Afewwmmeuts.IOConnection : ← ↳ , Rx and their flows F (B) = Betx ← Äh = ↳ V-BEGLln.IR ) FLEX (B) = e " B =) F ↳ = bis. FLI" FH (B) = ↳(ek) - Bett • - 2720¥ +2×001=0- 32-2%1 t2y¥ - O ~) X , Y E 0 , if del (A) < 0 ; they home oprositeorieuhotieu . • „ Moving the sause orientetieu " defines an eqcivdeuce relation den tue sehr ef ardvad boris of V and 7 exackytwoegu.name dieses ' • An orieuhotiauouv-istheao.ee of one of these two Classes and a weder space wih Chose anzuhalten is Called on oriented wecker space . Haring wogen an onaehotieee an V , we well the ordeed basis in this Chose egu.ir . dass es positiven oriented and the aus in den aber dass hegdiedy araehad - • Standard an euhotieu an IR " is bleiern: und by the Standard ↳ is { es . . . sei . A basis { es . . . , on} is positiveleg orieeted Wir ho Kee standard wa orientalen , if der ((es , . . son ) ) > 0 . • Gieren hwo n dim . dreimal veaö Spaces V end W , then a Linear isomorph A : VTW is orientierten preseruey , if A mops a lheuce any) positive leg an eekeed has to a positive G oriented basis . Other Wise , it is called orientalenneuerung . Oh man ifdd , we can Talk about orientatieus andere taugen Spaces ; we weed nation of Suu ohne : Def.5.IM mtd . ① M is well ed oriente ble , if one can aoose an orientalen ° " IM t x EM such that the fokowiugkdeds : For any loud from { se , . . , gib on an open Connectionnet UEM , the house { snlyl, . . , snly) } of Ty U IM ie eitler positiveleg oriented tty EU or uegdively oriented VYEU . ② If M is o neu hohe , a Chaco of oneukatiaea.IM # e- M as in ① is Called an oriente time on M . An arieuhable mfd . wie a Closer anatolien is Called an oriented ueouifdd . . If M is nennedid and aieihedde, it is easy to see that on dienenden is alreooly by the done of au einholen an die tangente Space . Heule , on a Connect aieuhablemfd . 7 exoctly two oricuhatieus. a. An open kebset U of on men Led info . M is ihelf in a naturel way aseeheduefd . Def.5.2-supp.ae Maud N are anziehend uefds. und f : MTN a Loud diffeau . Then fis called oneukatieupreseru.bg , if the hin . isdn . If i. IM → TIN is anatolienpoeseru.tt/EM.0rieulatieuviespecidatloses:Def.5.3-M mhd . ① An ¥4 an M is an ottos A- {( Ua .ua ) , *I } for M s. g. for any als EI W.tn Von Us #0 the transition cuop Ußoui ' : Ua ( Van ) -1 Uß ( Udp ) hos tue großartig keot DU det ( D (ußouä ) ) > 0 on Walks) ② Two oriented atom on M are Called Übel, if their union in agoiu an oiaehudatbs . Prop.5.TN mfd . of dim . n Then the followmy one aequivalent : ① M is orieuhable ② Module an asanhed athos ③ 7 n form WE du (M) s - t . WK ) # 0 VXEM . PRI ① ② Support M is orientale and fix on anbeteten . Cheese athos an M , A- = { ( 4. u. ) :< EIG such that Wa is ↳nneched Here I Ina : IU, I.¥14) is eine areuhotaepneservy Epic Vx E Ua or Orient . neuerung- THEUa . In the first love we keep tue hart es it is , in tuesecaud linear leere We Coupon tue www.houorieukeetieee-reuersmykuegsIR " -1 IR " ( exchange ten first two verwies ) . In this way we anton an Oriented alles . ② ③ Lel A- = { LK , u . ) : < EI } he an aiahedatlos for M . and 9¥ ! ⇐ „ a partition of cnn.by that is subaridiuate to U = { Ua } , ° For each IE IN devon d ; EI s?. Supp ( ti ) c Ua ; and dehne wie SMM ) by W ! - fidujnr.edu! ( extended by Zero to M wie bunptd . ). Ser W : = { wi Since suprllr ) is locdly heute , JEN W is a Smooth n fan an M . Fix × e- M . Then Ef : k ) = 1 im ph.es Zi s.l.fi/x ) > 0 . i EIN By definition , wilx ) 6¥. ) . . , %;) > O - = fik ) Since the athos is ariahed and dl Ag ' s Leon men - hegdeve Vdues an M , we home wik ) (¥;) . . , ¥;) 70 VJ . wk ) * 0 . ③ → ① WER " ( M ) nowhere raising . For XEM we hallo haisis Iss , _ . , sie ) IM positiven erntend , it wlxtlse , _ Ku ) > 0 . This yields orientieren an M . D Rein • Ever y oriented athos determinen an erahnten on M and two areuhed etwas an M defeuiuud tue saure erroetete if they are anzutreten - eyn.name . Simi harley , any nowhere warming n ton W de herum an araieotieee and any other sum foiuvdewm.us Leuten einhalten , f 7 positive 0-wopfi.M-IRS.tn . w = FT . * Giveu an unrentable mhd M , a voice of orientalen an M is equ N deut ho a voice of Üuox, und areeheolotloses (an egal . Cross of erahud atloses) und also hob Gore of nowhere von idi wg n fein up to multiplenNeee by a poste seh fcf . ¥ M = IR " is orieuhable . Er Möbiusband is not orrenhedsle . ¥ IRP " is oneuhdde ← n is odd . 5.sn/utegralsSupposeMis an oriented n dim . mhd . and let A- 9 ( Ua , u. ) : a EI } he an aranhed altes regsreseeday the eu orientierten . We Witte supplw) ÷ fxEM.eu#FO3- for the Support of a a dift . form w ER " ( M ) und RI ( M) for ten Space of K focus with Compact Support Suppe w E RI ( M ) - Since surplw) is hanpoa, 7 fiu.by way Charts ( Ui , u ; ) i = 1 , . . , l of them the areeked atlas A s. ) . supplw) c Uno - U Ue - Furnier , lel fj : MT [ b. 1) he suuooh td . 5=1 . . . , e s. ) . supplfj) c Uj and Iff;) = 1 . Supplw) (Goose u partition of cnn.ly suborioinde to { Us , - , 4. Mlkepplußand het f , he the Sun of all tds wir Suppen in Uy , fz the Sun of the reeuaicug Ids . war deppert M Uz and be on . . ) , u; lfiw) (es . nen ) - Kw : Is !¥;)heilig)) Haien. . . . I en )w = Ätiw t.io er:( u ;) . tiwlii ' b) ) 1¥: In y) ) . . , ¥-4:) Supp (fiw ) is a con pod Set of Ui , so tue right - hand - siehe equeds a Luke sum of integrals of fds . wie Conrad Support, und Lance this ruwgrd is Luke . Let us Check that fuw is well detmed , i - e . Independent of all Koreas we made : Suppe (Vjivj) are fiuhely many Cheers of the maximal altes deleuiad by A and gj , M → [ 0,1] flhrhedg way sand fds es ohne Conor . wie ' respect ho here Charts . - w = ?GJW und Lance fiw = {tigjw - ? ! luiilgllltguies . . . , Tsui 'er ) - = . ! !!.jp?wlui'b) ( → - ) = %. Sfigiwtnt ( → - ) suppltigjw ) hilinvj) ( Uinvj %!! teils) ) Linien . - ein .im/-=fdetlDkioui)tigiwkilsDlTiiij!;)uitvisvs) = !! ii. Yi" ) Hüte. . . . Türen ) = iF" Since l : gjw veiishes outside Vj ( U: s Vj ) . Deuce , fnw is well definiert . Prop.5.5-Mmf.ee . of din u . Then JM : RL (M) → IR is a sur jedem linear uuop . PI. liuaaiy toll aus freu tue de find ie and Lively of Negra of Kt - an IR" . Susjechvily : It remains ho aww that 7 WER ! (M) :L 1µW # 0 . Lewon u am (Un ) and a Snack war soo 1a . f: M - HR > • wir Conrad Support in U . W: = f- du's . . nduu Lae we extended by too to on dauert in RY (M) . → Smw f.für > 0 . Special ① M = IR eoenipred wir Hadad verrenken , for a < b and w - f dt E RTR) !! = ÄH) dt . ② Line inhcgnds : VEIR " gen Kessel , w - ¥, widxi C- NN !and g : I → V - Cure , IEIR open Merced . → ¥ * w = .IE/lwioJ)lg-ilt) ) dt ( I like integral uf w okay g. Ü!