
Debye shielding using Vlasov equation

We examine the shielding effect of plasma we consider a charged particle isolated for observa-
tion in plasma with positive charge Q. We will use the steady-state Vlasov equations for electrons
and ions (with charge +e) and only consider the electric field. The equations then are:

~v · ∇ fe,i ±
e

me,i
(∇φ) · ∇v fe,i = 0 (1)

We can express the charge density through the particle densities:

ρ(~r) = ∑
α

qαnα, (2)

and the densities as the zeroth moment of the distribution function:

nα(~r) =
∫

fα(~r,~v)d3v (3)

To get the total charge density we need to include the "additional" particle and we choose the
frame of reference such that the particle is at the origin.

ρ(~r) = Qδ(~r) +
∫

e ( fi − fe)d3v (4)

To obtain the electric potential, we have to solve the Poisson equation:

∇2φ =
∫ e

ε0
( fe − fi)d3v− Q

ε0
δ(~r) (5)

Now we have three equations (2 × Vlasov + Poisson) to solve for 2 distributions and 1 potential
We assume solution of the distributions in the form of:

fα(~r,~v) = f0,α(v)e−
qαφ(~r)

kT , (6)

where f0α is the Maxwell-Boltzmann distribution, which assumes steady-state and spherical
symmetry. Integrating the Maxwell-Boltzmann distribution should give the density at equilibrium:∫

f0αd3v = n0α ≡ n0 (7)

Substituting into Poisson equation:

∇2φ =
∫ e

ε0

(
f0,α(v)e

eφ(~r)
kT − f0,α(v)e−

eφ(~r)
kT

)
d3v− Q

ε0
δ(~r) =

n0e
ε0

(
e

eφ(~r)
kT − e−

eφ(~r)
kT

)
− Q

ε0
δ(~r) (8)
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To proceed analytically further we assume:

e±
eφ(~r)

kT ≈ 1± eφ(~r)
kT

(9)

which gives us:

∇2φ = 2
n0e2

ε0kT
φ(~r)− Q

ε0
δ(~r) (10)

The differential equation can be solved by using Green’s functions. 1

Green’s function is defined by:

LG(~r,~r′) = −δ(~r−~r′), (11)

where L is a linear differential operator. It has the nice property:∫
G(~r,~r′) f (~r′)d3r′ = φ(~r), (12)

where f (~r) is the RHS of the differential equation (source term).
For our problem:

L = ∇2 − λ2 f (~r) = δ(~r) (13)

Using Fourier transform:

G(~r) =
1

(2π)3

∫
G(~k)ei~k·~rd3k (14)

the definition of Green’s function is:

FL (G(~r)) =
(

i2k2 − λ2
)

G(~k) = −F (δ(~r)) = −1 ⇒ (15)

G(~k) =
1

k2 + λ2 (16)

Doing the inverse FT:

G(~r) =
1

(2π)3

∫ ei~k·~r

k2 + λ2 d3k (17)

Using spherical coordinates:

G(~r) =
1

(2π)3

∫
k2 sin θ

ei~k·~r

k2 + λ2 d3k = (18)

1
(2π)3

∫
k2

r sin θ
eikrr cos θ

k2
r + λ2 d3k =

2π

(2π)3

∫
dkr

k2
r

k2
r + λ2

∫ π

0
sin θeikrr cos θdθ = (19)

− 2π

(2π)3

∫
dkr

k2
r

k2
r + λ2

∫ −1

1
eikrrtdt = − 1

(2π)2

∫
dkr

kr

k2
r + λ2

e−ikrr − eikrr

ir
= (20)

1
r(2π)2

∫ ∞

0
dkr

kr

k2
r + λ2 2 sin(krr) = . . . (21)

. . . =
1

4rπ
e−|λr| ⇒ G(~r,~r′) =

e−λ|~r−~r′ |

4|~r−~r′|π (22)

For our problem:

φ(~r) =
∫

f (~r′)G(~r,~r′)d3r′ = (23)

Q
ε0

∫
δ(~r′)

e−λ|~r−~r′ |

4|~r−~r′|π d3r′ =
Q
ε0

e−λ|~r−0|

4|~r− 0|π =
Q
ε0

e−λ|r|

4rπ
(24)

1Bittencourt: seek solution in form of φ(r) = φCoulombF(r), limr→0 F(r) = 1 limr→∞ F(r) = 0.
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Fig. 1: Solution from wolframalpha.com

with:

λ2 = 2
n0e2

ε0kT
=

2
λ2

D
(25)

φ(~r) =
Q
ε0

e
−
√

2
λD

r

4rπ
(26)

The charge density is then given by:

ρ(~r) = −2n0e2

ε0kT
Q

e−
√

2
λD

r

4rπ
+ Qδ(~r) = − Q

2πrλ2
D

e−
√

2
λD

r
+ Qδ(~r) = (27)

The total charge is given by integral over space:

qtotal = −4π
∫ ∞

0
drr2 Q

2πrλ2
D

e−
√

2
λD

r
+
∫

d3xQδ(~r) = −2
∫ ∞

0
drr

Q
λ2

D
e−

√
2

λD
r
+ Q = (28)

−2
Q
λ2

D

λ2
D
2

e−
√

2
λD

0
+ Q = Q−Q = 0 (29)

• Since ne,i = n0e±
eφ(r)

kT , around Q the charge density of electrons is larger.

• Decays much faster than the Coulomb potential.

• Shielding takes place over the distance of order of Debye length – plasma dimensions must
be greter than Debye length.

To test the validity of approximation:

eφ(~r)
kT

=
eQ

ε0kT
e−

√
2

λD
r

4rπ

1
3 n0eQ

4rπ 1
3 n0ε0kT

e−
√

2
λD

r
=

1
3 Q

4erπλ2
D

1
3 n0

e−
√

2
λD

r
=

λDQ
3eNDr

e−
√

2
λD

r, (30)

therefore the approximation is justified when:

r � QλD

eND
(31)
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