Exarchat • Friday , 5. Febravrg 2021 • Thursday , 11 . Februoryzoz) | Exau will have two parts : Written part , 2 hours ( morning ) - oral exon , ~ 112 hours • End of the class : 12.1 . 2021 KM , g) EKR " ! genie . > ) hynoswtece. Levi - Civita Connection und Riemann herunter : mag he viewed es Smooth fcl RE TLTM ) TÄTE , Ihk) EIMEIIR " " = Ruth and a sum we war form its deine time in direction of onokhr weder Jiebd SETLTM ) : E - 2 E) = Izsx tu general , 3.24) EIIR " " - IR " " is not on element in IM . But we von project (Sy ) k) orthogonallyw.r.to gerät, > ↳ Tx M L IIR " " = IM ⑦ M ) ' . ) We wr.be (4) k ) EIM for the res utting element . If w is a Local mit normal vf . de fand araeudx EM , then µz)H=kz)H-dsy)H,vkDvk)UThe formula show, that PR is a vector fiele an M . Def.6.12-IM.gl EH " ! < , > ) D : TLTM) x T (TM ) → T (TM ) Lan) - Be is Called the Levi Civita connection of ( Mig) . ( or Coverieut der iv. of ( Mg) ) . For ze TITM ) , D= < z , w > and differentiehing in direction of 3 EITTM ) ging : 0=4.4 , u > taz, Sir> „F- Ins) -1 ( Gauß equatiae) . -5 Prop.6.13-IM.gl E ( R " ! < , > ) hynosurtace , s.nl , EETLTM ) und f- E LM .IR) . Then D : TLTM ) x TLTM) → TLTM ) has the tollowrg Pnohoties : ① is bi linear over IR . ② %? = f- Bz and Pty . → ( i. e . 02 E T ( TM ① TM ) ) ③ % Is = Ihre] ← P ← ④ s . gln, e) = gl % , e) tgly , Be) ( O is Laurence wie g) . Proof ① s.nl is hiliuew over IR and SOÜÄI_ , _ ) , which im plie , the Che im hy Gauß eq . ② (fs ) . n = flsz) and g. lfz) = Kf)y + Hsg) Since I is a I ! ) teuer ( ie . linear an CNN.IR )), result tolles freu Geußeq . Shows ③ Proof of Prep . 6.7 ✓ sy g. s - Es , y] # und syueuehry of It, _ ) . ④ s - gly, e) = < sie , ED + < q , s.es = e) the . Be > . ¥7 → Mt " " dicht) e- Fast üH=n÷iĵ That Suppen LM . GM ) and ( N , g " ) are kyrersuf . ef " TL, >) . wir Levi - Civita comedians PM and TN . Iff : (M, 5) → (N, GN) is an isauetry , then FIRE) = FITZ V-s.ee TEN ) . Proof Akg) : = f TK) !! FE . • A is Symmetrie . FREI files ) - talk - Ef ) = FEED Pro p, . 613 = It's , f) = ¥77 - BIETE ③ Prop . 6.13 ③ =) Als .nl) Ala ) =D • EETLTN ) , then ④ of Pop - 6.13 : * t.ie ) = gut !! tz , tee ) tg " HE , Efre) 1 Since f is on isauetry , GIVE) A- E) k)) = G)„ lzlfk)) , elfk))) , i. e . g " ( ff , fee ) - 5h, e) of - - LHS of ¥) = (f) INK , e) of ) = (s - gute, e)) . f ④ = g " ( 0,4 , e) of tg.ly, BEI of Pop. 6.13 = g " HRE , Ic ) + g " HE , t.lu) Summe chiuy this identity freu ¥) gives : O = gut Als .ie ) , t.ee/tgMlfy , Als , e )) Hin , l C- TITN). Ä gml Akg), f.e) = gMHK.D.tl/=-g4t;,AlqeDI--g#TALe,n))--gMltKs)AE)--grethe), tz) = gml tee , Als . ) ) gm ( Als , g) , IT) = 0 Since any tagebuecher at × of M war he waren es f- e k) for en orrnopr.EE TEN ) , this in plie, Als , g) = 0 by non degeneres of g " . D . Heine , we see the Levi - Civita Connection of ( Mg) is iutriuzic und so are all quontities and ebjects Which can he written internes ef g and T . For 4,4 , CE TLTM ) we home : ¥) s.ly . e) yfs . e) Esp ] e = O - - LHS has a part tangential ho te and a port drkeog.to M Land hatte med to wenig in oder Leer ¥ ) to kded . • nie = Ye III. e)v = Ye - glhlz), e) w . s - 4. e) = s.ge µ . gun), e) w gkk), e) Lk) - - - - - g ( KK ) , e) u - - 9L Lk ) , Be ) DT • Ihre] :C = !;] GILLES, e) v . =) ¥ ) is Aquivalent to • E. Ge Ke - E.) = Äh , e) Us ) - IKRK) - = : RK . g) IC) . 8• - gl! 4g) , e) w t g ( Bells), e) wtgkks.is ) - =D ⇐ Lltisy] ) = 94g) - Gus) Mainareli Egnatia. Def-6.IN ( M , g) c- ( IR "" , < , > ) kynosurfoce , Levi - Civita Connection of ( M . g) . The Riemann Curve here ( tensor ) of µ , g) is the l ! ) - teurer gieren by : R : T (TM) × TITM) → LLTLTM ), TLTM ) ) ka) ins Lem Randle) ) . Frau the formula Rls . g) = Pelz, } ) . Heule , R E T ( FFM ⑦ End HM ) ) = TLITTM ④ Tff) TY ( Theoreme egregiuue ) Suppose (M , g) EUR3 , < , > ) is a Surface , x EM , Es , q } EIN ortlwhormdhosisoftxM.lw.r.bg ) . Then Kk ) = go.lt?lsy)lz) , s ) . In particulier , the Gauß Gruene is intriusre . If r = as . tbz , T = es tdz one ohitreiy weder ) ef IM the Rtr, t ) in tue her , 44g? it 9mm by Ledbe ) Enn) ö " ) . Proof . RINK) Ikea) Us ) - Ils) Hq) = gun) , g) Us ) - g ( Lk), g) Hq) g. LR Kindle) , 3) = g. Kkk ) g. Netz) g. lustig) g. Kkk) RHS = de Terminal of L in the basis { 424 = Kk) . Freu go.lt?k.rdy,z)--0followsRlsy)ly)--= Kk) s . und Rts) ) = Nas) s = KEI . - By skew - syunnehry and hiliueuhy one IR this im p lieg tue termin fuer general T and T . D . Siguifiuaece of the Riemann anruehre of ( M. g) E ( IRI ) t (M . g) is buddy isometrie • and any paul + e- M to be open Seebad OJIIR " , g) ⇐ R = ° ( RIO KE ) h pwk neuer , a swtoee.in/R3is6cdIyiseuebrc ↳ an gen siebst of IRZ ⇐ , Kk ) = O FAM .