M mfd . equipment with on affine connection D m ) notiere of parallel trans Part of taugen weder s dany Curves C : Ito , ti - M PEI(e ) : Tea! → Ta) linear rin Dauernsu . Reine T µ ① There ex ist unstrut nation of parallelTransport day eures of M and it con Le shawn that it is eguiudah.toan affine an M . ② Einen on affine connection D , then it inaeuces a Linear connection on any Tensor Knalle : T : Alm) × FILM ) → FILM) P Bt ( hihi now over IR , teurer ich ins ( recall ④ of Def . 6.18 ) + ⑥ of Det . 6.18 . htt = f- Yt + G. f)t ) an trivial kuehle Mx IR → M is just d and you regierte Tt ① s = PE ) ② s tt ⑦ Ds . ③ In the be of M = IR " wie tue shandwd connection , the parallel Heespen is independent of a and it is gruen by Mens hatten . LIIR " = R " Ty IR " x.ge/Rn). On a mhd M wie affine we can Talk about the acceleration of a smooth Cure in : Note Und on a mfd M ← ( ' ltxh ) - c ' lt) ¥ ) c " Lt) = line h→ o k wo kes ho senge , since c ' ltth ) e III, and c ' G) C- Tante wie indifferent . Woher spaces , so tue minus in G) hinke , no Sense . How ever , if k is equiptadwih an ohne Connect!er ° ( equir - a nation of parallel tzesp . ) , then we Can defwe the acceleration of c w - r - too ↳ E.c ' = liy.PK/kI)-.hDef.6.Z2-(Mi) mhd . wih affine connection . A E-arne c : I → M LIEIR open iuwvd ) is called a geodes.CI B if (B. c ' ) lt ) = 0 kt E I . Reinen • M = IR " C " = c) . c ' = Pc , C ' fer D stuende rd Launcher an IR " . ~) geodes.es are affine Lies . . mhd . wir alten comedians generativ office geometry home setting of mtds . In Loud Coordinator the geodesic egnatia kosten follow iug fern : c : IT M wihvelues in a aeart (U, n ) und ci = ni . C then Laune 6.19 iueplieg ✓( k that + + ⇐TÄGIGE = 0 tun . - in - " geodesic eynatten . Theory of ODE s impuls : Thm.6.23_ (Mi) het d . wih affine connection ① G-Neu x EM , KEIM , then 7 ! maximal iuherual IEIR wir OEI and a unique ( maximal) geoderc E : I -1M sie . do ) = × ( ' ( o) =L ② G- Neu x EM , 7 an open heighbh . U of 0inIM s - t . fuer euch ↳ EU the internet I in ① cantons [0,1] und e xp. : U → M is Smooth . expx 14 ) = c- (1) It is called the exponate wo p atx of T . ④ exnxsetistiesexp.to) = x and Toexp : IM → IM y is the Identity an Tx M . E.IM = IM ) . vonHaie , en is a Local elifteeau . freu a neigen . U of 0 in IM ho an gen neigte b. Vote in M . ④ 7 an open neigen . Ü of the zero >ecken of p : TM-1M sie . for any 3 E ÜETM , expp , !} ) E M is alefiweah . Moreau , Clooney Ü Sunde eaogh , Ip , exp ) : Ü → MXM is a eliffean . euho an open neighbhd . of tue diagonal in Meth . Pri ① Theory of ODES ( af . also Prep . 6.20 ) . ② Follow, f. neunten trachtend sehnten, ↳ ODES elegant Suuoothly on the initial data and the too that for a geodesrc c : I → M , OEI , ÖH ) : = elst) hier eng SEIR is ogein a geoder c weh Elo) c (a) und E ' Lb) = se ' lo ) . ③ Since leastout Curve CH) - x Et is the unique geodesicw.tn do) - x and c ' lo ) = 0 , etp.to) - x . ✓ For ge U und sucht , texpltsx ) is delikat " und equds c " . Eku ) Ein ) = EH) EE ' ¥! - ± → T.edu = \ ! µ ④ Existente of ¥ fellows from Smooth demand . of solutions of ODES ne initial uauditieees und③ . D Reino ③ Shows that expx : ¥ V is a diftp. auto neigt . V of × ru M = , e xp; ^ : V → U EIN = IR " defilees distiuguishud Coordinator on M wir neues in t , Marple , lallend normal • ordinäres . inGeodsicseeuaeatiug.fr aux Carne speed in diese cooediedes ho strengt Lines through 0 in IM - IR " : " Ä Det.cn ( Mio) wild . wie Vänäeetia . ( M . O) is Called Complete . if F- EM , exp, is detiued Thx E IM . Prop.6.cn (M , O) wmfd . Wide affine com . , 3,4 , CETLTM ) . ① Rk ) le) : KEE - Ecke - Es.pe detines a (3) Tensor , called tue Curvatureo JO . ( R E T ( AFM ⑦ TM ④ TM ) = TLIPTM ① End HM )) is ne Heel fleet , .it Rx - O Ex e- M . | ② Tk ) = Bz Gs - Es , q ] is a (!)- teuer Called the tersieuafv.LT E T ( MT MQTM ) . is called to> ien free , if I =D K - EM ( is eyuiv . ho Ff = Tjf Hi , j ) . - Proof. ① Exercise . . ② Tl - , _ ) IR hihi nein , since Eand E- , -3 we ft cnn.IR) Ä TH ) = II GE - Ef :P = the- f) = f- Tls , n) -4¥ tun and by skew syuuety also Tls , tz) = i T (fq, g) = filz , s) f- Tls , 5) . 6. 3. 2 . The Levi- Civita " Connection of a Riem . nfd . Fundamental Theorem in Riem . geometry : Thailand Suppe ( M . g) is a Riemann- uefd . Then there ex ists a Unique Torsion free affine connection D s . h . ¥) { . glp , e) = g ( By , e) tgly , Be ) i - ( ⑦ war he also written a , Tg =D , because Connection an 5T Mineure is gun by Kg ) 4. e) = s-gk.CI - 9194 , e) -94, ) Proof Assuue Sun a Connection exists . D= s glue ) glkq.ee) - gly, Be) 0--4 . gleis) ggfs) - gle.gs ) D= e.gl?q)-gl0es.y) gls.kz ) . Addi wg the fish two and Substrat regten last identity und us.mg twsiee freenon to a place teens ' Ye + Es by Ehe] , Get ! 2 by - Ey, e ] and Gz - % by - 2 !zt Es , y ] . im pli es Koszul formula GHz, e) = Els - gle.ee/ty-gl4s)-e.gkz)ItglEniheI-9Ej!!) #* ) \= : yls.dk) . RHS just iuvdve , g and I , ] and so hey waeng . Y 9 im plies that is unique if it ex ists . Kath % , e) - o te % Be ) . (** ) heute und ho paar extreme : Fer 4,4 E TLTM ) , y Key) defilees a 1- formen M (Check this ! ) . Defilee Be a , the unique vl.si . g ( By , _ ) - Hsg) One weites directtty that this delius on affine fan- hee bemühe au M sdisfyuy 09=0 . Check the remo: weg aoims ! • . Def.6.27-LM.gl Riem . mhd . w ① The affine Connection of Them . 6.26 is called the Levi - Civita Connection of (M, g) . II one Called tue Christoffel Symbols af LM. g) . ② The Riemann: en awake (er Riemann teuer ) of (M . g) is the Curve here of its Levi Civita connection . ③ Eeodesks of (M , g) air are the geodesrcs ofthe Levi Guide connection . Prop.6.28-suprovlM.gr ) is a Ri au . uf weh Levi-Gute Laune Chien P and c : IT M a G- Gerne . ① If 4. more now fields day a , then d gland = glas . e) tgls.kz)dt _ In particulier , to if a is a ge des:c , then % glatt) , dt) ) = 0 ft , Lance • Hält) 11g Igldltl.CH/)T is konstant in t . ② It tto.tn] EI , tun tue isauorüsn PEEK) : I II ( detem.by O ) is orthogonal w-r.bg . Then ③ Surreal ( Un ) is a dort. 3 Christoffel Jubels of wir . ↳ ( Un) are give by z E ELFE + Ii - Eier whee lgij ) oe tue coelficietsefgw-r.to ( Ku) and ( g " ) the inverse uudrix . Pri ① Follow, freue k ) in Thun . 6.26 . ② Follow , freu ① , since gls, 2) is Cad hast hier weder Leeds s . q parallel day c . ③ heut s - %. , g- ¥ and E % in the Koszul for the Levi - Gv . kann . (in proof of Then . 6.26),