Yesterday MEIR " submfd . , × EM . ¥ : IM → Des KTM.IR) , IR ) Cluj : 4, is a linear isomorphe isn . Süß The rest of the proof ( of Then . 3.24 ) ; uauelg , we finish the proof that 4 × is surjedve . f- E LM.IR) , Wort oraedx ( V. n ) wihnk) - O and Belo) Eu LU ) . We have see a that for ye U wir ulg) z Bdo) we how fly) = fk) t {nily) hily) hi : vielBdo) ) → R . By Cor . 2.32 we can exteud hi and ni to smooth fcts.ae M without men ging than to cdlg eraed × : The keuchen fk) + Lnihi ¥) i isaehe@xheudedtofce.ouMtuotcoincideswhflocdlg arendt . If de Der. (CNN.IR) , IR) , thenÄnne 3.23 : Dlf) = dlfk) t.fi h ;) = § dlui ) hik) e- ÜK) dlhi) 11 Fo Of Tui k ) = § d)8¥! ) 0=0 , ← Loki ) #E) → z.5TaugatbmdagawpsfobrdmniflssupposelM.it) abstract uefd . of dim . K . Then we defiue the tangeut space of M at x as the vector Space : IM Des Lola, R) , R) . Notation: ↳ (f) : = 9 ; f t f- E LMIIR) Remake: Alternative ly , we could how de find IM as the ser of equivoleuce classes of Smooth Curve s c : I → M , OEI www.hc/0)=x.wherecneCz,ifx=Cslo)=Cz(0 ) and for a ( eqniv . , any ) Chart ( Ka ) arandx In. g) ' lo) = (a) ' lo) . The tangent bundle of M is defined es TM : - 4.MTXM = Yeah} XIM p : TM → M naturel projektion . For a smooth uvp between cufds . f : M → N we defiue wesauetiuesjw.ge Tflx , ) : = Lfk) , Ifk) (Tt !) Ifk ) . when If i . IM → Tf ) is giveu by If 4) Ig) : = T.tk/.g:--klgof)=rs;lgof) Then . 3.24 . V ge CALN NR) . One weites direct leg that : . . T (h. f) = The off for h : N → P Cueop betreuen : Tld , = lof, uebels . • f is a Local diffeeen . ⇐ Txf : IM → Tee! is a Linear is au . tfx EM . (u , U ) E A Tu : TU =p Ilo ) - Tutu) = ulu) x IR " . There ex ists a unique topologyaeTMS.l.TV CTM is Open and Th : TV → Tutu) is a kaueiamorpwsnv-LU.nl EA . It is seuaed uaehoble und Hausdorff . Moreau , Ajjü { LTU, Tu) : Hu ) e- it} olefine, n Cb - athos of Charts wie wenig in IRZK (see the cornesp . Statement for subufd MEIR" ) . =) (TM , Atm) is a Gueook man ifdd of dim 2k . Moreau , o ) for subuefd. of IR " , p : TM → Yt is Smooth and it defilees u veao knolle of rank k over M , and Vector fields on More de find es ( Smooth ) Seehaus of p :TM) N . Local loordiude expressiaes for the tagen ueop Tf of a Smooth map f. MAN , which is legale Sunday and ↳ for Mad fields remo in valid . Definitions / Statements about pull back of redd fields vie ↳ ud oliffeom . and Local flows of vector fields nleuoinvoliet without my charge . 3- 6 Vector fields as derivation s and the Lieb rocket ( M , it ) n maifeld . For se HIM) and f ECHMIIR) g.f : M - IR ⇐ f) k) : = 4. f = Ifk defilees u smootufct , since g. f is tue secaud uaupouenl of Tfos : M - TM → TIR - IRXIR , while is sooo k - Def.3.cn A derivation of the algebra (MDR ) is a linear ueop D : LM.IR) - OLM .IR/s.t.Dlfg)--DH)gtfDlg)V-f,gEC0LMilR) . Notation Der (01M .IR)) : = { D : Chloe .IR) → CNN.IR) : D is a derivaten } . This is a Vector Space in the daraus way Twins The map ¥ : { ↳ (tm } f) defiueg • linear isomorphem HLM) -7 Der ( CNN.IR)) . Proof : fi-s.fr linear CM.IR ) → (MK) ✓ s.lt g) G) = s; Hg ) = # f) gk ) + f) (sig ) - Ks. f)gtfls.gl/t So 4 Leos image in Der (CALM.IR) . Heule , 4 defilees o uop HIM ) → Der IM.IR) ) and evident leg it is linear , since If is Liner tx EM and f- EGMR) . hi : If 9 # 0 , than I x EM s.tn . EY ) # 0 By The 3.24 , we know that 7 ft ④ IM .IR ) s) . × ↳ af = 4. f) k ) # 0 . Sui , Let D C- Der Lehre , IR)) . Frag XEM f- Im Dlf) k ) is a de ! voten at × . Heule , by Then . 3.24 7 ! KEIM sie . DA) k) = sif . Rennie, tu show that " '→ Sx de feines a veaarfiehd , i. e it reeuoiu) to show smooth ness . Fix * EM and a most ( Ku ) wih × EU . As in the proof of Them . 3.24 , we mag exteud ni ( in . . . , k ) to a a smooth fch üi : M → IR that coincide wie hier Saeue gen weigern . VCU of x . Then Dlüi) : M → IR is a zuodutd and Sy Elsjü ( y ) tyev ( see proof of i Then . 3. 2h ) . K Heule . SIE { Dlüi ) ), # is a suoohveaotieed I - 1 am V . - D Recall that for a Chart ( Un) , %, . f = ¥ Oni equeds tue i - the portid deriv. of Local Wadi nahe expressiv f-out of f . This im pures did for ey It HIM ) wie SIE Esi # we how ⇐ f) Iü ? if . L.emma3.27-SMEHIMIveddtieedsonamfd.tl . Then f m (s . (g. f)) g. (g. f) defilees a derivation of CALM , R ) T Proof f. g E IM .IR) sie . Hg ) ) = - Heft! + ftp.gD-f.K.FI/gt/n.f)lsg) . tfs . f) Ing) tfn.gg) Def.3.IM uefd . For two vector fields sitze HIM ) the hie brocket of S and q is the Unique weder fields Is , RßE HIM) si . Es , yf . f = s . ( y . f) µ (s . f) ttfECMM.IR) . P-rop.3.IM mfd . , g. q , e E HIM ) . ① [sind = Elis] und Es , Iz , e) + [z , [e. D) + LT , IhreD= = 0 ( Jacobi ildaetg). ② Es , fq] = f Esp] t ( s f) 2 and [ fs , g) = f- Es , y ] Chef) s . Proof . ① Skew - syuueety Wand Jacobi iaeeuhy follows frau mind less Compilations . ② f. g E IM.IR ) Is , fz] . g = . . L Kfz). g) G) = ftp.ig-lfln.gl ) k) . " s . 4g ) = s . (flag) ) = t -4.9¥, Ife) . f.g) = ftp.ls.g )) ¥) =) Es , ftp.g = ¥) ¥) = ftp.g/tkf)R.g . =) Es , fn] = f- ES, d rd . f) R ✓ . Prop.3.30_M.Nmfds.fiM-Naloaddiffean@phism.tOf- * Es , q] = It's it) ts , y EH IN ) . In particulier , if U ⇐ MAN is on open subset , Erik] )j [ Stu , ( i : N I ilo ) EN drifte ^ indessen is di Mean . euho its image ; i 's = Yo . Hance , Stu = 0 Impuls 55,27/0=0 . ② ¥!!)) k ) , = [ sind k ) ts.ge#lM),xeM . £ IMMUN ③ Suppen ( U , n ) is a Wort an M and Size HIM) with % Esi # and ME Eni ¥ , then Kindle = Ästhet# , wwe Earth Ists ¥! ei %) .