Prop.3.30-M.IN mfds , f : MAN a local diffeau . ① f- * Es , y ] = It's , ftp.V-s.ge HIN ) . In particulier , if U ← M is on open Sunset and i : U - M indeesiee , then Is ) ) Ei ' Es , q ] = Eis , i ) = Eslu , Rlu] theHIM). - Hexe . SIE 0 implies Es , 27150 t ME HIM ) . ② For s.ge HIM ) , M : a)FL qlx) = Esigflx) . to C- IM ③ Suppen ( V. n) is a and on M and Size HIM ) wih SIE ?II and 4; ? ni # . then [ hin] ! § Hindi # , wbve tun:{ HiFi reif ) . Prof ① FT = SEHLN) f. MAN GE IN .IR) . ( Fs lg.tl/lx)--HIf*.g.l)--LIfEIk).g--f;jgi-e.fI.lgof)-(i. g) of It's , f) . (g. f) = f ; . (ff. (g. f ) ) ff . ( ff (g. f) )- ④g) of - h . ( s g) of = (Is ). g) of = E):( g.f) . ③ By ① , Thriller = Klo , Klo ] = = ! " : ÷ ::X * ii. ¥) "÷.se?dsiIIiEui-nihIE) , since [ ¥ , ¥, ] = 0 wie teuer t ! ¥] f = ¥ f) ¥ - II. f) j.tn deriv. of fait j 2nd Pokal derivdie of fait . = 0 by sguuery of 2nd partie der vehives - ② 74¥ = Ein] H . t '→ ITFI, h . F) ) k ) loudlg abfindennein IM . _ _ - d Caesi der a : IRZ → IR g.hn by f c. PIM, R ) altes) : = g. LFLIK)) . ( f. FI! ) = = TFL! helft ' k))> f) = ITFI! . q.FI ! ' f - q - alt, o ) = q ( FIG) ) . f ← alois ) = (TFL ; Kk ) ) . f = gk) . ( f. Fl! ) ← ¥alao ) = ¥1+ ! #Ek) ) . f = ¥ ftp.f) ( Ffn) - si ( g.f) . ← ← ( o.o) = 4k) . ¥!!! Es ' ) = µ . (s f) . ← ftp..lt. t) = sik f) - a. Ist) - flat)- Elst! Ätna) f . Ü - f D Grins 4in EH IM ) [ 4g] = 0 ⇐ Flieg = y wheneuer defuad F- I. FLY = FLY . Elf when euer olefrueed - * :* in" ¥ ) Für# MAIN) Prof. see Tutorial . | HEIKKI nk ) live = Erik)+ o DIf.3.es#M,Nmfds. , f : M → N - map . Then s EHLM ) und qz HIN ) one f- related , if If I K ) = µ Ifk) ) ttx EM . Rennen Einen aveaeo find [ EHIN ) (or SE HIM) there is in general no veaor Lied ( se HIM) ( resp . RE HCN)) so that they are f- related . If f is a Local difteeaueud YE HIN ) , then 7 ! f- related vf , uaudy frz . Prop.3.IN f : M → N U - map hehweeu ufels . Suppen 4,4 E HIM ) one f - related to get HIN) resp . GEH IN) . Then this, ] is f- related to trug. ] . PI see Tutorial . n 3.7 Frobenius Theorem - Existeuce of flows of vector fields revisited : - = { E HIM ) • for HEM 7 an integre Curve c : IN M , OEI , do) - x ( CH) = FLIK) ) If 41×7=0 , then dt) - x neusten Curve . If Sk ) # 0 , then sly) to Vg EU , U neighbhrofx . =) integral Curve, through x is a 1- dein . subuefof M Heule , s deuanposes V into a Lanier of 1 dies . Subuifds given by the images of the integral und> through YEO. The hangeul Space of sum a subutd through y EU equots Rs ly ) ETGM . . . If we upon s by fs, for a nowhere vaishiugf-CLM.IR ) then the integral Curve> of A and 4 one just teprareuohrizatieeeg of each other ; Lance the defiue the some fomily of 1- dim - Sublabels. ( of U ) . . Suppose D : x n KEIM is a map that ossigus to each XEM a line Lx tragen ( ke . a 1- die . subspaie of # M) sit - 7 an open neuer { U ; } of M und local redd fields S ; EHLU;) s.t.si (y) span, lg ttgt Ui Ui . Then for each x EM 7 ! ↳ ad Scuook submfd . Nx EM Srh - TYN. = ey ETGM Hye Nx DIEBE M mfd of dim . n . ① A distribution E of rank K an M is giveu by a k dim . Subspoce Ex EIM for each x EM . ② A ( smooth) SEHE ETM is a uecker tiddvf M s.t.sk) E Ex tx e- M . A Local sectieu oft defiued °" open Sunset U EM is a ↳ adveadtidd SE # LU) s.IS k) E Ex Fx EU - ③ A distribution EETM of rank K is udleed Smooth , if for any × e M 7 on open neighbhd . U of x and Loud Seetiers 4 , . . .sk EHLU) of E s.hr . { ssly ) , . . , S.ly) } is a boss her Ey Hye U . Sun collection of Local secti aus i Called a Local frame of E A Smooth distribution is also called a (smooth) vector Kebbundle of TM . ④ A distribution EETM is called invdutive , if for any Local seehaus s , q of E their hie backen Ey] is also a Load sectien oft . ⑤ A distribution EETM is called Integrale , if for FFM 7 a Smooth subufd N E M wir × e NS.t . hier any ge N IN = Ey ETYM . S" m submfds one called integral subcufds of E . Exrsheuce of flows for vector fields uuplies Prop.3.35-A.my Smooth distribution of rank 1 on a mhd is Integrale . Distributions of high Main are not always in hegroble . A necessary Landi time for iuhugrasilihg of a distribution is invdutivihy : het EETM he a integrale distribution and NEM is on integral Subufd , v. e. IN = Ex EIM KEN Assune s , y are Local sectieus of E defined an open nlignbld. U of x EN in M . Replouhg N by Nn U , we mag ossuu NEU . Stu and R ) , one i - related ho weder tredds T.IE HIN ) when i : N ↳ U EM is the Nansen . ( Tyi : TYN Ey ↳ IM Mondeodmd ) =) ES Iu , 4) u ] a is i related to IT. ÜIE HIN ) . Prop . 3.34 =) Es , q] ( y ) E im ( Tyi ) = Ey ty EN . - Frobenius Thin Shows theol also the couverte is true , i.e . any luueluhive Smooth distribution is integrale ,