Recall : Frobenius. ) • E ETM Smooth distribution that is iuvduliue . → E is iutegroble . • E iuvdut.ve dir . ← FE fdiatiou . Some applications of Then . 3.38 ( Frobenius Thun. ) to the Steady of PDES : Ex Cousin system of PDES for a fcl . f : IR ' → IR Hey, z ) wordin.ie, ¥ - ZZ ? ¥0 t 2 × ¥z = 0 "neu System of first Ndr PDES on IR} - 37T GG t 2g 0¥ = 0 Does 4) has any non- Laurent solutions f ? → see Tutorial . ¥ lausiger system of PDES for a fol . f : IR > → IR ¥4, y ) = a Kis , f Kis) ) (**) 0¥ ↳ g) = ß (x. y, fley)) < Iß Smooth fcls de find ou an open subset.VE/R3 . ¥ When does (** ) has a solution ? Conditions on a , ß ? → see tutorial . On the opposihe ending of integrale distributions ( among all dishr ) are the nocalled bnecket-geueratingdislr.in. : Def.3.LI A smooth distribution EETM on a mfd . M is called b rocketgenerativeg , if any Loud freue { 4 , - ich } of E to getno with its iheahed hie brocken Eli , sj ] , Tsi , Esj , sei] . . form a loud frame of TM Reina If a Loud freue is brocken generatrug around some point , then so is ocean french around that point . ¥ Standard unterm au RI E = < ¥ , ¥ + y ¥) suooku rank 2 distribution , [ % , ¥ ty ¥] = ¥ KE not a seckau of E . TIR' spannend hy % , ¥ ty # , ¥ H . ¥ Lautet uuanifohds M odd dim . uf of dim . 2+1 . A distribution E ETM ran is a connect distribution , if Eko> reuk Zu s.hr . L × : Ex × Ex → IM #ER is nen - degenerde " ( ' ' 2) n % ( LTTE ) k )) the M . Levi - brockeh Äh I. [ are extension of g. g. to Load uf . Wand × and % : IM → IM #× is tue Standard hprojedien . Heute A odd div . mfd . eqnippeedw.hu lachend distribution is called a wartet mhd . n, war ted geometry ! topology . EIN Driviug a war . Configuration space ) phone space of a cor : M = IRZX 51×51 ↳ ' y , d , ß ) T × \ lxtlwszsg.tl sind ) ) ( Hg) Position of | : %:: ::*:" to × - taxis b-→ es sheenwgaegteof y the freut wheels . Moving the Cor traversen a Curve clttkltl.gl/-),aHfsG)) In M . ¥ III) is werd to Is!!) ÷ !! !!!!) ) " - ↳ Is:c!:') j x ' lt) sin alt ) - y ' (t) Cosa la) = 0 ↳ ' lt ) - l sin ldr)) a ' (r) ) sin lautslr) ) - (y ' It) t l los alt) äh) los (alt) ßlt) ) =D n ) Solution ← ¥::') - * „ t.li::: ← ← " d steer vf : X : = § Fs ß drive uf : Y : = lwsß . ( Wsa Gz + Sha ) süߧ . ] d The two , neutral ' vector fields X and Y spon a rank 2 brackel Generalsrang distribution an M . ( X , Y , EX, 4) [4 , IX. YD (TM is spannend by X , Y , EX , 4] , EY, EX , 4]]) G- Nen E ETM a Smooth in ✓ du live distribution , we know that through eau point x c- M we love an integre subufd.by FB Thun . ¥ What about maximal integral subufd . through a point ? There one in general und subuetd . but so called initial Sub mhd . IR ? ( x. y ) ( x. y ) vechor tidd an IR ? . { IT I - ¥ ta § DER Tz le " , eig) ( = Rye) Integral eures www..tl! ) IR ' s is IT related to auf . a. T ' n ) integre Cervus of it are the image of the Delegat Cerues ofg wo T . little. . ) ) ) = ( e " .in/cT ? - If d rational , That's a subcufd . If a is irrational , it's not , because it wirds deuselg or and the Torus . In opproprihe dort around a point ( eit, eiat ) caesists of haenhably many line Segments Def.3.4.IM mfd . of din . u . ① For a Sunset ACM and x. EA let GIA ) : { + EA : 7 6 Smash und ( : TO , 1) → M Wireless NA and do) - Xo and ch) } ② N EM is Called on initial submfd . of M of din - K , if for any + EN 7 a non (Ku ) for M with x e- U adulx) and u ( ↳ (un N ) ) = u LU) n " × Sos ) . H NEM is on initial subwfd . Then 7 ! mhd . tue in Clustern Structure bu NS.t.li:1, M is on in jede immense wir tun pnorohg that for my ufd . P und auuop f- :P-1N we home f n smooth i. f is suook . ¥) . I.The home und Loup . one 2nd lautholde hat huuaenkddy way of than . ( so N night he und 2nd caenhoble ) . One uns ein on athos D= { ( ( × LUNN ) , a)× ! her warts es in ② . - • Eqnipp N Für tordogy genesend by ¥N) - sets → this to pology is in geued feiner than the subspoce topocogy an N indie cad treu M . In particulier . it is still Hausdorff . Transitives mops of B one scuooh , since resrrctians of Smooth Kings . ' Uniqueness fellows free H) ( el . sunuf . ) ④× ( Un N ) not open is sunspocehopobg . ; If i is a haue an . ouko ins image then it it is and 414N ) = Vs N for V E M open and Un U , Ulvsu ) is a submfd . hart ) Converse ly , one way Show that the Droge of on in jede immerzu i : N ↳ M wir popeiey 4) Is on initial Iubcuf . Gaming how ho integriere dir . / fdiatieus : hingehe EETM ✓ wir torrey . hedidie E FE - For my x EM bt FI : = f y EM : 7 are c : Eo, e) → M SI . do ) = x and CH) and c ' l t) feat) httEEO , 1)It is called the ten of NI . Nahe that it a plaque in Wien FF it nun , the lachend in that Knef . Ideen ce , kuepcoq es war kein ed in EE und reshictiees of Chart uueps war he used to give EE the Structure of a k dim . mf . • i : FI - M is initidsubmfd . ( Hansa . t AAZ ) . . It is an integre susmf . l TYFE = Ey Ty M tg ) . . Any uonnedud iuhegrd ( mild ) subuf . tudiekrseds EE ueuhoineud in EE ( EE = „ maximal nkgr.int . trage x " . ) Fdiatieu FE de vieles Mirko K dir . iutidesubmfds - Rennen We war equipp M wih a different uefd . Ihr . ME whee athos gun by pr, aua : ni ' (Wax la? ) → ! ER" her ( Ua , u. ) E FE . Topdogy on ME fuer teuer an M hut Id : ME → M is in jede knarre . Neu holouauic warst oiuhs : Lou >Wants on pontiac and uedoakg that can not we integrated ho coustroinls an positive only :