5.3Manifddswithboundary-Def.5.CAn dimensionen (smooth) moni total with boundary is a Hausdorff , sehend cauntable topdog . Space M aguippad with a maximal atlas of Charts with Value s in _ ⇐ "zz the half space H " : { 41, . . . × " EIR" : x ' EO} . = • # Aatw.EE} of M wie ✓du es in H " is a Collection I of homeauarpwsu " a ' Ua → Udk) EH " E IR " , Wwe Ua EM and UdK)>H" are open Sunset g. \. . • M = Vater • hä nö : na ( Van Us ) → adh G ) . • ne smooth , www. means that they can he extended to devote mops definad on open Subset of IR " Conboin ] Ua ( Van Up) . . A point x EM is called a boundary point of M , if I a Choir (Ua , ha ) s . t . × E Ua and Uak ) E hat 4)n 304×151 = ↳ LU )n OH " whve OH " = { 41, . . . xu ) c. Hh : +1=0 } . We wrik IM = { × EM : × is a boundary point } . Note that x e- DM ⇐ V Charts ( Ua .ua ) EA weh XE ! Leak ) e OH" . . Pointe × E MIOM one Called interior point . xe MIOM ⇐ Udk ) E HHIDHU H Chart ( Ua , Lea ) weh XE Wa . Prop.5.7-Mn-diuu.lu/dwihbowedaydM-to/ . Then OM is a (n s) - dim . mhd - without boundary . Prod An athos for DM is give by { ( Van DM , klang:* ( Unna) EA} , whee A is out otto, for µ . ( udk ) n { OSXIR " " is open ink" ! Ex . MFB" = { × EIR " : IKHE 1 ] n = 2 0¥DM = S " - 1 = 9 × EIR " : IKII = 1} . B2 E. Rotatatieu of 132 brand a Circle Leeds to a lufd wie boundary M s . L . DM = T ? Ah Concepts such suwok mops , weder fields ; differential fan) etc . Wo Kos also Leute for Kidd . Wik boundary . • If i : DM ↳ M is the natural indien , then it is Smooth and ter any K - fern war M , Tw is a kfernen DM . • + E 0M , M EIN . An oriente time on M ( defrued es tarnt . what boundary ) . iudnces an orientalen an OM : Support B { ( Ua .ua) , < EI } is on aneuteidatlos for M and Laesion uoouj ' : 6. (Ua. ) ↳ ( Ua. ) for two Charts in B . As dsservld , Walks )s So SXIR " -1 is luopped to UßLOAßISSOSXR" -1 . At a pour + = (O , Xl , . . , x " ) E Ua ( Un ) the der vdive Dfu, nie ) ↳ tue tdlouuy fan D. um:) = ) IIIa. . AE Mux ! R ) . Ugo Ua - 1 mops in Wien Pauls ↳ Tukur raus , i. e . pauls wir hegen + ^ ho paule wie negativ +1 , whin in pures b > 0 . Sauce del ( Delusoui)) > !this im plies der (A) > 0 , when de Scriba die derNolde of the transitiv mops of tueottos on 0M iuduceol by B . Hence , tue athos an OM Medical by B is also brechend Suppose M is a mhd . Wir boundary of dim . u . If WE R (M ) , then w Vennes an den open Kessel Mlsupplw) and so does dw ( by Then -4.28 ) www.iuplies that a supp Cdu) csupplw). In partei War , dw E RI ( re) - Thin ( Stokes Theorem) . Suppose M is an oriented n dim - mhd . wie boundary DM . For any we R ( M ) we home : %- = !: t.fi;) . In partikular , it M is a maitddwihobut bei ndeoy ( 0M¥ then fdw = 0 . M Proof Assuue WE RI - ^ ( M ) • het ( Ui , u ; ) i - 1 , . . , l he war of on areuhed athos of M Sir. supplw) ⇐ U , u . . u We und fi : M → [0,1] i - 1 . . . , l Sunde tds s . l . Suppen;) CO ; and %)i ) = 1 . Supplw) • Then I Vis DM , uilu.fm and film war ↳ und www.uefmw : µ - Ishii• Also , w = :[tiwiupiiesdw-I.attiw) und supp (d # iw ) ) c supplfiw) EUI Heule , {dw = II !! Hiw ) It suthces to how that [dlfiw ) = Gut; u t i . Without less of geeerdihg , we Lance ossuue scyplw ) is uaioiued in daran of one Single Avv ( U , n ) . Then w = Efi drin . . nduin . . n du" ← toi Smash fcts W : : Mt IR weh Corral superb in U . " the taugen Space IDM her + e- DM is spannend ¥ , i > 2 . =) du ' 10µF 0 and so wfj-pyw-duh.indan Iw = !! = Shou" ←IM T lolx IR " -1 W , ho , haipvct Support In U . ' By Then . 4.18 , dw %fdjui-duindcinr.netin - sehen= = §! n ) " " du ! . . nduu . = { dw = Ist- e) " " / Hui = ulo ) Oxi n Olwi . un)= E ) G ) i i - 1 ↳ .am !" Wi ho ) " lourod Suppen Hn µ in U Fu bin i Then for integrals allows to delaware 4) in toihtegnds der the individual Coordinator iwhee tee oder of integrative doesn't matter . o d dw - {" ( / d) du . . die - a + Ii" " !" !!! dei )- äi:* = !!! " - 1)(O , ¥ . . , xh ) dx ? . den FTC + wihove = {MW - gg . loupocl Support 5.4DERhamwlomology.az(M ) : = ⑦ R " (M ) SEIM) los for KS die (re) n µ KEIN grddad neuer space • gmdud-lauuhd.ve algebra w.r.to ^ : S2 " (m ) n helm ) E R " " ( m ) Why = L- 1) " ey 1W WERK (m) , ze Relay) Moreau , we home a Linear mgs el : RIM ) → RIM) While is o grad deinetien of degree 1 of Chloe) , 1) . O_0, sik ) d-, Ryu) → . . . -7 szd" ' " (re ) 3 o By tun . 4.18 : = O P Det we ULM ) ① w is closed , if dw = 0 ② w is exact , it 7 yen SELM ) s.tw = dz . d ? = 0 =) any exod form is Closed . . Key, (d) = : ZLM) c RIM ) subspace of Closed oliff- focus { WEAR TM ) : dw - O } i We wie ZKIM) = ZLM ) ne " (re) It is a subalgenraog@lMl.n ) i Snce d (way ) = dwnztl- 1) " Wendy ter WERK IM) . • lmld) : BLM ) EZIM) E RIM ) is u sub Space . It is a two sidud ideal in ZCM) : F- die ' y ' En " Im ) , we ZIM ) d hin ! ) = t.dk/swtl-s)Ydw--qsw--=Y- O = → HIM) = ZLMYßIM) = q.HN/BryMjTYM) is o groded www.hd.ve ( uurtid , ossoa.de/olgebruawlR . It is called tue de Rlaam www.logyalgenra of M and HIM ) tue k the de Rhea cdauology (Space argrap ) of M . For WE Z " (m ) we warte [ WIE H " (M ) for its loluauology Closs . Rein , [ w] ^ Ey] : = [ way] [ w ] + Ey] , = [ Wtq ] JEW] , # [du ] J ER - Klein. If M is Lear pod , H (M ) is find - dimensionale Also time for way ohne non wurde uebels. but not for all . • f : MAN Guuop kehren nfds . = , f- * : RLN ) → RIM) dg . warum . Since F. d = d. f. ( Tun . 4.18) , f- LZLN ) ) ( ZH) und f- YBLN))( BLM) and here f ' Indices um degen ne luarphlkn : f # : HIN ) → HIM ) ( f # ( H " IN ) ) [ w ] IN [für] . c HMM) ) . • ( got ) # = f # . g # for ander Gup g : Nt } P µ between wfds . lf f is a diffeaurpn.sn , then f# : HEN ) > HIM) is an isomorphismen wie muerte (f # ) - I = (f) # . ( So di ffeau . mfds love isomorphie de Rhea hdouudogy). M and N In fach , Smootnly hauohoprcmfd-isauernh.ch de Khan Lobo uiology ( 70mops f. MAN and 9 : NTM sie fog and got are zueootnly kauohgsrc tollen identity ) . • . In fach , von hinaus leg hawhonic Centos home isouuerpvc der war Coleonulogy ( in Partido , heaueaudperc ①mhd, love isomorphe de Rue cdouedogy ) . . de Rhein Thun : de Rhone cohomology = Singular cohauology of M wie red coefhicieubs ~, Kon use tools freu algennaictor.bgy to leugnete de Rhoen lokaudogy . ¥ M - IR " Holm ) = IR An, ↳ seid fan is doch an IR " H " (M) = Sos K > 0 =) Poiucore Laune : On any mhd . , ony •seid form is ↳ cdly exod . \