Výsledky 74. F(x) =    0 x < 0 p 0 ≤ x < 1 1 x ≥ 1 75. (a) p(x) = 1 6 x = 1,2,3,4,5,6 0 jinak. (b) F(x) =    0 x < 1 1 6 1 ≤ x < 2 2 6 2 ≤ x < 3 3 6 3 ≤ x < 4 4 6 4 ≤ x < 5 5 6 5 ≤ x < 6 1 x ≥ 6 76. (a) X ∼ Bi(3, 1 6 ) p(x) = (3 x)(1 6 )x (5 6 )3−x x = 0,1,2,3 0 jinak. (b) 1 216 = 0.00463 77. (a) p(x) =    1 2 x = 0 (1 2 )2 x = 1 (1 2 )3 x = 2 (1 2 )4 x = 3,4 0 jinak. (b) F(x) =    0 x < 0 1 2 0 ≤ x < 1 3 4 1 ≤ x < 2 7 8 2 ≤ x < 3 15 16 3 ≤ x < 4 1 x ≥ 4 1 78. (a) f (x) = 1 3 3 ≤ x < 6 0 jinak. 80. (b) f (x) = cos(x) 0 ≤ x < π 2 0 jinak. 81. (b) F(x) =    0 x < 0 3x2 − 2x3 0 ≤ x < 1 1 x ≥ 1 83. (b) F(x) = 1 π arctan(x) + 1 2 85. (b) f (x) = e−x x > 0 0 jinak 92. p(x, y) = (9 x)(8 y)( 3 6−x−y) (x, y) ∈ {0,1,...,6}2 3 ≤ x + y ≤ 6 0 jinak 94. pX (x) = 1 16 (2x2 − 5) x = 2,3 0 jinak pY (y) = 1 16 (13 − 2y2 ) x = 1,2 0 jinak 96. (b) F(x, y) =    0 x < 1 ∨ y < 1 (e2 − e)−2 (ey − e)(ex − e) x ∈ [1,2] ∧ y ∈ [1,2] (e2 − e)−1 (ex − e) x ∈ [1,2] ∧ y > 2 (e2 − e)−1 (ey − e) x > 2 ∧ y ∈ [1,2] 1 x > 2 ∧ y > 2 2 97. (b) F(x, y) =    0 x < 0 ∨ y < 0 (e − 2)−1 (ex y y − x − 1 y ) x ∈ [0,1] ∧ y ∈ [0,1] (e − 2)−1 (ex − x − 1) x ∈ [0,1] ∧ y > 1 (e − 2)−1 ey y − 1 − 1 y x > 1 ∧ y ∈ [0,1] 1 x > 1 ∧ y > 1 98. (a) V zadání má být b = 6 (b) fX (x) = 3 8 x(6 − x) 0 ≤ x ≤ 1 0 jinak fY (y) = 1 16 (9 − y) 0 ≤ y ≤ 2 0 jinak 99. (b) fX (x) = e−x x > 0 0 jinak fY (y) = e−y y > 0 0 jinak (c) F(x, y) = (1 − e−y )(1 − e−x ) x > 0 ∧ y > 0 0 jinak (d) FX (x) = 1 − e−x x > 0 0 jinak FY (y) = 1 − e−y y > 0 0 jinak 106. (a) F(x, y) =    0 x < 0 ∨ y < 0 1 4 x2 y2 x ∈ [0,1] ∧ y ∈ [0,2] x2 x ∈ [0,1] ∧ y > 2 1 4 y2 x > 1 ∧ y ∈ [0,2] 1 x > 1 ∧ y > 2 3 (hustota) f (x, y) = x y x ∈ [0,1] ∧ y ∈ [0,2] 0 jinak 107. (a) FXi (xi) =    0 xi ≤ 0 x3 i x ∈ (0,1) 1 x ≥ 1 (b) Oznaˇcme FX (x) := FX1 (x1) = FX2 (x2) = FX3 (x3). 3 2 F(0.5)(1 − F(0.5))2 = 0.287 4