MAKING GOOD'S BUFFERS GOOD FOR FREEZING: THE ACIDITY CHANGES AND THEIR ELIMINATION VIA MIXING WITH SODIUM PHOSPHATE [1] 1 HEPES and Na‐P Mixture, pH=7.5 Cresol Red (CR) Bromocresol Purple (BCP) Lukáš Veselý 1, Behera Susrisweta 1, Dominik Heger * 1Department of Chemistry , Masaryk University, Kamenice 5, 625 00, Brno Czech Republic e‐mail:502102@muni.cz,*hegerd@chemi.muni.cz MOPS and Na‐P Mixture  pH=7.5 MES and Na‐P mixture  pH=5.5 𝑯 𝟐 𝒑𝑲 𝒂,𝑰𝒏𝒅 𝒍𝒐𝒈 𝒄 𝑰𝒏𝒅 𝒙 𝒄 𝑯𝑰𝒏𝒅 𝒙 𝟏Molecular Probes for H0 Conclusion How we measure the pH Change? 1 2 3 1 2 Introduction: Freezing of (bio)chemicals often leads to deviations from the optimum pH which cause compound’s degradation, e.g., protein aggregation[2] .So, we would like to present a straightforward and efficient approaches to reduce the freezing-induced acidity changes by blending two different buffers which are commonly used for biological samples . This approach can be highly helpful in both the pharmaceutical domain and those branches of science where freezing is the preferred method for long-term preservation. References [1] Lukáš Veselý, (2021)” Making good's buffers good for freezing: The acidity changes and their elimination via mixing with sodium phosphate” Int J Pharm 593, 120128 [2] Zbacnik, T. J., R. E. Holcomb, D. S. Katayama, B. M. Murphy, R. W. Payne, R. C. Coccaro, G. J. Evans, J. E. Matsuura, C. S. Henry and M. C. Manning (2017). "Role of Buffers in Protein Formulations." Journal of Pharmaceutical Sciences 106(3): 713-733. [3] Thorat, A. A. and R. Suryanarayanan (2019). "Characterization of Phosphate Buffered Saline (PBS) in Frozen State and after Freeze-Drying." Pharm Res 36(7): 98. B. Freezing–induced acidity changes in Good’s Buffers[1] A. Freeze concentrate solution 350 400 450 500 550 600 650 700 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Absorbance 350 400 450 500 550 600 650 700 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 Absorbance C. What happens when we Mix Good’s Buffers with Sodium Phosphate Buffer ? 4 5 6 7 8 9 10 × × ? ?? MESMOPS Good's Buffer HEPES × pH 0 20 40 60 80 180 200 ? × × × ? × ? × ? ? MESMOPS c/mmolL-1 Good's Buffer HEPES ? × 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 pH H2 HEPES 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 6.5 7.0 7.5 8.0 8.5 9.0 7.0 7.5 8.0 8.5 9.0 9.5 10.0 pH H2 MOPS 7.0 7.5 8.0 8.5 9.0 9.5 10.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 7.0 7.5 8.0 8.5 9.0 9.5 pH H2 MES 7.0 7.5 8.0 8.5 9.0 9.5 1 pKa=7.45 2 pKa=7.20 3 pKa=6.10 400 500 600 700 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14  nm 6.0 6.5 7.0 7.5 8.0 8.5 9.0 A 2.7 2.4 2.1 1.8 1.5 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 A ~ / (104cm-1) a 400 500 600 700 0.00 0.05 0.10 0.15 0.20 0.25 nm 6.0 6.5 7.0 7.5 8.0 8.5 9.0 b 2.7 2.4 2.1 1.8 1.5 0.00 0.05 0.10 0.15 0.20 0.25 ~ / (104 cm-1) A A 0 5 10 15 20 25 30 -7 -6 -5 -4 -3 -2 -1 0 1 H2 c(HEPES) /mmol L-1 (H2pH) 1 2 3 4 5 6 7 8 0 5 10 15 20 25 30 -7 -6 -5 -4 -3 -2 -1 0 1 c(MOPS) /mmol L-1 (H2pH) H2 1 2 3 4 5 6 7 8 1 10 100 -2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 C(MES)/(mmol.L-1 H2 4.0 4.5 5.0 5.5 6.0 6.5 7.0 (H2 pH) UV‐Vis Spectra of  HEPES Buffer  Room Temperature(RT) Fast Frozen (FF)