ý n†	ch tní	st Za	udií ávěi ^{c než}	́ V: ^У 9к	S. odl	l išně i et al., <i>un</i> j	published
AT1007795 17970er-3 0.00039180 17970er-3 0.00039180 HRS1 1.456691-4558708 WT MT OK 0.0696553 1.7976e-308 0.00039180 198 ATMLO14 1.9227472-422228 WT MT OK 0.0696553 1.7976e-308 0.06 5.8984-06 5.9984	gene			locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat	p_value	q_value	significant
HRS1 1.456881-455870 MT MT NT	AT1G07795			1:2414285-2414967	wт	мт	ок		1,1804	1.79769e+308	1.79769e+3 08	6.88885e-05	0,00039180 1	yes
ATMLO14 1322/472-9232200 WT MT OK OD 0.51460 1.70760e-308 0.68 0.721976e-3 0.00033055 NRT1.6 19400663.440379 WT MT OK 0.0877861.79760e-308 0.69 3.2612-05 5.9111 AT1G27570 19575425.958237 WT MT OK 0.0877861.79769e-308 0.69 3.2612-05 5.9111 AT1G27570 19575425.9582376 WT MT OK 0.0885881.79769e-308 0.09 9.95011-68 07 yes AT1G0005 122159725-22162419 WT MT OK 0 0.688581.79769e-308 0.00 9.95011-68 07 yes AT1G03020 169820-668815 WT MT OK 0 0.588581.79769e-308 0.87769e-308 0.00011552 0.0001497 yes AT1G3020 17950940 1.79759e+3 0.00015528 0.00015528 0.0001497 yes 1.79759e+3 0.00021582 0.0001497 yes 1.79759e+3 0.00021582 0.0002785 0.0002785 <	HRS1			1:4556891-4558708	wт	мт	ок		0,696583	1.79769e+308	1.79769e+3 08	6.61994e-06	4.67708e- 05	yes
NPT1.6 1.3400663.940378 VT MT OK OD 1.73768-3 3.50116- 3.500116- 1.73768-3 AT1G27570 1.9575425.940378 WT MT OK OD 0.87785 7.79768-308 OB 3.260214- 3.20021 9.80012- 3.80022- 3.80022- 3.80022- 3.80022- 3.80022- 3.80022- 3.80022- 3.80022- 3.80022- 3.80022- 3.80022- 3.85851 0.0011915 0.0027853 yes AT1G60095 1.22159735-22162419 WT MT OK O 0.858581 1.79768-308 OB 0.0011915 0.0027853 yes AT1G60090 1.4682270-4663471 WT MT OK O 3.58514 1.79768-308 OB 0.0011915 0.0027853 yes AT1G13609 1.468270-4663471 WT MT OK O 0.585851 1.79768-308 OB 0.0011852 0.0011467 yes AT1G21500 1.79568-3 0.137268-1 0.011582 0.00114767 yes 1.31086-1 1.31086-1 0.011582 0.00114767 yes 0.00114767 yes 0.00114767 yes 0.0011582 0.00114767 yes 0.00114767 yes 0.00114767 yes 0.001176768-306 0.001377768-3 0.	ATMLO14			1:9227472-9232296	wт	мт	ок		0,514609	1.79769e+308	1.79769e+3 08	9.74219e-05	0,00053505	ves
AT1G27570 15757425-5858237 WT	NRT1.6			1:9400663-9403789	wт	мт	ок		0,877865	1.79769e+308	1.79769e+3 08	3.2692e-08	3.50131e- 07	ves
AT1G60095 1.22159735-22162.41 W WT MT OK 0.068558 1.79769+30 0.849020- 9.89020- 179769+30 AT1G60095 1.686206-898515 WT MT OK 0.068558 1.79769+30 0.0013115 0.027168 yea AT1G60095 1.4682720-4663471 WT MT OK 0 3.55814 1.79769+30 0.0021683 0.0016973 yea AT1G13609 1.7853100-7553876 WT MT OK 0 0.5582681 7.79769+30 0.0021683 0.0011682 0.0011497 yea AT1G21200 1.780580-78006322 WT MT OK 0 0.5510374 7.79769+308 0 0.0021683 0.00021497 yea AT1G2120 1.780580-78006322 WT MT OK 0 0.5510311.79769+308 0.0002814 3 yea AT1G63070 1.11238207-11236053 WT MT OK 0 0.5565251.770769+308 0.0017497 yea 3 yea AT1G63070 1.1236237-113255570 WT MT OK 0 0.5	AT1G27570			1:9575425-9582376	WT	мт	ок		2.0829	1.79769e+308	1.79769e+3 08	9.76039e-06	6.647e-05	ves
AT103000 168020-68051 WT MT OK 00 179769-3 0.0010151 0.027785 yes AT1031500 1.4662720-4663471 WT MT OK 0 1.78769-130 0.0011515 0.027785 yes AT1031500 1.7553100-755376 WT MT OK 0 0.552881177076e-308 06 0.00011515 0.0277858 yes AT1021550 1.7553100-755376 WT MT OK 0 0.552881177076e-308 07 07596+7 0.0011552 0.0011407 yes 1510369 AT1021550 1.7553100-755376 WT MT OK 0 0.6173541.77076e-308 07 0 0.0002814 1510369 yes 0.0002814 1510369 0.0002814 <t< td=""><td>AT1060095</td><td></td><td></td><td>1-22150735-22162410</td><td>wT</td><td>мт</td><td>OK</td><td></td><td>0.688588</td><td>1 70760e+308</td><td>1.79769e+3</td><td>9 959016-08</td><td>9.84992e-</td><td>100</td></t<>	AT1060095			1-22150735-22162410	wT	мт	OK		0.688588	1 70760e+308	1.79769e+3	9 959016-08	9.84992e-	100
AT1031300 1.36820900013 WT WT WT OK 0 3,55814<179769e-308	AT1C03030			1-609206-609616	WT	мт	or		1 79950	1.707600+208	1.79769e+3	0.00012015	0.0277058	100
AT103300 1486/27/4695/41 WT MT OK 0 3.558141/10/1646-308 0.0002/1688 0.001000/1968 AT10321550 1.755300-7553876 WT MT OK 0 0.5626881.79769e-308 0.00115582	AT1003020			1.050200=050515			ow			1.787086+300	1.79769e+3	0,00913913	0,0277830	yes
AT1G21550 17553100-755357 WT MT OK 0 0.0011582 0.00117497yes AT1G2120 1.780308-7800652 WT MT OK 0 0.6173541.79768e-306 06 0.0011582 0.00117497yes AT1G2120 1.7806308-7800652 WT MT OK 0 0.6173541.79768e-306 06 0.0011582 0.00117497yes AT1G2120 1.7806308-7800652 WT MT OK 0 0.6173541.79768e-306 06 0.0011582 0.0011582 0.0011692 0.00117497yes AT1G31370 112328297-1123053 WT MT OK 0 0.61703740-306 06 4.83524-60 55 566005- 558101.79768e-308 06 7.87768e-30 0.0037773 5.660036- 1.79768e-30 0.0037773 0.0037773 0.0037773 1.21746209-21833195 WT MT OK 0 0.5870571 F7768e-308 06 5.981* 1.79768e-308 0.6937472 1.79768e-308 0.00177953 0.00468615 yes AT10650077 1.21746209-21833195 WT	AT1G13609			1:4662720-4663471	WI	MI	OK		3,55814	1.797696+308	UB 1.79769e+3	0,00021683	1 0,00108079	yes
AT1G22120 1780580-7806522 WT MT OK 0 0.617354 179768e-306 06	A11G21550			1:/553100-/5538/6	W	MI	OK		0,562868	1.797696+308	1.79769e+3	0,00115582	1.91089e-	yes
AT1031370 11/123287/1123053 WT MT OK 0 1,42524 17/976e-308 06 4,43522-65 3 yes APUM10 11/1232307/11235570 WT MT OK 0 0,5610311/976e-308 06 6,46035-74 AT1054870 118010726-18012871 WT MT OK 0 0,5610311/9769e-308 06 6,8037-74 AT10548700 118010726-18012871 WT MT OK 0 0,5565251/9769e-308 06 6,030747 6,303 6,3916	AT1G22120			1:7806308-7809632	WT	MT	ок	(0,617354	1.79769e+308	08 1.79769e+3	2.48392e-06	05 0,00028514	yes
APUM10 11325339713255570 MT MK 0 0.010311.72786=308 08 7.27855-06 05 yes AT1048700 118010728-18012871 MT MT OK 0 0.5665251.72768=308 08 6.3917e-05 6.yes AT10580077 121746206-21833195 MT MT OK 0 138.861.79768e-308 08 0.0012728 0.00468616 yes AT1660050 122121548-22122702 MT MT OK 0 0.3700871.79768e-308 08 0.0017855 0.0046801 yes AT4615242 4/870578-68706897 MT OK 0 0.3700871.79768e-308 08 0.4405231.05673 wC5 7.1388-05 yes AT4615242 4/87057848-050897 WT MT OK 0.00488375 52.2837 10.0349 -4,405231.05673 wC5 7.1388-05 yes AT46152420 5.1246907.112500433 <wt< td=""> MT OK 0.00488375 52.2837 10.0349 -4,8119 0 0 yes AT4016212202 4/741055-4/712300433<wt< td=""> MT MT OK</wt<></wt<>	AT1G31370			1:11238297-11239363	WT	MT	ок	(1,46254	1.79769e+308	08 1.79769e+3	4.83523e-05	3 5.46603e-	yes
ATIG48700 118010728-18012871 WT MT OK 0 0.556525 1.79769e-300 06 6.53917e-05 5 yes ATIG50077 1.21746206-21833195 WT MT OK 0 138.8861.79769e-308 079 0.00122780 0.00489616 yes ATIG50077 1.22121546-22123702 WT MT OK 0 0.3700671.79768e-308 08 0.0012780 0.00489616 yes ATIG50205 1.22121546-22123702 WT MT OK 0 0.3700671.79768e-308 08 0.0012783 0.0048001 yes ATIG15242 48705786-8706997 WT MT OK 0.00498375 52.2837 10.0349 -4.405231.05673e-05 yes ATIG15242 5.12499071-12500433 WT MT OK 0.00489375 52.2837 10.0349 -9.8119 0 0 yes ATIG12200 47421055-74271378 WT MT OK 0.00489375 52.2837 10.0349 -9.8119 0 0 yes	APUM10			1:13253397-13255570	WT	MT	ок	(0,581031	1.79769e+308	08 1 79769e+3	7.87855e-06	05	yes
AT1G59077 121746206-21833156 WT MT OK 0 138,886 1.79769e-308 00127289 0.00496816 yes AT1G60050 122121546-22123702 WT MT OK 0 0.3700871.79769e-308 0.0012769 0.0012769 0.0012769 0.00117053 0.00480616 yes AT4G15242 48705786-8706967 WT MT OK 0.00980712 17.0966 10.0968 -4.405231.05673e-65 yes AT4G15242 5.12499071+12500433 WT MT OK 0.00489375 52.2837 10.0949 -9.8119 0 0 yes AT4G15242 47421055-742718 WT MT OK 0.0148975 52.8337 10.0949 -9.8119 0 0 yes AT4G15220 4742105-742718 WT MT OK 0.0148111 15.8156 3.000438020 yes 10.0949 -9.8119 0 0 yes	AT1G48700			1:18010728-18012871	WT	мт	ок	(0,556525	1.79769e+308	08	6.53917e-05	6	yes
AT1660050 1.22121549-22123702 WT MT OK 0 0.3700871.79769e+308 0.00117933 0.0048001 yes AT4G15242 48705796.84706967 WT MT OK 0.00930712 17.9056 10.9098 -4.405231.05673e-05 yes AT4G15242 512499071+12500433 WT MT OK 0.0488375 52.2837 10.0349 -9.8119 0 0 yes AT4G15202 474210554221738 WT MT OK 0.0488375 52.2837 10.0349 -9.8119 0 0 yes	AT1G59077			1:21746209-21833195	WT	мт	ок	(138,886	1.79769e+308	1.79769e+3 08	0,00122789	0,00496816	yes
AT4G15242 4/8705786-8706997 WT MT OK 0,00930712 17,9056 10,9098 -4,405231.05673e-05 7.13983e-05 yes AT5G33251 512499071-12500433 WT MT OK 0,0469375 52.2837 10,0349 -9.8119 0 0 yes AT4G12520 4.7421055-7421738 WT MT OK 0,0195111 15,8516 9,66612 -3,900439.60217e-05 0,000528904 yes	AT1G60050			1:22121549-22123702	WT	мт	ок	(0,370087	1.79769e+308	1.79769e+3 08	0,00117953	0,0048001	yes
AT5G33251 5:12499071-12500433 WT MT OK 0,0498375 52,2837 10,0349 -9,8119 0 0 yes AT4G12520 4:7421055-7421738 WT MT OK 0,0195111 15,8516 9,66612 -3,900439.60217e-05 0,000528904 yes	AT4G15242			4:8705786-8706997	WT	MT	ОК	0,00930712	2 17,9056	10,9098	-4,40523	1.05673e-05	7.13983e-05	yes
AT4G12520 4:7421055-7421738 WT MT OK 0,0195111 15,8516 9,66612 -3,90043 9.60217e-05 0,000528904 yes	AT5G33251			5:12499071-12500433	WT	мт	ок	0,0498375	5 52,2837	10,0349	-9,8119	c	۱	0 yes
	AT4G12520			4:7421055-7421738	WT	MT	ок	0,019511	1 15,8516	9,66612	-3,90043	9.60217e-05	0,00052890	4 yes
AT (G6020) 122/00655-22105276 WT MT OK 0.0118377 7,1823 9,24611 -7,50382619504-14.14988-12 yes	AT1G60020 AT5G15360			1:22100651-22105276 5:4987235-4989182	WT WT	MT MT	OK OK	0,011837	7 7,18823	9,24611 9,1587	-7,50382	6.19504e-14	1.4988e-12	yes 0 ves

Excample of an output of transcriptional profiling study using Illumina sequencing performed in our lab. Shown is just a tiny fragment of the complete list, copmprising about 7K genes revealing differential expression in the studied mutant.

One of such recent and very useful tools is Gorilla software, freely available at <u>http://cbl-gorilla.cs.technion.ac.il/</u>.

Jenuva	On	olog	ie	
Několik nás	stroiů umo	ožňuie sta	tistickv vvhodno	otit obohac
o geny spo	jené se s	pecifickýr	ni procesy	
👘 😵 defaunts a técnica de la construction de la c	* ****	a station of the	ক×e∫ ধ	Group
glucuronoxylan metabolic process	1.01E-12	1.6E-9	3.43 (6331,72,999,39)	[±] Show genes
xylan biosynthetic process	1.77E-12	1.86E-9	3.39 (6331,73,999,39)	[+] Show genes
hemicellulose metabolic process	2.97E-12	2.34E-9	3.29 (6331,77,999,40)	[+] Show genes
xylan metabolic process	3.21E-12	2.03E-9	3.34 (6331,74,999,39)	[+] Show genes
nitrate transport	3.64E-12	1.92E-9	3.92 (6331,58,891,32)	[+] Show genes
cell wall polysaccharide biosynthetic process	5.74E-12	2.59E-9	3.30 (6331,75,999,39)	[±] Show genes
cellular component macromolecule	5.74E-12	2.27E-9	3.30 (6331,75,999,39)	[±] Show

According to experimental evidence for the system under study, the hormone IAA, the peptide TDIF, and the microRNA MIR165/6 are able to move among the cells. In the case of TDIF and MIR165/6, the mobility is defined as diffusion and is given by the following equation:

g(t+1)T[i] = H(g(t)[i] + D(g(t)[i+1]+g(t)[i-1] - N(g(t)[i]))-b)(2),

where g(t)T[i] is the total amount of TDIF or MIR165 in cell (*i*). *D* is a parameter that determines the proportion of *g* that can move from any cell to neighboring ones and is correlated to the diffusion rate of *g*. *b* is a constant corresponding to a degradation term. *H* is a step function that converts the continuous values of *g* into a discrete variable that may attain values of 0, 1 or 2. *N* stands for the number of neighbors in each cell. Boundary conditions are zero-flux. In the case of IAA, the mobility is defined as active transport dependent on the radial localization of the PIN efflux transporters and is defined by the equation:

iaa(t+1)T[i]=Hiaa(iaa(t)[i]+Diaa(pin(t)[i+1])(iaa(t)[i+1])+Diaa(pin(t)[i-1])(iaa(t)[i-1])-N(Diaa)(pin(t)[i])(iaa(t)[i])-biaa) (3),

where *Diaa* is a parameter that determines the proportion of IAA that can be transported among cells. The transport depends on the presence of IAA and PIN in the cells and *biaa* corresponds to a degradation term. As in equation 2, H is a step function that converts the continuous values to discrete ones and N stands for the number of neighbors in each cell. Boundary conditions for IAA motion are also zero-flux.

The proposed model considers data that we identified and evaluated through an extensive search (up to January 2012). It takes into account molecular interactions, hormonal and expression patterns, and cell-to-cell communication processes that have been reported to affect vascular patterning in the bundles of Arabidopsis. The model components and interactions are graphically presented in the figure above. In the network model, nodes stand for molecular elements regulating one another's activities. Most of the nodes can take only 1 or 0 values (light gray nodes in the figure), corresponding to "present" or "not present," respectively. Since the formation of gradients of hormones and diffusible elements may have important consequences in pattern formation, mobile elements TDIF and MIR, as well as members of the CK and IAA signaling systems, can take 0, 1 or 2 values (dark gray nodes in the figure above) Benitez and Hejatko, PLoS One, 2013.

In comparison to the model shown on slide 21, the final version of the model contains the predicted interactions (dashed lines).

The initial conditions specify the initial state of some of the network elements (figure above) and are the following :

I) In the procambial position (central compartment), CK is initially available and there is an initial and sustained IAA input or selfupregulation. This condition is supported by several lines of evidence. Also *HB8*, a marker of early vascular development that has been found in preprocambial cells, is assumed to be initially present at this position. These conditions are not fixed, however. After the initial configuration, all the members of the CK and IAA signaling pathways, as well as *HB8*, can change their states according to the logical rules.

II) In the xylem and phloem positions, it is assumed that no element is initially active except for the CK signaling pathway and TDIF, both in the phloem position. The level of expression for a given node is represented by a discrete variable g and its value at a time t+1 depends on the state of other components of the network (g1, g2, ..., gN) at a previous time unit. The state of every gene g therefore changes according to:

gn(t+1)=Fn(gn1(t),gn2(t),..., gnk(t)) (1).

In this equation, gn1, gn2,..., gnk are the regulators of gene gn and Fn is a discrete function known as a logical rule (logical rules are grounded in available experimental data, for example see slide 20). Given the logical rules, it is possible to follow the dynamics of the network for any given initial configuration of the nodes expression state. One of the most important traits of dynamic models is the existence of steady states in which the entire network enters into a selfsustained configuration of the nodes state. It is thought that in developmental systems such self-sustained states correspond to particular cell types.

According to experimental evidence for the system under study, the hormone IAA, the peptide TDIF, and the microRNA MIR165/6 are able to move among the cells. In the case of TDIF and MIR165/6, the mobility is defined as diffusion and is given by the following equation:

g(t+1)T[i] = H(g(t)[i] + D(g(t)[i+1]+g(t)[i-1] - N(g(t)[i]))-b) (2),

where g(t)T[i] is the total amount of TDIF or MIR165 in cell (i). *D* is a parameter that determines the proportion of *g* that can move from any cell to neighboring ones and is correlated to the diffusion rate of *g*. *b* is a constant corresponding to a degradation term. *H* is a step function that converts the continuous values of *g* into a discrete variable that may attain values of 0, 1 or 2. *N* stands for the number of neighbors in each cell. Boundary conditions are zero-flux. In the case of IAA, the mobility is defined as active transport dependent on the radial localization of the PIN efflux transporters and is defined by the equation:

iaa(t+1)T[i]=Hiaa(iaa(t)[i]+Diaa(pin(t)[i+1])(iaa(t)[i+1])+Diaa(pin(t)[i-1])(iaa(t)[i-1])-N(Diaa)(pin(t)[i])(iaa(t)[i])-biaa) (3),

where *Diaa* is a parameter that determines the proportion of IAA that can be transported among cells. The transport depends on the presence of IAA and PIN in the cells and *biaa* corresponds to a degradation term. As in equation 2, H is a step function that converts the continuous values to discrete ones and N stands for the number of neighbors in each cell. Boundary conditions for IAA motion are also zero-flux.

Using the logical rules, equations 1–3, and a broad range of parameter values (not shown here), it is possible fully to reproduce the results and analyses reported in the following sections (see the figure above for the simulation time course).

Another representation of the distinct expression profiles in the individual vascular bundle compartments (phloem, procambium and xylem).

Hypertrophic scars (HS) area fibroproliferative disorder of the skin, which causes aesthetic and functional impairment. However, the molecular pathogenesis of this disease remains largely unknown and currently no efficient treatment exists. MicroRNAs (miRNAs) are involved in a variety of pathophysiological processes, however the role of miRNAs in HS development remains unclear. To investigate the miRNA expression signature of HS, microarray analysis was performed and 152 miRNAs were observed to be differentially expressed in HS tissue compared with normal skin tissues. Of the miRNAs identified, miRNA-21 (miR-21) was significantly increased in HS tissues and hypertrophic scar fibroblasts (HSFBs) as determined by reverse transcription-quantitative polymerase chain reaction analysis. It was also observed that, when miR-21 in HSFBs was blocked through use of an antagomir, the phenotype of fibrotic fibroblasts *in vitro* was reversed, as demonstrated by growth inhibition, induction of apoptosis and suppressed expression of fibrosis-associated genes collagen type I α 1 chain (COL1A1), COL1A2 and fibronectin. Furthermore, miR-21 antagomir administration significantly reduced the severity of HS formation and decreased collagen deposition in a rabbit ear HS model. The total scar area and scar elevation index were calculated and were demonstrated to be significantly decreased in the treatment group compared with control rabbits. These results indicated that the miR-21 antagomir has a therapeutic effect on HS and suggests that targeting miRNAs may be a successful and novel therapeutic strategy in the treatment of fibrotic diseases that are difficult to treat with existing methods.

miRNA expression signature profiling in hypertrophic scars (HS). (A) Volcano plot presenting differentially expressed miRNAs between HS and paired (non-scar, obtained from donor sites during scar resection) NS tissue. miRNA microarray expression profiling from three paired HS and NS tissues was performed. Differentially expressed miRNAs were identified by fold change and a P-value calculated using Student's *t*-test. The threshold set to identify up and downregulated genes was a fold change ≥2 and P<0.05. Red dots indicate points-of-interest that exhibit large-magnitude fold-changes (x-axis; log2 of the fold change) and high statistical significance (y-axis; -log10 of the P-value). (B) Hierarchical clustering showing differentially expressed miRNAs from HS samples compared with paired NS tissues. Each row represents one miRNA and each column represents one tissue sample. The relative miRNA expression is depicted according to the color scale. Red indicates upregulation and green indicates downregulation. N1-3 represents NS tissue samples, whereas H1-3 represents HS tissue samples. The differentially expressed miRNAs were clearly separated into clusters. miRNA, microRNA; hsa-miR, human microRNA; HS, hypertrophic scar; NS, normal skin.

In the root, several functional and anatomical units could be recognized.

Along the longitudinal axis, the root meristem forms a distal root tip, including stem cell niche, columella and lateral root cap, proximal meristem with a population of rapidly dividing cells and elongation zone where cells leaving the root meristem undergo rapid elongation and mature.

GENIST algorithm

The MATLAB source code for GENIST is publically available at https://github.com/madeluis/GENIST.

For the detailed description of the procedure, see de Luis Balaguer et al., 2017, SI (https://www.pnas.org/content/114/36/E7632/tab-figures-data)

GENIST algorithm

The MATLAB source code for GENIST is publically available at https://github.com/madeluis/GENIST.

For the detailed description of the procedure, see de Luis Balaguer et al., 2017, SI (https://www.pnas.org/content/114/36/E7632/tab-figures-data)

GENIST block diagram. GENIST is implemented in MATLAB, and is composed of two consecutive steps, clustering and GRN inference. Clustering is performed based on a spatial dataset. Each resulting cluster is

independently processed by the GRN inference step, based on a temporal dataset.

PAN subnetwork in the QC inferred with the 12 developmental time points of the Arabidopsis root. (A) Optimal configuration (combination of signs— activation or repression—of the regulations that were inferred with undefined signs, which best fits the data in the simulations of the equations) of the subnetwork of PAN and its downstream targets. (B and C) Resulting expression values of PAN and its downstream targets, over time, after simulating the optimal configuration of the model. Simulations were run for 5 d and plots are shown until all factors reached steady states in the WT and pan mutant simulations. (B)Model simulated with the fitted equation parameters. (C)Model simulated with the PAN-associated parameters set to zero to simulate a pan mutant situation. (D) Normalized expression values of PAN and its predicted downstream targets in Col-0 wild type and in pan mutant. Statistically significant changes of expression between the mutant and the wild type, *q < 0.05.

In the WT simulation, all targets reached steady states by day 1 with subtle changes of expression during the transients (time length until expression values reach their steady states). On the contrary, the pan mutant simulation showed that EIN3 and WIP4 presented high expression values during the transients and reached steady states at later stages (days 3 and 4, respectively). These delayed responses and initial activations of EIN3 and WIP4 reflect the prediction that these genes are indirectly affected by PAN. Further, the dynamics of our simulations depict that BRAVO, NTT, and WIP4 are, in our equations, connected through feedback loops. During the transient phase of the mutant simulation, NTT and BRAVO show an exponential decay, which is consistent with the prediction that they activate each other in the absence of PAN. However, their steady states are not immediately reached since they are activated by WIP4 and EIN3. Conversely, WIP4, which is repressed by a decaying NTT, shows high levels of expression.

