Phylogeography of Arachnids Věra Opatová Dept. of Zoology Faculty of Sciences -Charles University Biogeography Processes responsible for current and past distributions of the biota Ecological Biogeography – species/intraspecific level - limiting characteristics of current distribution - ecological preferences, environmental factors, competition, host distribution…. Historical Biogeography – related taxa, family level - processes that shaped the distributions into the patterns we observe today - geological history, climate …our resulting hypotheses are only as good as our input data and our own biases… …our resulting hypotheses are only as good as our input data and our own biases… [particularly in case of Historical Biogeography] Evolutionary theory + Biogeography - Ch. Darwin (1859), AR Wallace (1869, 1878) Plate tectonics theory (Continental drift) formulated 1912 by Wegener not accepted until 1960s à Dispersal is responsible for today’s distribution patters, same geography X Vicariance – Croizant 1950 The organisms had the same distribution in the past (always!) - slow steady spread across continuous land, barriers appeared later What is the contribution of each process? Fossil record and the lack of thereof - not very rich in case of Arachnids, extinct lineages - difficult to assign - modern lineages in amber: Burmese (~100 Ma), Baltic Amber (~44 Ma) Dominican Amber (~30 Ma) - more resources: https://wsc.nmbe.ch/resources/fossils/Fossils20.5.pdf …our resulting hypotheses are only as good as our input data and our own biases… [both Ecological and Historical Biogeography] Taxonomy/understanding of Biodiversity - what is a species, how many species there are, how are they related? Resources/Interest and the lack of thereof Cox et al 2010 Phylogeography Phylogenetics + Biogeography (Avise 2000) Geographic distribution of genetic lineages (traditionally - closely related) The question remains: - Which processes shaped the current and past spatial distributions of these lineages? Implementation of molecular methods – new perspective - geographic structure in the populations - geographic history, dispersal routes & barriers - concordant patterns among different species - conservation purposes - potential existence of cryptic species - taxonomy - molecular dating Avise 2000 Dispersal? Introduction? Vicariance? Extinction? Archaeidae Deinopidae Salticidae usually a combination of more than one factor… Dispersal in Arachnids Active dispersal: Ballooning: spiders Walking Sailing Tumbling - Cebrennus rechenbergi The capability to overcome barriers differs significantly Key role in colonizing new habitats - weak population structure in highly mobile groups - deep population structuring in sedentary groups Passive dispersal: Phoresy: pseudoscorpions, mites, Attacobius attarum Rafting – short/long distance dispersal Accidental introduction: synanthropes in advantage Airborne/wind: mites Host mediated - ticks Camargo et al 2015 Jaeger 2014 Hayashi et al 2015 Phoresy Attaching of non-vagile individual to a different species “carrier” Colonization of temporary habitats Little information about the genetic structure of phoretic species Dunlop & Penney 2012 44 Ma Zeh et al 2003 Cordylochernes scorpioides Pfeiler et al 2009Dinocheirus arizonensis Chernes hahnii No geographic structure across Central Europe Opatova & Sťáhlavský 2018 P. lacertosus, C. beieri – likely phoresy on birds Harvey 2013 Chernes beieri Opatova & Sťáhlavský unpublished Host mediated dispersal and radiation - Rhipicephalus ticks Bakkes et al 2021 Bakkes et al 2021 Host-enabled dispersal events to new environments followed by local adaptations larvae on large and mobile hosts à larger ranges, slower rates larvae on small and less mobile hosts à smaller ranges, faster rates Host mediated dispersal and radiation - Rhipicephalus ticks Ballooning aerial dispersal Long/ short distance dispersal juveniles of large species/ adults of small species very common in Araneomorphae - may differ within a family uncommon in Mygalomorphae - not as effective In all cases the ballooning individuals must land in an area with favorable conditions or be preadapted to novel conditions Argiope bruennichi – range expansion Krehenwinkel & Tautz (2013), Mol Ecol Krehenwinkel et al (2015), Glob Change biol Mt diversity - higher in invasive populations Body size - smaller in invasive populations Cold tolerance - differences in gene expression SNP Cheiracanthium punctorium – range expansion native populationsmicrosatelites cox 1 Initial environmental change triggered preadaptation smaller body size in expanding popuations Krehenwinkel et al (2016) Herennia (Nephilinae) – area expansion or introduction? Coin spiders presumably do not balloon Is the Asian distribution range of H. multipuncta natural or human-mediated? Turk et al 2021 Turk et al 2021 Divergences date back to Pleistocene Did Herennia regained ballooning capability? Island biogeography dispersal vs. vicariance Continental islands – split from a larger landmass; vicariance* + dispersal Oceanic islands – volcanic de novo origin; dispersal carrying capacity = turnover equilibrium Cox et al 2010 Oceanic islands “biodiversity and evolutionary lab” volcanic hotspot Hawaiian island chain Successive colonization abundancy of available niches à adaptive radiation colonization via - ballooning - rafting - anthropogenic introduction Cox et al 2010 Croucher et al 2012 Hawaii Theridion grallator Distinct monophyletic clades – currently little taxa exchange Younger island colonized from older ones – “progression rule” Rapid colonization from Oahu Juan Fernandez Linyphiidae 50 native sp. of spiders, ~70 % endemic 40 % Linyphiidae 3.8 - 1 Mya Arnedo & Hormiga 2020 5 independent colonization events (Laminacauda 2x) à adaptive radiation - spatial distribution - foraging strategy Arnedo & Hormiga 2020 Arnedo & Hormiga 2020 “Old taxa on young islands dilemma” Fossil and mt rate calibration in agreement 41 Canary Islands high levels of endemic organisms Canary Islands Dysdera oniscophagous sedentary dispersal by rafting Macías-Hernández et al 2016 Canary Islands Dysdera 48 endemic species 2 x colonization, 1 x radiation black – shared grey - endemic Macías-Hernández et al 2016 Arnedo et al 2007 Co-occurring species - differences related to prey capture - different microhabitats Řezáč et al 2020 Canary Islands Titanidiops canariensis trapdoor spider sedentary – colonization via rafting, only 1x 7.5 Ma at least 2 cryptic species Opatova & Arnedo 2014 Continental Islands – geological history of the Western Mediterranean Early – Middle Tortorian (≈ 11.6 – 7 Ma) MSC (5.96 – 5.3 Ma) Rosenbaum et al. 2002 Paulo et al. 2008 Continental Islands – Parachtes Dysderidae (generalist) Sedentary à Hercynian belt breakup Bidegaray-Batista & Arnedo 2011 Opatova et al 2016 Continental Islands – Ummidia Trapdoor spider with ballooning capability; mostly vicariance Distribution modelling – assessing ballooning capabilities Niche overlap, but no gene flow Opatova et al 2016 Amalgamation of Gondwana 520 – 510 Ma - southern hemisphere Laurentia, Baltica, Siberia – in the north - formed Laurasia in Paleozoic, ~ 300 Ma Late Paleozoic – Pangea formation - lasted ~ 100 Myr Pangea breakup - Central Atlantic ridge ~ 200 Ma Will & Frimmel 2018 Cox et al 2010 Pangea formation Gondwana disintegration Will & Frimmel 2018 breakup from Laurasia - Central Atlantic ridge ~ 200 Ma Lower Jurassic ~ 180 Ma East/ West Gondwana breakup Upper Jurassic ~ 160 Ma India-Madagascar/Antarctica ~ 160 Ma Antarctica/Australia Lower Cretaceous ~ 140 – 130 Ma S America/Africa Upper Cretaceous ~ 80 - 90 Ma Madagascar/ India Laurasia breakup ~ 55 Ma S America – Antarctica – Australia land bridge up to ~ 30 Ma timing updated contiguously, controversial topics remain Will & Frimmel 2018Cox et al 2010 Cox et al 2010 The movement continues ~ 5 – 10 cm/yr Laurasia breakup ~ 55 Ma, land bridge ~ 25 Ma S America – Antarctica – Australia land bridge up to ~ 30 Ma timing updated contiguously, controversial topics remain Cox et al 2010 The movement continues ~ 5 – 10 cm/yr Ms. A. Williams 730 cm/30 yr Palpimanoidea continental vicariance? ~ Gondwanan distribution araneophagous: modifications Wood et al (2018) MPE 127: 907-918. Archaeidae Mecysmaucheniidae Palpimanidae X X Land bridge E/W Gondwana Dispersal to AF Palpimanoidea continental vicariance? Wood et al (2013) Syst Biol 127: 264-284. Deinopis continental vicariance? GAARlandia land bridge Greater Antilles and Aves Ridge – land bridge connecting S America with the Greater Antilles Eocene – Oligocene ~ 35 – 33 Ma Chamberland et al (2018) Deinopis continental vicariance? GAARlandia land bridge ? ? Gondwanan origin ? long-distance dispersal Supports GAARlandia Also in: Loxosceles, Sicarius Heteroctenus scorpions Not in: Tetragnatha, Selenops Chamberland et al (2018) Binford et al (2008) Crews & Esposito (2020) Čandek et al (2021) Deinopis continental vicariance? GAARlandia land bridge Greater Antilles colonized 1x from S America à back colonization African origin of the Old World taxa Chamberland et al (2018) Ummidia continental vicariance? Opatova et al 2013 Halonoproctidae – Laurasia breakup Laurasia breakup ~ 55 Ma North American land bridge up to ~ 25 ma Macrothele continental vicariance? M. calpeiana Bern Convention (1987) EU Habitat Directive (1992) - Species of community interest, need of strict protection both considered sedentary M. cretica IUCN red list, data deficient category Raven 1980 ? Opatova et al 2014 Macrothelidae Macrothele continental vicariance? Gondwana breakup European Macrothele are not sister species 2x colonization of the Mediterranean - Walking Opatova et al 2014 Moggridgea continental vicariance? Migidae – Gondwanan distribution X X X X X X 2.27 – 8.48 Ma Harrison et al 2017 Long distance dispersal – rafting - Also in Poecilomigas abrahami Opatova et al 2020 Amaurobioides continental vicariance? Anyphaenidae Around the world in 8 million years - rafting Ceccarelli et al 2016 Buthus scorpions in Atlas Mountains Mountains – in situ radiation, microallopatry Main clades overlap, subclades parapatric Habel et al 2012 Brachiosternus scorpions in the Andes Mountains – in situ radiation Coastal habitats stable – source of colonization of adaptive lineages Ceccarelli et al 2016 Primitively segmented spiders SE Asia Ganthela, Sinothela River formation, mountain uplift 1. Yangtze River formation (23–36.5 Ma) 2. Qinling–Dabie mountains (2.6–23 Ma) 3. Taishan Mts uplift - unsuported 4. Taihang Mts (3.6–5.3 Ma) 5. Yellow River formation (1.8–3.6 Ma) 6. Ordos bend coincide with its origin (1.6 Ma) Xu et al 2018 Harpactocrates Climate: Glaciations Dysderidae Ground-dwelling, sedentary Western Mediterranean Bidegaray-Batista et al 2014 Idiopidae Climate: Aridification of Australia Trapdoor spiders Rix et al 2017 Amalgamation of Gondwana 520 – 510 Ma - southern hemisphere Laurentia, Baltica, Siberia – in the north - formed Laurasia in Paleozoic, ~ 300 Ma Late Paleozoic – Pangea formation - lasted ~ 100 Myr Pangea breakup - Central Atlantic ridge ~ 200 Ma Summary Lower Jurassic ~ 180 Ma E/W Gondwana breakup Upper Jurassic ~ 160 Ma India-Madagascar/Antarctica ~ 160 Ma Antarctica/Australia Lower Cretaceous ~ 140 – 130 Ma S America/Africa Upper Cretaceous ~ 80 - 90 Ma Madagascar/ India ~ 50 Ma India collided with Asia Laurasia breakup ~55 Ma N Am land bridge ~ 25 ma Hercynian belt breakup 30 - 25Ma Beatic Rif broke of Sardinina + Corsica ~20Ma à Sardinia + Corsica collided with Italy, 10 – 5 Ma final separation of Sardinia + It Messinian Salinity crisis 5.93 – 5.3 Ma 5.3 Ma Opening of Strait of Gibraltar Last glaciation: 2.58 Ma to 12 000 ya