Debye shielding using Vlasov equation

We examine the shielding effect of plasma we consider a charged particle isolated for observa-
tion in plasma with positive charge Q. We will use the steady-state Vlasov equations for electrons
and ions (with charge +¢) and only consider the electric field. The equations then are:

e

T+ Vfoi® —— (V) Vofei =0 )

We can express the charge density through the particle densities:
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and the densities as the zeroth moment of the distribution function:
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To get the total charge density we need to include the "additional" particle and we choose the
frame of reference such that the particle is at the origin.
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To obtain the electric potential, we have to solve the Poisson equation:
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Now we have three equations (2 x Vlasov + Poisson) to solve for 2 distributions and 1 potential
We assume solution of the distributions in the form of:
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where fy, is the Maxwell-Boltzmann distribution, which assumes steady-state and spherical
symmetry. Integrating the Maxwell-Boltzmann distribution should give the density at equilibrium:
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Substituting into Poisson equation:
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To proceed analytically further we assume:
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which gives us:
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The differential equation can be solved by using Green’s functions. E|
Green’s function is defined by:
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where L is a linear differential operator. It has the nice property:
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where f(7) is the RHS of the differential equation (source term).
For our problem:
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Using Fourier transform:
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the definition of Green’s function is:
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Doing the inverse FT:
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Using spherical coordinates:
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For our problem:
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IBittencourt: seek solution in form of ¢(r) = Pcoutomp F(¥), lim, o F(r) = 1 lim, e F(r) = 0.



o0 X SITLA X) 1 b
( ——— dXx = - rmSENd)e
0o x+b? 2

Fig. 1: Solution from wolframalpha.com
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The charge density is then given by:
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The total charge is given by integral over space:
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e Since 1p; = nge™ ¥, around Q the charge density of electrons is larger.

* Decays much faster than the Coulomb potential.

¢ Shielding takes place over the distance of order of Debye length — plasma dimensions must
be greter than Debye length.

To test the validity of approximation:
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therefore the approximation is justified when:
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