4. 2 Review : Multliueor algebra ° Suppe> e Vs , . . . Vr are (red) finite dim . Vector Spaces . For a vector sp . W we wrihe L (Vs , . . , Vr ; W ) for the Vector Space r - Linear mops thx . _ × Vr → W . Def.4.li Vn , . . . Vr Vectra sp . ⑦The tensor product of Vs , . . , Vr is V , . . . ⑦ Vr : LIVE . . . ! ; R ) . ② Er tun , . . , vr) Ehe . . x Vr We wirke 4 ⑦ . . ⑦ Vr E ↳ ⑦ - . ① Vr for the 40 . . ⑦ vr : ( Js , . . .br/i-;T=IJilu;) . Note that the uuop : Vax . . xvr → 40 - - ⑦ Vr ( 4 , _ . Nr ) N 4 ④ _ . ④ Vr is u r - linear mop , i. e . ① ELLY , . . . KiKa . . Kr) . Some properties of the tensor products - • Univ For any r - linear mop f : Vsx . . × Vr → W into a weder sp . W 7 ! liuew wop Ä : 40 ⑦ Ur - W s.hr . f- Äo ④ . v , × . . + v. f- W I ⑦ . . ¥ (ffn nur ) 40 - ① Vr Fly a . . )! In particulier , ftsfdefinesanisomopuisnl.LY, Nr ; W) ④" " %EE.Y.ii.%ecg%ae.ec?r-.wB-lMo*vriW) . • Association : . Uh ① 4) ⑦ ↳ ↳ ⑦ Vz ⑦ ↳ (naturel isomorphem ) . . (Y ⑦ Vz) ⑦ ↳ = Y Vs ⑦ ↳ ⑦ ↳ • Basis : If { ei ,}, ±, is a boris of V ; , i - 1. . . , r . wie n ; = diwlvi ) . then { (en , - - ⑦ erisr) } sei , ⇐ ni , sei Er is a how for Vs ⑦ . . ④ Vr dim IV, . . ⑦ 4) = !!dimlvi ) . • 7 Canonical isauopn.sn : . VÄ VI = (Vs ⑦ 4) * In ⑦ Jz F) (4041141%2) • Via Vz = 44 , K ) In ⑦ Vz 1- Ihn hin ) vz ) . . If fi : V , → Wi are linear mops i - 1 , . . , r , then by the Univ . property 7 ! linear cuop f, . . ④ fr srl . ⑦ ↳ x . . x Vr - 4×0 . . ① Vr 6mm Ks : [ fix . xfr lfn ⑦ . . ④ fr W , x . . × Wr ¥ W , ① . . ① Wr Det Suppose V is a vector sp . and Wide Lr IV , IR) : - L ( Vx . xv; R ) = V * ① . . ⑦ V * - _ - r r ① A r - linea more we Lrlv, IR ) is called alter uating , if W (von, i . . Nrw) ) = Sign lo) W ( m , . . , vr ) ✓ 4 , - Nr EU and RE Sr : = { r : { 1 , - r } 791, er } bijediens } . (⇐ w vannes it one iusers an danach twice ) Notation: We wie iv. =L:* MIR) ELRLYIR ) for the sub Space of r - linear alternative mops . We have a natural project ieee : AH : UHR) → % ( KR), Called alternativ , give by : Alt lw) k . . . Nr ) : = ¥ fjrguldwlu.cn. . . in). Note that , if we War LYR) , than Alt Lw ) = w . ¥ It follow, that , it r > d.mlv) , then Nv* = 0 by r linear .ly and since altern mops Vennes if an dauert geh insehed twice . - Also , if r = dimlv) , then NV is 1- dein . : Fix u basis B = { es , . . , er} of V , then de) : KVTIR ( the detern . of r neuer ) is on element of NX # . Ihr WE NW * , then wlv, . . . µ ) = detslv, . . . . 4) when, _ . , er). =) NV * = IR detß Notation ÄV : = ⑦ NV' wihku convention r ? 0 µV : = IR 1^4 : = V* It is o finite dim . Vector Space and any linear uvp f : ✓→ W iuauce, a linear luop f- * : NW * → NV* give by few K . . . , vr ) = w (fln ), . . , flur) ) . Which exheuds to a Linear uop f ' : AW ' → Ava . Note tud ( g. f) ' = f :S for g : WAZ hier weg . Def.4.6-we.NU , ze ASV ' . Then their Wedge product way E Arts wa is giveu by : Wir LY , . . , uns ) = Alt lw g) ↳ . . . , v. s ) ¥. !!! " " !" inkl: %! By liuoarhg , we war * had two to TV : { w ; ^ Eh; : = ¥, Wi 14; wie g. EÄV' . Prop.4.7-thevechorspoceNVF-qfrveguippedw.hn is an ( ossociohiue , uuitid ) gneded-lowuhati-edgebray.ie. : ① ( wa g) ne = wnlqse) wie, es iv. ② 1 EIR = IYV' Sdi > fies W two tv. . ③ NV ' n AV ' EN " V ' ( groelend algebra ) . ④ we NV ' , qe Astra : way =L- 1) " ysw ( groelend wenn Latina ) . More one , for any linear map f : VTW , tue luop f- * : AW ' → Aux is a grooud algebra morgen su : f- ( ung) = für ff fahr wa c NV ' . f- " 1 = 1 . Prop ① If we , . . , wr EV → and 4 , . . , v , EV , then war . . nur 14, . . , m ) = det Hits)) i.+ r In particulier , Ws , . . , w , are tiuuoly Inder . ⇐ Was . 1W, # 0 . ② If 9h , . . , du} is a basis of V " , then { hier . . dir : 1 Ein < izc . . < ir En } is u basis of N V ' . 4.3in M mfd . £ q um * Fix × EM Cousin IMOP.to/ItFTQTiM ① . . ⑦IM = = LLTÄM , . . , M.IM , . . .IM ; IR) . ¥ ) - - q und elende by (TM ) ② P # M ) 9 the di> joint Knien • E ¥ ) over dt x EM . . We have a natural project on IT : TM Pox TM ② 9 → M . It vdeuits kw Structure of a smookveaar made over M ( in duced from the Uecker hundle sruc . an TM and TM) . Def ① A (smooh) Htt an M is a ( smooth ) seelen of IT : TMQP ④HM )⑦ 9 → M . ② We wie TP , (m) for the near space of IF ) - Tensors an M , www. is also a modul der (M , IR) . If d E Tf In) , y c- Tsr (M ) , then 0/0×4 defiued by ( 10 ① y ) k) : = Hk) ① YK) tx c- M . is a ! ) tensor on M lxnlolx.vn ) 0×04. Louvoeitiee of sweden maps ) Support ( V. n) is a dort , than { # ⑦ - ⑦ ¥+0 du" ⑦ . . #diese ETF Iv) form a basis of T - 1k ) = IM P ① II M€9 . Kx EU - House my sediouo of IT can be written es : 4) $1 ¥?÷! ; #* * # ⑦ du " * - reden: U IST for real- ualued for ¥! ¥, an 0 . Smooth non of § is eguiv.to smooth f 0¥ :) her ayaort . They are called the Loud coordiwde express ia of $ Wir . to Win) Reine We how locdly way henkers and vie par titans of un .ly also globally . G- iveu § E TI ( M) we Lea landet a map ; also deuohed by d) 9iua.by:2 ~ § : TLTM ) × . . x TLTM) t TITM ) x . . XTHM) → Olm .IR ) ¥) | Lw: . . ii. u . . . . 4) * E " *). By ueustrucliau , this more is CYR) linear in eaa entry and by H ) 011W ! . . w! ! . . . , sg) is iadeediu ETM !since loudly on the domain!) a Chat it is gib by { d ¥, wi . . w ! ) . . sir which is a pm of a Product of Imad fcls . Reine A Sea end of IT is Sunde ⇐ 0/41. . , w ! } , . . , < g) In for sund 1- keins wi audveded Leeds sj . ( ol ¥ = olluldü:-. , dän , ¥. . . . , ¥. ) i Ro Rennert : Special loses . . 10 E TI ( M ) = T (TM ) is a 1- form and we know dnedy 01h ) : M → IR is for SE TCTM ) . • OIET! IM ) = T ( TM ) is a veda held : § (w) = w (y) : M → IR wihiu is a for Olt TM). Prop.tl#)defiuesaliueorisauorpwsn between Trevi and the www.cewi-kdiiiii " : ¥: %;) y IM AR) multi Linear mops . Proof We alneody know that d E TI (M ) gics rise to an deinen IÜWP and that 4) is linear fand in jeder ) . Carver sdy , lel 01 : THM ) x - x TITM) → Cola, IR) he LM , IR) linear . Then we love to show that 0/4) (wik) . . . . sgk) ) : = 011W? . . . 4) (x) . for 1- form, wi and reger fields sj just Mepm on the Value s of the w ' s und z ' s at × . In this Core , + AM× is a ( Y ) . heuser . It is sufticieul to show that if ay of the 1- fans arueao finds r venus at × , so does 011W? Ise ) k) . Support first r raines ident udlg on open heights. U of x and letfecdM.IR) sie . f) M¥1 and fk) - O ( we!!), Then fr = r and my Calm , IR) liuaerhy, we " " " ) ' hae j.fr, . . g) 4) = fk) dlwi.ir, . . so) k) = 0 This in plies that for a how ( Ku ) wir XEO , ¢ Lw! . . , so) ) u ( in polinnen utx ) , ja , ldlpeuds un tue neshidihs of the w 's and s ' s to U We love aha, . . . .si/u--EdiI::u:-u!sI...gie ↳ * ). - 0119dnis , _ . . %) . → If r 4) = 0 , then so one the load nordisch lepaessie at X and heule klar ? Sg ) (e) = 0 by TG) . Rennen Elements T! ( M) ( resp . T ; ( M ) ) are called p - Times contre vibriert ( resp . p Times Covenant tensors ) . Er . (pseudo.)- ← A tensor go.TL IM ) is called a Riemann: an uahäc on My it for any x EM the hihi wer fan gx : IMXIM → IR is symuetrc and non degenerde - H M is come chad , the signature (ng ) of gk) does not depeud on x and is netter referent to a the Signature ofg . In particulier , g is called a Riemen nie mehr C , if ghos sign . (n , o ) and Lorentzen if the signdue is In -1,1) or ( 1 , n e) . TM - R " Standard inner gmail give , Hot) Euch den uehic g = du②dritt . - tdx" die . Standard Lereuttia Neuer product an IR" Girls ( flat ) Lorentz in / Minkowski neue gr dxt ① die + die die t et die ④die .