indian 1 monroe halle_berry Snipes lucy_liu_014 426px-Robert_Redford_2005 Jackie_Chan_2002-portrait_edited 401px-Morgan_Freeman%2C_2006 whoopi-goldberg 45745715_Oldaboriginalmanweb Evoluce je dvoustupňový proces: 1. (geneticky podmíněná) proměnlivost mezi jedinci v populaci 2. změny v zastoupení jednotlivých variant z generace na generaci http://upload.wikimedia.org/wikipedia/commons/2/2e/Charles_Darwin_seated_crop.jpg R.A. Fisher Míra zvýšení reprodukční zdatnosti libovolného organismu v libovolném čase je rovna jeho genetické proměnlivosti v tomto čase. http://www.pbs.org/wgbh/evolution/library/06/1/images/l_061_01_l.jpg Classical Genetics - World of Genetics Mendel and his work, Seven traits observed by Mendel | Study&Score Biometrikové: kontinuální proměnlivost mnoho genů často silný vliv prostředí http://www-history.mcs.st-and.ac.uk/BigPictures/Galton_2.jpeg F. Galton http://image.slidesharecdn.com/b1topic1-continuousanddiscontinuousvariation-140413152151-phpapp02/9 5/4-b1-topic-1-continuous-and-discontinuous-variation-1-638.jpg?cb=1397461750 Paradox: pro evoluční biology důležité studovat fenotypové projevy × pro genetiky snazší studovat přímo molekuly Zdroje fenotypové proměnlivosti: rozdíly v genotypu rozdíly v podmínkách prostředí maternální vlivy (paternální vlivy) http://static.topyaps.com/wp-content/uploads/2013/02/Evolution-The-Modern-Synthesis-Julain-S.-Huxle y.jpg •lokus = gen nebo jakýkoli molekulární znak •alely = alternativní formy genu (dnes širší význam – úsek DNA) •genotyp = soubor alel jednoho nebo více lokusů Gen, lokus, alela, genotyp AC: What is a Chromosome? What is a Gene? | Pangburn's Posts alela A alela G = genotyp AG gene expression Genotypové a alelové frekvence Relativní četnosti = frekvence: genotypové: P (fAA), Q (fAa), R (faa) alelové (genové): p (A), q (a) P + Q + R = 1 p + q = 1 3.1.jpg Evoluce probíhá v populacích… T. Dobzhansky, E. Mayr: populace jako společný genofond (gene pool) » soubor sdílených alel nebo gamet lokální populace (subpopulace, démy) globální populace, metapopulace Evoluce probíhá v populacích… populace přírodní, experimentální, zemědělské, modelové Lokální populace sdílejí i systém páření (system of mating) T. Dobzhansky, E. Mayr: populace jako společný genofond (gene pool) » soubor sdílených alel nebo gamet foto_011 Modelové populace: HARDYHO-WEINBERGOVA POPULACE Vlastnosti: diploidní pohlavní rozmnožování diskrétní generace 2 alely, segregace 1:1 stejné frekvence alel u obou pohlaví Vlastnosti: náhodné oplození (panmixie) opak: asortativní páření, příbuzenské křížení velmi velká (efektivně nekonečná) velikost žádná migrace žádná mutace žádná selekce Modelové populace: HARDYHO-WEINBERGOVA POPULACE George Udny Yule Proč v populacích nepozorujeme poměr 3:1? Reginald C. Punnett: brachydaktylie http://www.dnaftb.org/images/5/Punnet.jpg B b B b bb Bb Bb BB Proč v přírodě nepozorujeme mendelovské poměry 3:1? Godfrey Harold Hardy File:Ghhardy@72.jpg http://classconnection.s3.amazonaws.com/89/flashcards/4667089/png/brachydactyly-14423EE20494848DF9B .png R. C. Punnett http://www.dnaftb.org/images/5/Punnet.jpg 1908 HARDYHO-WEINBERGŮV PRINCIP Godfrey Harold Hardy (1877-1947) File:Ghhardy@72.jpg File:Wilhelm Weinberg.jpg Wilhelm Weinberg (1862-1937) p2 + 2pq + q2 = 1 1. Frekvence genotypů závisí na frekvencích alel v populaci 3. HW rovnováhy dosaženo již po 1 generaci náhodného křížení Zobecnění: geny vázané na X: samice: p2 + 2pq + q2 samci: p + q více alel: 3 alely: p2 + q2 + r2 + 2pq + 2pr + 2qr obecně pi2 + 2pij HARDYHO-WEINBERGŮV PRINCIP 2. Frekvence alel z generace na generaci stálé = Hardyho-Weinbergova rovnováha 2_3 heterozygoti nejfrekventovanější při p = q = 0,5 fAa se snižuje rychlostí 2pq faa rychlostí q2 Þ zvyšování fAa / faa ® vzácná alela „schována“ v heterozygotním stavu Frekvence vzácných alel Možné příčiny neplatnosti H-W rovnováhy: Metodické příčiny: Neplatnost některého z předpokladů H-W modelu: nulové alely, allelic dropout Nižší heterozygotnost: selekce proti heterozygotům nenáhodné křížení (inbreeding, pozitivní asortativní páření) strukturovanost populace (rozdílné frekvence alel, srv. Wahlundův efekt) Vyšší heterozygotnost: selekce podporující heterozygoty nenáhodné křížení (outbreeding, negativní asortativní páření) migrace mutace GENETICKÁ PROMĚNLIVOST V POPULACÍCH elektroforéza proteinů, analýza restrikčních fragmentů (RFLP, RADseq), sekvenování, mikrosatelity File:RADseq schematic.pdf - Wikimedia Commons Illumina Sequencing Platform – Biomarker Technologies Genotyping - Fragment Analysis • Biofidal RADseq mikrosatelity Illumina NGS Polymorfismus a polytypie Method overriding, a runtime polymorphism, really? – TechTalk Simplified distribution of colour patterns in Heliconius erato. The... | Download Scientific Diagram File:Heliconius mimicry.png Heliconius erato Polymorfismus: podíl polymorfních lokusů (P) velikost populačního vzorku většinou omezená Þ hranice 5% (P0.05) nebo 1% (P0.01) počet alel na lokus (A; allele diversity, allele richness) průměrná skutečná heterozygotnost (Ho) průměrná očekávaná heterozygotnost (He) = genová diverzita nukleotidový polymorfismus (q) nukleotidová diverzita (p) Otázka rozsahu proměnlivosti v přírodních populacích: [USEMAP] T.H. Morgan, H. Muller: „klasický“ model proměnlivost omezená [USEMAP] A. Sturtevant, T. Dobzhansky: „rovnovážný“ model proměnlivost normou GENETICKÁ PROMĚNLIVOST V PŘÍRODNÍCH POPULACÍCH HZ 1966: Harry Harris – člověk; Richard Lewontin, John Hubby – D. pseudoobscura otázka reprezentativnosti: mikrosatelity, minisatelity → vysoké mutační tempo, vysoká variabilita ´ konzervativní sekvence GENETICKÁ PROMĚNLIVOST V PŘÍRODNÍCH POPULACÍCH PROMĚNLIVOST NA VÍCE LOKUSECH linkage blízkost lokusů = vazba platnost předpokladů H-W Þ ustavení vazebné rovnováhy tento proces může být pomalý Þ do té doby vazebná nerovnováha koeficient vazebné nerovnováhy D vztah D a rekombinace r : Příčiny vazebné nerovnováhy: absence rekombinace (např. inverze) nenáhodnost oplození selekce recentní mutace vzorek směsí 2 druhů s různými frekvencemi recentní splynutí 2 populací náhodný genetický posun (drift) vazebná nerovnováha nemusí být mezi lokusy na stejném chromozomu! Centuries of inbreeding among European royals caused the deformity known as the 'Habsburg jaw' | Daily Mail Online Is Assortative Mating Responsible for Rising Income Inequality? – Reason.com med 👽 AX J9 on Twitter: "YEAH my prof is the best heh… " http://www.bio.miami.edu/~cmallery/150/mendel/sf10x1a.jpg Př.: opakované samooplození (např. samosprašnost): výchozí generace (HWE): 1/4 AA, 2/4 Aa, 1/4 aa 1. gen. samooplození: 3/8 AA, 2/8 Aa, 3/8 aa 2. gen. samooplození: 7/16 AA, 2/16 Aa, 7/16 aa 3. gen. samooplození: 15/16 AA, 2/32 Aa, 15/16 aa KOEFICIENTY INBREEDINGU 1. Rodokmenový, F: = pravděpodobnost autozygotnosti autozygotnost: alely identické původem (identical by descent, IBD), vždy homozygot alozygotnost: buď heterozygot, nebo homozygot, kde alely identické stavem (identical by state, IBS) IBD - IBS Inbrední populace = taková, u níž pravděpodobnost autozygotnosti v důsledku křížení mezi příbuznými > v panmiktické populaci F = pravděpodobnost, že jedinec zdědil obě alely téhož genu od jednoho předka (má obě alely IBD) Inbrední populace = taková, u níž pravděpodobnost autozygotnosti v důsledku křížení mezi příbuznými > v panmiktické populaci F = pravděpodobnost, že jedinec zdědil obě alely téhož genu od jednoho předka (má obě alely IBD) 0 £ F £ 1 http://www.genetic-genealogy.co.uk/images/image113.gif a) Amenhotep I. a Ahotep II. 25% b) Ames 37.5% c) Hatšepsut 25% d) Ostatní v rodokmenu nejsou inbrední, tj. F = 0 FIS = (He – Ho)/He -1 £ FIS £ +1 Ho= skutečná heterozygotnost He= očekávaná heterozygotnost 2. Démový koeficient inbreedingu, FIS: = odchylka od HW rovnováhy Pozor, F a FIS neměří totéž! F je individuální, FIS je skupinový Př.: hutterité (anabaptisté = novokřtěnci) z Velkých plání v USA a Kanadě: navzdory striktnímu dodržování tabu incestu jde o jednu z nejvíce inbredních skupin lidí (F = 0,0255) příčinou malý počet zakladatelů (protestanti z Tyrolska a Korutan, 16. st.) http://upload.wikimedia.org/wikipedia/commons/1/1d/Anneken_Hendriks.jpg inbred Genetické důsledky inbreedingu: inbreedingem se mění frekvence genotypů (zvýšení frekvence homozygotů) ´ frekvence alel se nemění postihuje všechny lokusy Obrázek1.jpg Leavenworthia alabamica Size inbrední deprese výskyt chorob, snížení plodnosti nebo životaschopnosti Fenotypové důsledky inbreedingu: http://minicattle.com/images/minikent_02.jpg https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcRrssmFeh7wn0T398Ran4c-D_jeePD616jl_Ow9d9qVdTN OfC5- http://oregonstate.edu/instruct/css/330/six/images/doublecross2.gif kmen Vandoma, Zimbabwe (tzv. „Pštrosí lidé“): ektrodaktylie mormoni v Hilldale (Utah) a Colorado City (Arizona) amazonští indiáni šlechtické rody Inbrední deprese u člověka: amišové: hemofilie B, anémie, pletencová dystrofie, Ellis-Van Creveldův syndrom (zakrslost, polydaktylie), poruchy vývoje nehtů, defekty zubů http://de.academic.ru/pictures/dewiki/68/Deux_pieds_1_an.jpg http://zena-in.cz/media/2011/02/02/4cecb9c64c80.jpg http://is.muni.cz/do/rect/el/estud/pedf/js14/grafomot/web/pics/02-03-07-polydaktylie.jpg http://upload.wikimedia.org/wikipedia/commons/0/0f/Lancaster_County_Amish_03.jpg Karel II. Španělský (1661-1700): nepřirozeně velká hlava, deformovaná čelist, slabé tělo, potíže s chůzí a další defekty, mentální a psychické poruchy, impotence, neplodnost František I. (1768-1835): u některých potomků mentální retardace, hydrocefalie, záchvaty, některé nebyly schopny samostatného života Soubor:Carlos II.jpg Soubor:Francesco I.jpg Inbrední deprese u člověka: Rudolf2 Rudolf II. ´ hraběnka Kateřina Stradová ® Julius Caesar (Juan d’Austria) Soubor:Levob 05.jpg http://zputimi.webz.cz/svejk/flanderka17.jpg http://www.postavy.cz/foto/pepek-vyskoc-foto.jpg schizofrenie, deviace, násilné sklony (včetně vražd) Inbrední deprese u člověka: Maria_Theresia_as_child “hybrid vigour” (heteróze) František Štěpán Lotrinský Marie Terezie http://www.farmwest.com/images/client/BreedingCorn%20Fig%206.JPG Soubor:Joseph II Portrait with crown.jpg Pozor! Ne vždy musí být inbreeding škodlivý (např. řada druhů vyšších rostlin je samosprašná). Navíc důsledky inbreedingu se mohou lišit v rámci jednoho druhu v závislosti na vnějším prostředí. = vyšší pravděpodobnost páření mezi jedinci se stejným fenotypem příčinou může být preference partnera se stejným fenotypem, ale mohou existovat i jiné příčiny Př.: fytofágní hmyz – jedinci žijící na různých druzích hostitelské rostliny můžou dospívat v odlišnou dobu Þ častější páření jedinců se stejným fenotypem (život na hostiteli) bez aktivní preference partnera Þ jde pouze o pozitivní fenotypovou korelaci asortativní páření způsobuje úbytek heterozygotů asortativní páření způsobuje vazebnou nerovnováhu (LD) Rozdíly mezi inbreedingem a asortativním pářením: působí pouze na lokus(y) spojené s preferovaným fenotypem × inbreeding ovlivňuje všechny lokusy as. páření je mocnou evoluční silou (silná LD na více lokusech) ´ inbreeding pouze zesiluje LD tam, kde byla už na počátku, a to jen v případě samooplození (samosprašnosti), v ostatních případech rekombinace „úspěšnější“ ® redukce LD http://i.istockimg.com/file_thumbview_approve/15482487/3/stock-photo-15482487-disgusted-young-woman -sticking-out-tongue.jpg http://andthatswhyyouresingle.com/wp-content/uploads/2012/09/Happy-woman-Fotolia_12331389_Subscript ion_XXL.jpg = preference partnera s odlišným fenotypem výsledkem intermediární frekvence alel, zeslabování vazebné nerovnováhy př. preference samců s odlišným MHC (myš, člověk) http://www.nature.com/nri/journal/v7/n7/images/nri2103-f2.jpg http://i.huffpost.com/gen/1400676/thumbs/o-SWEATY-MEN-facebook.jpg MHC