HOMEWORK 7-2020

Exercise 1. Let $f: M \to N$ be a map between two oriented compact manifolds of dimension n with fundamental classes [M] and [N], respectively. We say that f has degree d if

$$f_*([M]) = d[N].$$

Prove that for every oriented compact manifold M of dimension n there is a map $f: M \to S^n$ of degree 1. (Hint: Find a geometric prescription and use the definition of the fundamental class via local orientations.)

Exercise 2. Use cup product and \mathbb{Z}_2 coefficients to show that $\mathbb{R}P^3$ is not homotopy equivalent to $\mathbb{R}P^2 \vee S^3$.