### Vyhledávání library(CRANsearcher) #CRANsearcher() library(pkgsearch) #pkg_search_addin(query = "", viewer = c("dialog", "browser")) ### Základní matematické funkce x <- -7 x = -7 # absolutni hodnota (absolute value) abs(x) # nasobeni a deleni (multiplication and division) 3*3 x*3 9/3 x/3 (x-3)/(x/3) 1/0 log(0) Inf*Inf Inf/Inf 0/0 # celociselne deleni (integer division) 13%/%2 library(numbers) div(13,2) # zbytek po deleni (reminder after division) 13%%2 mod(13,2) # Prevod desetinných císel na zlomky (Convert decimal numbers to fractions) ### library(MASS) fractions(-0.1666667) fractions(0.14) fractions(0.4) library(schoolmath) decimal2fraction(0.1,6) library(fractional) fractional(-0.1666667, eps = 1e-06, maxConv = 20, sync = FALSE) numerators(-0.1666667) # vypise citatele (numerator) denominators(-0.1666667) # vypise jmenovatele (denominator) numerical(fractional(-0.1666667, eps = 1e-06, maxConv = 20, sync = FALSE)) unfractional(fractional(-0.1666667, eps = 1e-06, maxConv = 20, sync = FALSE)) # zjednodusení zlomku (fractions simplification) ### library(schoolmath) cancel.fraction(42, 56) cancel.fraction(-167, 100) # mocniny x = 9 y=4 sqrt(x) x^(1/2) x^(-1/2) x**2 x^2 x^(-2) library(numbers) # Determine whether p is the power of an integer. isIntpower(144) isIntpower(8) # goniometricke funkce cos(x) sin(x) tan(x) acos(x) asin(x) atan(x) atan2(y, x) cospi(x) # cos(pi*x) sinpi(x) # sin(pi*x) tanpi(x) # tan(pi*x) # logaritmy x = 10 log(x) # base e log(x, base = exp(1)) # base e logb(x, base = exp(1)) # base e log10(x) # base 10 log(x,base = 10) log2(x) # base 2 log(x,base = 2) log1p(x) # computes log(1+x) 10^x # exponent 10**x # exponent exp(x) # e^x library(schoolmath) x <- c(1.002, 2, 3.14, 4, 5, 6.31, 7) schoolmath::is.decimal(x) schoolmath::is.whole(x) is.integer(x) library(ttutils) isInteger(x) isInteger(c("test", 1, 2, 2.1)) # vektor (vector) library(litteR) is_natural_number(12) is_natural_number(1.2) library(numbers) numbers::isNatural(x) x <- c(1, 2, 3, 4, 5, 6, 7) schoolmath::is.even(x) schoolmath::is.odd(x) x %% 2 == 0 x %% 2 != 0 is.even2 <- function(x) x %% 2 == 0; is.even2(x) is.odd2 <- function(x) x %% 2 != 0; is.odd2(x) x <- c(-1, -2, 3.02, 4, -5.2, 6, -7, 0) schoolmath::is.negative(x) schoolmath::is.positive(x) schoolmath::is.real.positive(x) x>0 x<0 x==0 # Prvocisla x <- c(1, 2, 3, 4, 5, 6, 7) schoolmath::is.prim(x) library(DescTools) DescTools::IsPrime(x) library(numbers) numbers::isPrime(x) ### Nejvetsí spolecný delitel (greatest common divisor) ### x = 12 y = 8 library(schoolmath) schoolmath::gcd(x, y) library(FRACTION) FRACTION::gcd(x, y) library(DescTools) DescTools::GCD(x, y, na.rm = FALSE) DescTools::GCD(c(10,12,8), na.rm = FALSE) library(numbers) numbers::GCD(12, 10) numbers::GCD(46368, 75025) numbers::mGCD(c(2, 3, 5, 7) * 11) numbers::mGCD(c(2*3, 3*5, 5*7)) numbers::coprime(12, 10) # maji/nemaji prvociselneho delitele numbers::coprime(46368, 75025) ### Nejmensí spolecný násobek (smallest common multiple) ### x = 12 y = 8 library(schoolmath) schoolmath::scm(x, y) library(DescTools) DescTools::LCM(x, y) DescTools::LCM(c(12,10,8), na.rm = FALSE) library(numbers) numbers::LCM(12, 10) numbers::LCM(46368, 75025) numbers::mLCM(c(2, 3, 5, 7) * 11) numbers::mLCM(c(2*3, 3*5, 5*7)) ### Vektory 1:6 c(2:12) rev(c(2:12)) seq(from=1, to=20, by=2) seq(5, -5, -1) seq(from=5, by=-1, along.with = 1:20) rep(1, len = 9) rep(1:4, len = 9) rep(1:4, 2) rep(1:4, each = 2) # not the same. rep(1:4, c(2,2,2,2)) # same as second. rep(1:4, c(2,1,2,1)) rep(1:4, each = 2, len = 4) # first 4 only. rep(1:4, each = 2, len = 10) # 8 integers plus two recycled 1's. rep(1:4, each = 2, times = 3) sample(12:99, 9, replace = FALSE) # bez opakovani sort(sample(1:20, 9, replace = FALSE)) sample(12:99, 9, replace = TRUE) # s opakovanim sort(sample(1:20, 9, replace = TRUE)) set.seed(123) x = sample(12:99,19, replace = FALSE);x is.vector(x) x x[1] x[1:5] x[c(1:5)] x[length(x)] x[(length(x)-1)] x[-1] x[-(1:5)] x[-c(1:5)] x[-length(x)] x[length(x)-3:length(x)]#poslednich 6 hodnot x[c(1,4,7)]#vybrane hodnoty which.max(x) which.min(x) library(Rmpfr) Rmpfr::which.min(x) which(x<=50) x[which(x<=50)] x[x<=50] which(x>=50) x[which(x>=50)] which(x == max(x))#maximalni hodnota which(x == 10) which(x != 10) x[x > 40]#hodnoty vyssi nez 400. x[x < 40]#hodnoty mensi nez 100 which(x > 10)#hodnoty vyssi nez 10. which(x < 10)#hodnoty mensi nez 10. seq_along(x) rank(x) # vhodne pro vektory, nevhodne pro matice is.unsorted(x) sort(x) sort(x, decreasing = FALSE) sort(x, decreasing = TRUE) sort(x[which(x>=50)]) order(x) # poradi (indexy) pro sort x[order(x)] a = c(1, 3, 5, 7) b = c(1, 2, 4, 8) 5 * a a + b a - b a * b a / b u = c(10, 20, 30) v = c(1, 2, 3, 4, 5, 6, 7, 8, 9) u + v max(x) min(x) range(x) library(DescTools) Range(x) sum(x) cumsum(x) prod(x) cumprod(x) diff(x) sign(x) ### Matice x1 = sample(12:99,19, replace = FALSE) x1 x2 = sample(12:99,19, replace = TRUE) x2 x12 = rbind(x1,x2) x12 = cbind(x1,x2) is.matrix(x12) nrow(x12) ncol(x12) x12[order(x1),] x12[order(x2),] x12[,1] x12[,"x2"] colnames(x12) colnames(x12)=c("X","Y") rownames(x12) rownames(x12) = LETTERS[1:length(x1)] t(x12) ### Dataframes x1 = sample(12:99,19, replace = FALSE) x2 = sample(12:99,19, replace = TRUE) z = LETTERS[1:length(x1)] x12 = rbind(x1,x2,z) x12 = cbind(x1,x2,z) nrow(x12) ncol(x12) is.data.frame(x12) is.matrix(x12) x12 = as.data.frame(x12) is.data.frame(x12) colnames(x12) rownames(x12) as.matrix(x12) mean(x1) mean(as.numeric(x12[,1])) as.character(x1) m = cbind(x1,x2,x1,x2) apply(m,1,mean) ### Seznamy (lists) x1 = sample(12:99,19, replace = FALSE) x2 = sample(12:99,19, replace = TRUE) x3 = sample(12:99,19, replace = TRUE) z = LETTERS[1:length(x1)] x123 = list(x1,x2,x3,z) is.list(x123) names(x123) = c("x1","x2","x3","z") x123$x1 x123[[1]] x1 = sample(12:99,19, replace = FALSE) x2 = sample(12:99,19, replace = TRUE) x3 = sample(12:99,19, replace = TRUE) LL = list(x1,x2,x3) names(LL) = c("x1","x2","x3") lapply(LL, mean) sapply(LL, mean) unlist(LL) do.call(rbind,LL) do.call(cbind,LL) stack(LL) ### Apply funkce # https://www.r-bloggers.com/r-tutorial-on-the-apply-family-of-functions/ # http://www.datasciencemadesimple.com/apply-function-r/ ### lapply a sapply (vektory, seznamy) ### ### Vypocitejte molekulove hmotnosti alkanu C1 - C12. # lapply Mhc = lapply(c(1:12), function(n){n*12.011 + (2*n + 2)*1.008}) Mhc = unlist(Mhc) names(Mhc) = c(1:12) Mhc # sapply Mhc = sapply(c(1:12), function(n){n*12.011 + (2*n + 2)*1.008}) names(Mhc) = c(1:12) Mhc library(live) data(wine) wine head(wine) # mean pomoci sapply a lapply wn = sapply(c(1:length(wine[1,])), function(x){mean(wine[,x])}) names(wn) = colnames(wine) wn # wn = lapply(c(1:length(wine[1,])), function(x){mean(wine[,x])}) names(wn) = colnames(wine) wn ### tapply (matice, dataframes) ### tapply(wine$alcohol,wine$quality,mean) tapply(wine$alcohol,wine$quality,median) tapply(wine$alcohol,wine$quality,length) tapply(wine$alcohol,wine$quality,boxplot.stats) ### apply (matice, dataframes) ### apply(wine,1,length) apply(wine,2,length) apply(wine,2,mean) apply(wine,2,median) ### Matematické a fyzikální konstanty ### Ludolfovo cislo #### pi print(pi, digits=20) ### Eulerovo cislo #### exp(1) print(exp(1), digits=20) library(marelac) data(Constants) Constants Constants$gasCt1 Constants$gasCt2 Constants$gasCt3 R = as.numeric(Constants$gasCt2[1]); R # hodnota Constants$gasCt2[2] # jednotka library(constants) codata lookup("planck", ignore.case=TRUE) lookup("avogadro", ignore.case=TRUE) lookup("faraday", ignore.case=TRUE) lookup("molar", ignore.case=TRUE) lookup("molar mass", ignore.case=TRUE) lookup("light", ignore.case=TRUE) lookup("boltzmann", ignore.case=TRUE) lookup("mass", ignore.case=TRUE) lookup("mass constant", ignore.case=TRUE) lookup("proton mass", ignore.case=TRUE) lookup("electron mass", ignore.case=TRUE) # Univerzalni plynova konstanta lookup("gas", ignore.case=TRUE) codata[134,] R = as.numeric(codata[134,5]) # hodnota Ru = as.numeric(codata[134,6]) # nejistota codata[134,7] # jednotka ### Prevody jednotek library(scales) # % percent(0.05) library(pracma) # uhly vs radiany deg2rad(120) rad2deg(3.14) library(measurements) conv_unit_options # pouzivane jednotky # length conv_unit(1, from="mm", to="m") conv_unit(1, from="nm", to="angstrom") # pressure conv_unit(101, from="Pa", to="mmHg") conv_unit(1, from="atm", to="Pa") # temperature conv_unit(100, from="C", to="K") # energy conv_unit(500, from="cal", to="J") conv_unit(1, from="erg", to="J") #volume conv_unit(100, from="l", to="m3") # mass conv_unit(100, from="g", to="mg") conv_unit(100, from="ug", to="g") # speed conv_unit(1, from="km_per_hr", to="m_per_sec") conv_unit(1, from="light", to="km_per_hr") conv_unit(1, from="light", to="m_per_sec") ### multiunits conv_multiunit(x = 1, from="ug / l", to="g / m3") conv_multiunit(x = 1, from="mg / l", to="kg / m3") conv_multiunit(x = 1, from="cal / kg", to="J / g") #### nasobky jednotek SI library(sitools) f2si(10000) f2si(0.023, unit="l") f2si(3.5e-5, unit="mol") numbers <- c(1e5, 3.5e-12, 0.004) f2si(numbers, unit="g") sapply(numbers,function(x){f2si(x, unit="g")}) # Prevod casovych jednotek library(datetime) xx = as.minute(60) # 60 min as.second(xx) as.hour(xx) as.day(xx) dur = duration(week=0,day=0.04166667,hours=1,minutes=0,seconds=3600) as.numeric(dur, "minutes") ### Plynný systém mení svuj objem o 1200 ml za konstantního vnejsího tlaku 30 atm.Jakou práci vykoná plyn pri expanzi? Vyjádrete v ruzných energetických jednotkách. # W = p . dV dV = 1200 # [ml] dV = conv_unit(dV, from="ml", to="m3"); dV p = 30 # [atm] to [Pa] p = conv_unit(p, from="atm", to="Pa"); p W = p*dV; W # [J] W1 = conv_unit(W, from="J", to="cal"); W1 # [cal] W2 = conv_unit(W, from="J", to="Wsec"); W2 # [W.s] W3 = conv_unit(W, from="J", to="erg"); W3 # [erg] ### Kolik tepla se uvolní pri pruchodu 26.43 coulombu elektrického proudu vodicem pri potenciálovém spádu 2.432 V. # 64.33 J, 64.33e7 erg, 15.37 cal # Q = U . I . t = U . q q = 26.43 # [C] U = 2.432 # [V] Q = U*q; Q # [J] Q1 = conv_unit(Q, from="J", to="cal"); Q1 # [cal] Q3 = conv_unit(Q, from="J", to="erg"); Q3 # [erg] ### Pokus trval 7658 minut. Kolik je to dní, hodin a minut? tt = 7658 # [min] library(lubridate) seconds_to_period(tt*60) library(datetime) seconds_to_period(as.second(as.minute(tt))) ##### Prvky library(PeriodicTable) data(periodicTable) periodicTable library(CHNOSZ) # atomova hmotnost AW = mass("Ca"); AW # molarni hmotnost MW = mass("CaCO3"); MW # pocet atomu prvku ve vzorci ce = count.elements("CaCO3"); ce as.chemical.formula(ce, drop.zero = TRUE) library(IsoSpecR) data(isotopicData) isotopicData library(loon.data) data(elements) elements #### Zaokrouhlování na daný pocet desetinných míst round(1234.567,2) round(123.456,digits=2) ceiling(1234.567) floor(1234.567) library(guf) round_something(123.456, decimals = 2) round_something("123.456", decimals = 2) library(PKNCA) roundString(3141.59265, digits = 3, sci_range = 0, sci_sep = "e") roundString(3141.59265, digits = 3, sci_range = 0, sci_sep = "x10^") roundString(3141.59265, digits = 3, sci_range = Inf, sci_sep = "e") ### Zaokrouhlování na daný pocet platných císlic signif(1234.567,4) signif(123.456,digits=4) library(PKNCA) signifString(3141.59265, digits = 1, sci_range = 0, sci_sep = "e") signifString(3141.59265, digits = 1, sci_range = 0,sci_sep = "x10^") signifString(3141.59265, digits = 1, sci_range = Inf, sci_sep = "e") ### NA and data imputation 1 ### vektory library(datasets) head(airquality) summary(airquality) airquality[,"Ozone"] airquality[,"Solar.R"] x = airquality[,"Ozone"] length(x) any(is.na(x)) is.na(x[5]) is.na(x[6]) xx[6]<- NA xx[6] library(jwutil) # rel. podil hodnot ve vektoru propIsNa(x) xx = na.omit(x) length(xx) xx[6]<- NA xx[6] ### Matice a dataframes x = airquality any(is.na(x)) is.na(x) library(splus2R) splus2R::which.na(x) library(GLDEX) GLDEX::which.na(x) apply(x,2,splus2R::which.na) library(ryouready) count_na(x, along = 2) # along: 1 = rows, 2=columns xl = apply(x,2,splus2R::which.na) sapply(xl,length) library(jwutil) # rel. podil hodnot ve sloupcich propNaPerField(x) library(na.tools) all_na(x) any_na(x) is_na(x) which_na(x[,1]) which_na(x[1,]) library(agricolae) delete.na(x, alternative="less") delete.na(x, alternative="greater") # "less" = vynechava sloupce # "greater" = vynechava radky xx = delete.na(x, alternative="greater") xx xx[5,5]<- NA library(jwutil) # NA na 0 zero_na(x) zero_na(x, na_ish = TRUE) library(DescTools) ZeroIfNA(x) NAIfZero(x) # BlankIfNA(x, blank="") BlankIfNA(x, blank="UDL") NAIfBlank(x) # nahrazeni medianem sloupce library(DescTools) x1 = Impute(x[,1], FUN = function(y) mean(y, na.rm = TRUE)) x2 = Impute(x[,1], FUN = function(y) median(y, na.rm = TRUE)) cbind(x[,1],x1,x2) x[,1] = x1 # nahrazeni library(na.tools) na.constant(x[,1], 5) na.max(x[,1]) na.min(x[,1]) na.mean(x[,1]) na.median(x[,1]) na.quantile(x[,1], prob=0.4) na.mode(x[,1]) na.most_freq(x[,1]) na.inf(x[,1]) na.neginf(x[,1]) na.true(x[,1]) na.false(x[,1]) na.zero(x[,1]) set.seed(123) xb = na.bootstrap(x[,5]) xr = na.resample(x[,5]) rbind(x[,5],xb,xr) ### opakujici se hodnoty (ties) duplicated(c("a","b","c", "a"), incomparables = FALSE) library(guf) count(c("a","b","c", "a"), group.by = NULL, split.by = NULL, row.total = FALSE) ### Nejistoty a chyby mereni ### Zapis chyby (nejistoty) library(errors) xe <- set_errors(3.602, 0.008) options(errors.notation = "plus-minus") print(xe, digits = 2) options(errors.notation = "parenthesis") print(xe, digits = 2) # elementární náboj e <- set_errors(1.6021766208e-19, 0.0000000098e-19) options(errors.notation = "plus-minus") print(e, digits = 2) options(errors.notation = "parenthesis") print(e, digits = 3) # Ze zásilky kaprolaktamu bylo odebráno 10 vzorku a byl stanoven jejich bod tání. Vypocítejte hodnotu bodu tání v zásilce a její smerodatnou odchylku. xc = c(68.5, 68.7, 68.3, 68.8, 68.5, 68.2, 68.6, 68.4, 68.2, 68.7) mean(xc) sd(xc) # sd sd(xc)/sqrt(length(xc)) # str chyba prumeru e <- set_errors(mean(xc), sd(xc)/sqrt(length(xc))) options(errors.notation = "plus-minus"); print(e, digits = 2) options(errors.notation = "parenthesis"); print(e, digits = 2) ### Teplota vody byla merena dvema teplomery s ruznou presností t1 = c(20.8, 21.1, 20.9) t2 = c(20.95, 20.92, 20.94) e1 <- set_errors(mean(t1), sd(t1)) options(errors.notation = "plus-minus"); print(e1, digits = 1) options(errors.notation = "parenthesis"); print(e1, digits = 1) round(100*sd(t1)/mean(t1),3) # relativni chyba [%] e2 <- set_errors(mean(t2), sd(t2)) options(errors.notation = "plus-minus"); print(e2, digits = 1) options(errors.notation = "parenthesis"); print(e2, digits = 1) round(100*sd(t2)/mean(t2),3) # relativni chyba [%] #### Sireni chyb ################################### ##### mean + S.E. ## Error propagation using Taylor expansion of first- (Mean.1, sd.1) and second-order (Mean.2, sd.2) ## Monte Carlo (simulace) ## Priklad (bez uvedení poctu stupnu volnosti, resp. poctu opakovani) library(propagate) EXPR1 <- expression(x/y) x <- c(5, 0.01) y <- c(1, 0.01) DF1 <- cbind(x, y) RES1 <- propagate(expr = EXPR1, data = DF1, type = "stat", do.sim = TRUE, verbose = TRUE, nsim = 100000) RES1 RES1$data RES1$prop RES1$sim summary(RES1) plot(RES1) ### Vypocítejte hustotu a její chybu pro látku, u níz byla opakovaným merením stanovena hmotnost 6.824 (0.008) g a objem 3.03 (0.01) ml. EXPR2 <- expression(m/V) m = c(6.824, 0.008) #[g] V = c(3.03, 0.01) #[ml] DF2 <- cbind(m, V) RES2 <- propagate(expr = EXPR2, data = DF2, type = "stat", do.sim = TRUE, verbose = TRUE, nsim = 100000) RES2 RES2$data RES2$prop RES2$sim library(errors) e <- set_errors(RES2$sim[1], RES2$sim[2]) options(errors.notation = "plus-minus"); print(e, digits = 1) options(errors.notation = "parenthesis"); print(e, digits = 1) ## Priklad (s uvedením poctu stupnu volnosti) EXPR2 <- expression(x/y) x <- c(5, 0.01, 12) y <- c(1, 0.01, 5) DF2 <- cbind(x, y) RES2 <- propagate(expr = EXPR2, data = DF2, type = "stat", do.sim = TRUE, verbose = TRUE, nsim = 100000) RES2 RES2$data RES2$prop RES2$sim summary(RES2) plot(RES2) ### Na píst o prumeru (200 +- 0.05) mm pusobí pára tlakem (8.2 +- 0.1) atm. Jakou silou pusobí pára na píst? Urcete také relativní chybu výsledku. library(measurements) d = c(200, 0.05) # [mm] na [m] d = as.vector(conv_unit(c(200, 0.05), from="mm", to="m")) p = c(8.2, 0.1) # [atm] na [Pa] p = as.vector(conv_unit(c(8.2, 0.1), from="atm", to="Pa")) pi EXPR7 <- expression(p*3.141593*(d/2)^2) DF7 <- cbind(d, p) RES7 <- propagate(expr = EXPR7, data = DF7, type = "stat", do.sim = TRUE, verbose = TRUE, nsim = 100000) RES7 RES7$data RES7$prop RES7$sim library(errors) e <- set_errors(RES7$sim[1], RES7$sim[2]) options(errors.notation = "plus-minus"); print(e, digits = 1) options(errors.notation = "parenthesis"); print(e, digits = 1) ### Priklad EXPR <- expression(a^b*x) a = c(5, 0.1) b = c(10, 0.1) x = c(1, 0.1) DAT <- cbind(a, b, x) (res <- propagate(EXPR, DAT)) res$data res$prop res$sim summary(res) plot(res) ### Vypocítejte koeficient viskozity roztoku glycerinu Stokesovou metodou r = c(0.0112, 0.0001) # polomer kulicky [cm] l = c(31.23, 0.05) # draha kulicky za cas t [cm] t = c(62.1, 0.2) # cas [s] g = c(980.1,0) # tihove zrychleni [cm/s2] z tabulek d0 = c(13.55,0) # hustota kulicky [g/cm3] z tabulek d = c(1.28,0) # hustota roztoku [g/cm3] z tabulek EXPR3 <- expression((2/9)*g*(((d0-d)*r^2)/l)*t) DF3 <- cbind(r, l, t, g, d0, d) RES3 <- propagate(expr = EXPR3, data = DF3, type = "stat", do.sim = TRUE, verbose = TRUE, nsim = 100000) RES3 RES3$data RES3$prop RES3$sim EXPR4 <- expression((2/9)*980.1*(((13.55-1.28)*r^2)/l)*t) DF4 <- cbind(r, l, t) RES4 <- propagate(expr = EXPR4, data = DF4, type = "stat", do.sim = TRUE, verbose = TRUE, nsim = 100000) RES4$data RES4$prop RES4$sim library(errors) e <- set_errors(RES4$sim[1], RES4$sim[2]) options(errors.notation = "plus-minus"); print(e, digits = 1) options(errors.notation = "parenthesis"); print(e, digits = 1) library(measurements) # prevod jednotek ### Vypocítejte koeficient viskozity roztoku glycerinu pomoci kapilarniho viskozimetru p = c(20.12, 0.01) # tlak na vytoku z kapilary [mm Hg] to [Pa] p = as.vector(conv_unit(c(20.12, 0.01), from="mmHg", to="Pa")) r = c(0.570, 0.003) # polomer kapilary [mm] to [m] r = conv_unit(c(0.570, 0.003), from="mm", to="m") l = c(10.526, 0.005) # delka kapilary [mm] to [m] l = conv_unit(c(10.526, 0.005), from="mm", to="m") V = c(5.025, 0.001)# objem kapaliny vytekle za cas t [cm3] to [m3] V = conv_unit(c(5.025, 0.001), from="cm3", to="m3") t = c(27.34, 0.02) # cas [s] pi EXPR5 <- expression((3.141593*p*(r^4)*t)/(8*V*l)) DF5 <- cbind(p, r, l, V, t) RES5 <- propagate(expr = EXPR5, data = DF5, type = "stat", do.sim = TRUE, verbose = TRUE, nsim = 100000) RES5 # [kg / m.s] RES5$data RES5$prop RES5$sim # conv_multiunit(x = RES5$sim[1:2], from="kg / m", to="g / cm") library(errors) e <- set_errors(RES5$sim[1], RES5$sim[2]) options(errors.notation = "plus-minus"); print(e, digits = 1) options(errors.notation = "parenthesis"); print(e, digits = 1) ## NEFUNGUJE pro jednu promennou, viz "metRology" ### Soucin rozpustnosti stríbrné soli AgX má hodnotu Ks = (4.0 +- 0.4) x 10-8. Jaká je chyba vypoctené rovnovázné koncentrace stríbrných iontu ve vode? EXPR <- expression(sqrt(Ks)) Ks = c(4.0, 0.4) DAT <- data.frame(Ks) res <- propagate(EXPR,DAT) ##### Metoda 2: Výpocet pomocí intervalu ### Priklad EXPR3 <- expression(C * sqrt((520 * H * P)/(M *(t + 460)))) H <- c(64, 65) M <- c(16, 16.2) P <- c(361, 365) t <- c(165, 170) C <- c(38.4, 38.5) DAT3 <- makeDat(EXPR3) interval(DAT3, EXPR3, seq = 2) ### Priklad EXPR5 <- expression(x^2 - x + 1) x <- c(-2, 1) curve(x^2 - x + 1, -2, 1) DAT5 <- makeDat(EXPR5) interval(DAT5, EXPR5, seq = 2) library(metRology) data(GUM.H.1) GUM.H.1 ## a simple uncertainty analysis for the product of two quantities GUM(c("x1","x2"),c(2.3,1.1),c(0.030,0.015),c(5,9999),"x1*x2") ## a simple uncertainty analysis for the product of two quantities GUM.validate(c("x1","x2"), c(2.3,1.1), c(0.030,0.015), c(5,9999), c("A","B"),c("Normal","Rectangular"),"x1*x2") # Soucin rozpustnosti stríbrné soli AgX má hodnotu Ks = (4.0 +- 0.4) x 10-8. Jaká je chyba vypoctené rovnovázné koncentrace stríbrných iontu ve vode? GUM("Ks",4.0e-8,0.4e-8,1,"sqrt(Ks)",sig.digits.U = 2) # tohle funguje GUM.validate("Ks",4.0e-8,0.4e-8,1,"A","Normal","sqrt(Ks)") GUM.validate("Ks",4.0e-8,0.4e-8,1,"B","Normal","sqrt(Ks)") # Priklad expr <- expression(a+b*2+c*3+d/2) x <- list(a=1, b=3, c=2, d=11) u <- lapply(x, function(x) x/10) # nejistota 10 % u.expr<-uncert(expr, x, u, method="NUM") u.expr # function method f <- function(a,b,c,d) a+b*2+c*3+d/2 u.fun<-uncert(f, x, u, method="NUM") u.fun # formula method u.form<-uncert(~a+b*2+c*3+d/2, x, u, method="NUM") u.form # Priklad (s korelaci) u.cor<-diag(1,4) u.cor[3,4]<-u.cor[4,3]<-0.5 u.cor # num u.formc<-uncert(~a+b*2+c*3+d/2, x, u, method="NUM", cor=u.cor) u.formc # Monte Carlo u.formc.MC<-uncert(~a+b*2+c*3+d/2, x, u, method="MC", cor=u.cor, B=200) u.formc.MC # Priklad expr <- expression(a/(b-c)) x <- list(a=1, b=3, c=2) u <- lapply(x, function(x) x/20) set.seed(403) u.invexpr<-uncertMC(expr, x, u, distrib=rep("norm", 3), B=999, keep.x=TRUE ) u.invexpr library(errors) x = c(0.9719378, 1.9840006, 2.9961830, 4.0123346, 5.0012799) errors(x) = c(0.01, 0.01, 0.01, 0.01, 0.01) y = c(0.9748992, 1.9627805, 2.9935831, 3.9921237, 4.9612555) errors(y) = c(0.02, 0.02, 0.02, 0.02, 0.02) # bez korelace z <- x / y; z #(z <- x / y) # s korelací correl(x, y) = c(0.8864282, 0.4761841, -0.4140209, -0.4496266, 0.2911837) # zavedení korekace chyb covar(x, y) (z_correl <- x / y) ################################################################################################################ ### vkladani hodnot z konzole widmark <- function(){ print("Výpocet hladiny alkoholu v krvi podle Widmarka") print("Data zadavejte pres konzoli !!!") sex<-readline(prompt="Jste muz (m) nebo zena(z)? " ) if (sex == "m") {BW = 0.58; MR = 0.015} if (sex == "z") {BW = 0.49; MR = 0.017} Wt <-readline(prompt="Jaka je Vase hmotnost (v kg)? " ) Wt = as.numeric(Wt) # print("Jeden standardni alkoholicky napoj odpovida 10 g resp. 12.7 ml cisteho ethanolu") # SD <-readline(prompt="Kolik jste vypil standardnich alkoholickych napoju? " ) # prepocitat na piva, vina a panaky p0 <-readline(prompt="Kolik sklenic nealkoholickeho piva (0.5 l) jste vypil ? " ) p10 <-readline(prompt="Kolik sklenic 10 stupnoveho piva (0.5 l) jste vypil ? " ) p12 <-readline(prompt="Kolik sklenic 12 stupnoveho piva (0.5 l) jste vypil ? " ) vb <-readline(prompt="Kolik sklenicek bileho vina (0.2 l) jste vypil ? " ) vc <-readline(prompt="Kolik sklenicek cerveneho vina (0.2 l) jste vypil ? " ) p30 <-readline(prompt="Kolik panaku 30% alkoholu (0.05 l) jste vypil ? " ) p45 <-readline(prompt="Kolik panaku 45% alkoholu (0.05 l) jste vypil ? " ) # SD = as.numeric(SD) p0 = as.numeric(p0) * 2 # [g 100% ethanolu] p10 = as.numeric(p10) * 16 # [g 100% ethanolu] p12 = as.numeric(p12) * 20 # [g 100% ethanolu] vb = as.numeric(vb) * 16 # [g 100% ethanolu] vc = as.numeric(vc) * 19 # [g 100% ethanolu] p30 = as.numeric(p30) * 12 # [g 100% ethanolu] p45 = as.numeric(p45) * 18 # [g 100% ethanolu] SD = sum(c(p0,p10,p12,vb,vc,p30,p45))/10 DP <-readline(prompt="Pred kolika hodinami? " ) DP = as.numeric(DP) EBAC = ((0.806*SD*1.2/(BW*Wt)) - MR*DP)*10 # [promile, resp. g/l] # if (EBAC <= 0) {EBAC = 0} cat("Mate v krvi", round(EBAC,2) , "promile (g/l) alkoholu.") # print(paste("Mate v krvi", round(EBAC,2) , "promile (g/l) alkoholu.")) } widmark() # https://en.wikipedia.org/wiki/Blood_alcohol_content # https://en.wikipedia.org/wiki/Standard_drink # https://www.bezpecnecesty.cz/cz/alkohol-kalkulacka/algoritmus-vypoctu # https://autobild.pluska.sk/poradca/chcete-vypocitat-hladinu-alkoholu-poradime-vam # ################################################################################################################ # f <- function() {## Do something interesting} my_function <- function(country = "Czech Republic") { paste("I am from", country) } Nested_function <- function(x, y) { a <- x + y return(a) } Nested_function(2,2) Nested_function(3,3)) Outer_func <- function(x) { Inner_func <- function(y) { a <- x + y return(a) } return (Inner_func) } output <- Outer_func(3) # To call the Outer_func output(5) ############################################################################ # pipe operator in R example (alternative - intermediate variables, r pipe) a = 3.14159 b = seq(from = a,10,3) round(b,3) # pipe operator in R example (alternative - nested syntax) a = 3.14159 seq(round(a,3),10,3) # pipe operator in R - example (assignment pipe r) a = 3.14159 a %>% seq(10,3) %>% round(3) ############################################################################################################################################### ### if - else ### ### Vypocítejte vazebnou energii atomového jádra pomoci Bethe - Weiszackerovy rovnice # B = 14.0 - 13.1*A^(2/3) + 0.585*Z*(Z-1)/A^(1/3) - (18.1*(A-2*Z)^2)/A + C/A # A - nukleonove cislo, Z - atomove cislo, C - konstanta, pro jadra se sudym poctem protonu a neutronu je rovna 132, # pro jadra s lichym poctem protonu a neutronu je rovna -132, pro lichy pocet protonu a sudy pocet neutronu a naopak je rovna 0. # alpha particle A = 4 Z = 2 # U-235 A = 235 Z = 92 # funkce N = A-Z if (N%%2==0 & Z%%2==0){C = 132} else if (N%%2!=0 & Z%%2!=0){C = -132} else {C = 0} B = 14.0 - 13.1*A^(2/3) + 0.585*Z*(Z-1)/A^(1/3) - (18.1*(A-2*Z)^2)/A + C/A B # [MeV] B/A # energie na 1 nukleon [MeV] # polomer jadra: R = R0 * A^(1/3) R0 = 1.4e-13 # [cm] R = R0 * A^(1/3) R = R*10e-15 R # [m] ### Anorganická kvalitativní analýza - 1. skupina KAA1 <- function(){ print("Kvalitativni analyza - 1. skupina iontu (Ag, Pb, Hg)") print("Odpovidejte a (ano) nebo n (ne)") print("Pozor. Nez zacnete, prepnete se do konzole.") an <- readline(prompt="Chcete pokracovat? " ) if (an == "n") {print("Tak snad nekdy jindy ...") } else {print("Takze zaciname ...") an <- readline(prompt="Vznikla po pridani HCl bila srazenina? " ) if (an == "n") {print("Neni pritomen zadny prvek 1. skupiny.") } else {print("Je pritomno olovo, stribro, rtut, nebo jejich kombinace.") an <- readline(prompt="Rozpousti se srazenina zcela v horke vode? " ) if (an == "a") {print("Je pritomno pouze olovo.") } else { an <- readline(prompt="Rozpousti se srazenina alespon castecne? " ) if (an == "a") {print("Je pritomno olovo, ale take stribro a/nebo rtut.") } else {print("Olovo neni pritomno, jsou pritomny stribro a/nebo rtut.")} an <- readline(prompt="Rozpousti se srazenina zcela v amoniaku? " ) if (an == "a") {print("Je pritomno stribro, neni pritomna rtut.") } else { an <- readline(prompt="Rozpousti se srazenina alespon castecne? " ) if (an == "a") {print("Je pritomno stribro, a take rtut.") } else {print("Neni pritomno stribro, je pritomna rtut.")} an <- readline(prompt="Doslo pridavkem amoniaku ke zcernani srazeniny? " ) if (an == "a") {print("Rtut je potvrzena.") } else {print("To je divne. Nekde se stala chyba ...")} } } } print("Hotovo. Nashledanou priste.") } } KAA1() ### while cyklus (while loop) ### ### Vypocitejte molekulove hmotnosti alkanu C1 - C12 n = 1 Mhc = NULL while(n <= 12){ hc = n*12.011 + (2*n + 2)*1.008 Mhc = c(Mhc,hc) n = n+1 } names(Mhc) = c(1:12) Mhc ### switch switch(2,"red","green","blue") switch(1,"red","green","blue") 1 ### for cyklus (for loop) ### ### Vypocitejte molekulove hmotnosti alkanu C1 - C12 Mhc = NULL for(n in c(1:12)){ hc = n*12.011 + (2*n + 2)*1.008 Mhc = c(Mhc,hc) } names(Mhc) = c(1:12) Mhc ### Vypocitejte stredni kvadratickou rychlost molekul danych plynu v rozmezi teplot od 150 K do 500 K s krokem 50 K. el = c("H2","He", "O2", "Kr") M = c(2.0159, 4.0026, 31.9988, 83.8) # [g / mol] Ts = seq(from=150, to=500, by=50) # [K] R = 8314.34 # [J / kmol K] MKV = NULL for(tt in Ts){ mkv= rep(0, length(M)) for(ii in c(1:length(M))){ mkv[ii] = (3*R*tt/M[ii])^(1/2) } MKV = rbind(MKV, mkv) } colnames(MKV) = el rownames(MKV) = Ts MKV plot(0,0,xlim=c(min(Ts),max(Ts)),ylim = c(min(MKV),max(MKV)), type ="n",xlab="T [K]",ylab="str. kv. rychlost [m/s]") for(ii in c(1:length(M))){points(Ts,MKV[,ii], type="p",col=ii,pch=16)} legend("topleft",legend=el,col=c(1:length(M)),pch=16,cex=.8) #### mnoziny #################################################################################### (x <- c(sort(sample(1:20, 3)))) (y <- c(sort(sample(3:23, 7)))) # x je prvkem mnoziny y is.element(x, y) x %in% y library(prob) # pro cely vektor isin(x,y, ordered = FALSE) all(x %in% y) library(prob) x <- c(3,3,2,2,3,3,4,4) isrep(x) # one pair each of 2s and 4s countrep(x) isrep(x, nrep = 4) countrep(x, nrep = 4) isrep(x, vals = 4) # one pair of 4s countrep(x, vals = 4) union(x, y) # sjednoceni intersect(x, y) # prunik setdiff(x, y) # rozdil mnozin setdiff(y, x) # rozdil mnozin setequal(x, y) # shoda mnozin # https://stat.ethz.ch/R-manual/R-devel/library/base/html/sets.html subset(x, .) library(prob) union(x, y) setdiff(x, y) intersect(x, y) subset(x, ...) table() ### Vennovy diagramy library(gplots) venn( list(A=1:5,B=4:6,C=c(4,8:10)) ) v.table<-venn( list(A=1:5,B=4:6,C=c(4,8:10),D=c(4:12)) ) print(v.table) ### numericke metody ########################################################################################################################### library(animation) # animation bisection.method(FUN = function(x) x^2 - 4, rg = c(-1, 10), tol = 0.001, interact = FALSE) library(animation) # animation newton.method(FUN = function(x) x^2 - 4, init = 10, rg = c(-1, 10), tol = 0.001, interact = FALSE, col.lp = c("blue", "red", "red")) library(cmna) # numerical bisection(f = function(x) x^2 - 4, a=-1, b=10, tol = 0.001, m = 100) newton(f = function(x)x^2 - 4, fp=fp, x=10, tol = 0.001, m = 100) # nefunguje ### polynomy #### library(polynom) (p <- polynomial(c(1,0,0,3,4))) str(p) p + polynomial(1:2) p*p f1 <- as.function(p) f1(pi) f1(matrix(1:6,2,3)) library(multipol) (a <- as.multipol(matrix(1:10,nrow=2))) b <- as.multipol(matrix(1:10,ncol=2)) a+b a*b ### kvadraticke a kubicke rovnice ### # Velikost vyslednice dvou navzajem kolmych sil je 34 N. Jaka je velikost skladanych sil, je-li jedna z nich o 14 N vetsi nez druha? # Pythagorova veta: x^2 + (x + 14)^2 = 34^2 library(Ryacas) eq <- "x^2 + (x + 14)^2 - 34^2" yac_str(paste0("Simplify(", eq, ")")) # zjednodusení výrazu # diskriminant dc = c(1,14,-480) D = dc[2]^2 - 4*dc[1]*dc[3] if (D == 0) {print("Kvadraticka rovnice ma dva sobe rovne realne koreny (dvojnasobny koren).")} if (D > 0) {print("Kvadraticka rovnice ma dva ruzne realne koreny.")} if (D < 0) {print("Kvadraticka rovnice nema zadny koren v oboru realnych cisel. V oboru komplexnich cisel ma dva imaginarni komplexne sdruzene koreny.")} # Descartes rule sum(diff(sign(dc)) != 0) cat("Pocet kladnych korenu:", sum(diff(sign(dc)) != 0)) # pocet kladnych korenu library(sfsmisc) nr.sign.chg(dc) cat("Pocet kladnych korenu:", nr.sign.chg(dc)) # pocet kladnych korenu fun <- function (x) x^2 + (x + 14)^2 - 34^2 uniroot(fun, c(-1, 0),extendInt = "yes", tol = 1e-9) # base uniroot(fun, c(0, 1),extendInt = "yes", tol = 1e-9) F1 <- uniroot(fun, c(0, 100),extendInt = "yes", tol = 1e-9)$root F1 fun <- function (x) x^2 + 14*x - 480 # uniroot(fun, c(-1, 1),extendInt = "yes", tol = 1e-9) uniroot(fun, c(-1, 0),extendInt = "yes", tol = 1e-9) # base uniroot(fun, c(0, 1),extendInt = "yes", tol = 1e-9) F1 <- uniroot(fun, c(0, 100),extendInt = "yes", tol = 1e-9)$root F1 F2 = F1 + 14 F2 rr = polyroot(c(-480, 14, 1)) # base Re(rr) library(pracma) rr = roots(c(1, 14, -480)) rr ## graficke reseni xx = seq(-50,50,1) yy = xx^2 zz = -14*xx + 480 plot(xx,yy,type="l") abline(480,-14,type="l",col=2) plot(xx,yy,type="l",xlim = c(10,20),ylim=c(0,500)) abline(480,-14,type="l",col=2) yy = abs(xx^2 + (xx + 14)^2 - 34^2) plot(xx,yy,type="l") abline(h=0,type="l",col=2) xx[which(yy==0)] xx[yy==0] ### Jake pH ma roztok kyseliny mravenci o koncentraci 8.5 x 10-4 mol/l? pKA = 3.752 KA = 10^-pKA; KA Kw = 10^-14 cA = 8.5e-4 # [mol/l ] # H = sqrt(KA*cA) H <- sqrt(KA*cA) pH = -log10(H); pH # [H+]^2 + KA*[H+] + KA*cA = 0 CE = c(1,KA,-KA*cA) fun <- function (x) CE[1]*x^2 + CE[2]*x + CE[3] uniroot(fun, c(-1e-1, 0),tol = 1e-9) uniroot(fun, c(0, 1e-1),tol = 1e-9) H <- uniroot(fun, c(0, 1e-1),tol = 1e-9)$root # base pH = -log10(H); pH library(rootSolve) rootSolve::uniroot.all(fun, c(-1e-1, 0), tol = 1e-9) rootSolve::uniroot.all(fun, c(0, 1e-1), tol = 1e-9) H <- rootSolve::uniroot.all(fun, c(-1e-1, 1e-1), tol = 1e-9) pH = -log10(H); pH library(Rmpfr) Rmpfr::unirootR(fun, lower=-1e-1, upper=0, tol = 1e-9) Rmpfr::unirootR(fun, lower=0, upper=1e-1, tol = 1e-9) H <- Rmpfr::unirootR(fun, lower=0, upper=1e-1, tol = 1e-9)$root pH = -log10(H); pH # [H+]^3 + KA*[H+]^2 - [H+]*(KA*cA + Kw) - KA*Kw = 0 CE = c(1,KA,-(KA*cA + Kw),-KA*Kw) library(RConics) x0 = cubic(CE); x0 H = Re(x0[which(Im(x0)==0)]) H = Re(x0[which(Re(x0)>=0)]) pH = -log10(H); pH fun <- function (x) CE[1]*x^3 + CE[2]*x^2 + CE[3]*x + CE[4] uniroot(fun, c(-1e-1,0),tol = 1e-9) uniroot(fun, c(0, 1e-1),tol = 1e-9) H <- uniroot(fun, c(0, 1e-1),tol = 1e-9)$root # base pH = -log10(H); pH library(rootSolve) rootSolve::uniroot.all(fun, c(-1e-1, 0),tol = 1e-9) rootSolve::uniroot.all(fun, c(0,1e-1),tol = 1e-9) H <- rootSolve::uniroot.all(fun, c(-1e-1, 1e-1),tol = 1e-9) pH = -log10(H); pH library(Rmpfr) Rmpfr::unirootR(fun, lower=-1e-1, upper=0, tol = 1e-9) Rmpfr::unirootR(fun, lower=0, upper=1e-1, tol = 1e-9) H <- Rmpfr::unirootR(fun, lower=0, upper=1e-1, tol = 1e-9)$root pH = -log10(H); pH ### Tlakova lahev s oxidem uhlicitym obsahuje 10.0 kg plynu. Jaký objem zaujíma stlaceny plyn, kdyz pri teplote 30 °C je tlak v lahvi 13.17e6 Pa? Vypocet provedte pomoci van der Waalsovy rovnice # (p + a/Vm^2)(Vm - b) = R*T [Vm = 0.075 m3/kmol, n = 0.2273 kmol, V = 0.0171 m3] library(measurements) p = 13.17e6 # [Pa] m = conv_unit(10.0, from="kg", to="g") t = conv_unit(30, from="C", to="K") R = 8.3141 # [J / mol K] R = R*1000 # [J / kmol K] Mr = 44.01 # [g/mol] n = m/Mr # [mol] n = n/100 # [kmol] # vypocet pro neidealni plyn a = 0.365e6 # [m6 Pa / kmol2] b = 0.0428 # [m3 / kmol] # Vm**3 - (b + R*t/p)*Vm**2 + (a/p)*Vm - a*b/p # realne i komplexni koreny library(RConics) CE = c(1,-(b + R*t/p),a/p,-(a*b/p)) x0 = cubic(CE); x0 Vm = Re(x0[which(Im(x0)==0)]) # [m3 / kmol] Vm V = Vm*n; V # [m3] # jen realne koreny fun <- function (x) CE[1]*x^3 + CE[2]*x^2 + CE[3]*x + CE[4] #curve(fun(x),-4,4) #abline(h = 0, lty = 3) Vm <- uniroot(fun, c(-4, 4))$root # base V = Vm*n; V # [m3] library(rootSolve) Vm <- rootSolve::uniroot.all(fun, c(-4, 4)) V = Vm*n; V # [m3] library(Rmpfr) Vm <- Rmpfr::unirootR(fun, lower=-4, upper=4, tol = 1e-9)$root V = Vm*n; V # [m3] ## graficke reseni # CE = c(1,-(b + R*t/p),a/p,-(a*b/p)) xx <- seq(-4,4, by=0.01) yy <- CE[1]*xx^3 zz <- -CE[2]*xx^2 - CE[3]*xx - CE[4] plot(xx,yy,type="l", col=2) points(xx,zz,type="l", col=4) plot(xx, yy, type="l",col=2,xlim=c(0.05,0.1),ylim=c(0,0.001)) points(xx, zz, type="l",col=4) # vypocet pro idealni plyn # p*Vm - R*T = 0 Vm = R*t/p V = Vm*n; V # [m3] ### soustavy linearnich rovnic ### ### Ze dvou slitin s 60% a 80% obsahem medi se ma ziskat 40 kg slitiny se 75% obsahem medi. Kolik kg kayde slitiny je treba pouzit? [10 a 30 kg] library(rootSolve) model <- function(x){ F1 <- 0.6*x[1] + 0.8*x[2] - 30 F2 <- x[1] + x[2] - 40 c(F1 = F1, F2 = F2)} ss <- multiroot(f = model, start = c(1, 1)) ss$root ### graficke reseni # 0.6*m1 + 0.8*m2 = 40*0.75 => m1 = 40*0.75/0.6 - 0.8/0.6 * m2 => m1 = 50 - 1.33 * m2 # m1 + m2 = 40 => m1 = 40 - m2 xx = seq(0,50,0.1) yy = 50 - 1.33*xx zz = 40 - xx plot(xx, yy, type="l",col=2) points(xx, zz, type="l",col=4) plot(xx, yy, type="l",col=2,xlim=c(25,35),ylim=c(0,20)) points(xx, zz, type="l",col=4) ### Do bazenu natece prutokem A za 3 h a prutokem B za 4 h celkem 2150 hl vody. Prutokem A za 4 h a prutokem B za 2 h by nateklo 1700 hl vody. Kolik hl vody natece prutokem A a kolik prutokem B za 1 hodinu? A 250 hl, B 350 hl library(rootSolve) model <- function(x){ F1 <- 3*x[1] + 4*x[2] - 2150 F2 <- 4*x[1] + 2*x[2] - 1700 c(F1 = F1, F2 = F2)} ss <- multiroot(f = model, start = c(1, 1)) ss$root ### graficke reseni # 3*m1 + 4*m2 = 2150 => m2 = 2150/4 - 3/4 * m1 => m2 = 537.5 - 0.75 * m1 # 4*m1 + 2*m2 = 1700 => m2 = 1700/2 - 4/2 * m1 => m2 = 850 - 2 * m1 xx = seq(0,500,1) yy = 537.5 - 0.75*xx zz = 850 - 2*xx plot(xx, yy, type="l",col=2) points(xx, zz, type="l",col=4) plot(xx, yy, type="l",col=2,xlim=c(200,300),ylim=c(300,400)) points(xx, zz, type="l",col=4) ### Ze dvou druhu caje v cene 160 Kc a 220 Kc za 1 kg je treba pripravit 20 kg smesi v cene 205 Kc za 1 kg. Kolik kg kazdeho caje je treba smichat? 5 kg levnejsiho a 15 kg drazsiho library(rootSolve) ### opravit zadani model <- function(x){ F1 <- 160*x[1] + 220*x[2] - 4100 F2 <- x[1] + x[2] - 20 c(F1 = F1, F2 = F2)} ss <- multiroot(f = model, start = c(1, 1)) ss$root ### graficke reseni # 160*m1 + 220*m2 = 4100 => m1 = 4100/160 - 220/160 * m2 => m1 = 25.625 - 1.375 * m2 # m1 + m2 = 20 => m1 = 20 - m2 xx = seq(0,20,0.1) yy = 25.625 - 1.375*xx zz = 20 - xx plot(xx, yy, type="l",col=2) points(xx, zz, type="l",col=4) plot(xx, yy, type="l",col=2,xlim=c(10,20),ylim=c(0,10)) points(xx, zz, type="l",col=4) ### Kolik g 60% a kolik g 30% roztoku NaCl je treba smichat pri priprave 100 g 40% roztoku? 20 g 60% a a 80 g 35% library(rootSolve) model <- function(x){ F1 <- 0.6*x[1] + 0.3*x[2] - 40 F2 <- x[1] + x[2] - 100 c(F1 = F1, F2 = F2)} ss <- multiroot(f = model, start = c(1, 1)) ss$root ### graficke reseni # 0.6*m1 + 0.3*m2 = 100*0.4 => m1 = 40/0.6 - 0.3/0.6 * m2 => m1 = 66.67 - 0.5 * m2 # m1 + m2 = 100 => m1 = 100 - m2 xx = seq(0,100,0.1) yy = 66.67 - 0.5*xx zz = 100 - xx plot(xx, yy, type="l",col=2) points(xx, zz, type="l",col=4) plot(xx, yy, type="l",col=2,xlim=c(65,70),ylim=c(30,40)) points(xx, zz, type="l",col=4) ### matice B = c(0.40*100,100) # [mg] names(B) = c("60%","30%") r1 = c(0.60,1) # [mg] r2 = c(0.30,1) # [mg] A = cbind(r1,r2) colnames(A) = c("60%","30%") rownames(A) = c("r30","r3") det(A) # matice je regularni n = h library(matlib) c(R(A), R(cbind(A,B))) # show ranks all.equal(R(A), R(cbind(A,B))) # consistent? showEqn(A, B) matlib::Solve(A, B) limSolve::Solve(A, B) # library(limSolve) G <-matrix(ncol = 2, byrow = TRUE, data = c(1, 0, 0, 1)) H <- c(0, 0) ldei(A, B, G = G, H = H)$X # library(cmna) gdls(A, B, alpha = 0.05, tol = 1e-06, m = 1e+05) # least squares with graident descent jacobi(A, B, tol = 1e-06, maxiter = 100) # iterativematrix gaussseidel(A, B, tol = 1e-06, maxiter = 100) # iterativematrix solvematrix(A, B) # refmatrix ### Ze dvou kovu o hustotach 7.4 g/cm3 a 8.2 g/cm3 je treba pripravit 0.5 kg slitiny o hustote 7.6 g/cm3. Kolik g kazdiho z kovu je k tomu potreba? 375 g lehciho a 125 g tezsiho library(rootSolve) model <- function(x){ F1 <- 7.4*x[1] + 8.2*x[2] - 3800 F2 <- x[1] + x[2] - 500 c(F1 = F1, F2 = F2)} ss <- multiroot(f = model, start = c(1, 1)) ss$root # [kg] ### graficke reseni # 7.4*m1 + 8.2*m2 = 0.5*7.6 => m1 = 3800/7.4 - 8.2/7.4 * m2 => m1 = 513.5 - 1.108 * m2 # m1 + m2 = 500 => m1 = 500 - m2 xx = seq(0,500,1) yy = 513.5 - 1.108*xx zz = 500 - xx plot(xx, yy, type="l",col=2) points(xx, zz, type="l",col=4) plot(xx, yy, type="l",col=2,xlim=c(100,150),ylim=c(350,400)) points(xx, zz, type="l",col=4) ### matice B = c(7.6,1) # [mg] names(B) = c("kov1","kov2") r1 = c(7.4,1) # [mg] r2 = c(8.2,1) # [mg] A = cbind(r1,r2) colnames(A) = c("kov1","kov2") rownames(A) = c("7.4","8.2") det(A) # matice je regularni n = h library(matlib) c(R(A), R(cbind(A,B))) # show ranks all.equal(R(A), R(cbind(A,B))) # consistent? showEqn(A, B) rr = matlib::Solve(A, B) read.table(text = rr[1], fill = TRUE)[[3]]*500 # [g] read.table(text = rr[2], fill = TRUE)[[3]]*500 # [g] rr = limSolve::Solve(A, B) rr*500 # [g] # library(limSolve) G <-matrix(ncol = 2, byrow = TRUE, data = c(1, 0, 0, 1)) H <- c(0, 0) rr = ldei(A, B, G = G, H = H)$X rr*500 # [g] ### Vodní nádrz by se naplnila prvním prívodem za 36 minut, druhým za 45 minut. Za jak dlouho se nádrz naplní, pritéká-li voda nejprve 9 minut prvním prívodem a pak obema soucasne? # x/36 + (x - 9)/45 = 1 vr <- ysym("x/36 + (x-9)/45 - 1") solve(vr, "x") fun <- function (x) x/36 + (x-9)/45 - 1 uniroot(fun, c(0, 1),extendInt = "yes", tol = 1e-9)$root ### V tepelné elektrárne mají zásobu uhlí, která vystací na 24 dní, bude-li v cinnosti pouze první blok, na 30 dní, bude-li v provozu pouze 2. blok a na 20 dní, bude-li v provozu pouze 3. blok. Na jak dloho vystací zásoba, budou-li v provozu vsechny bloky najednou? # x/24 + x/30 + x/20 = 1 vr <- ysym("x/24 + x/30 + x/20 - 1") solve(vr, "x") fun <- function (x) x/24 + x/30 + x/20 - 1 uniroot(fun, c(0, 1),extendInt = "yes", tol = 1e-9)$root ### Míc byl vyhozen svisle vzhuru rychlostí 25 m/s. Za jak dlouho bude míc 20 m nad zemí? Odpor vzduchu zanedbejte. # h = v t - 1/2 g t^2 g = 10 # [m/s^2] h = 20 # [m] v = 25 # [m/s] t <- ysym("t") g <- ysym("g") h <- ysym("h") v <- ysym("v") poly <- ysym("g*t^2 - 2*v*t + 2*h") ko = solve(poly, "t") ko[1] ko[2] eval(as_r((2*v+sqrt(-((-4)*v^2+8*g*h)))/(2*g)), list(g = 10, v = 25, h = 20)) eval(as_r((2*v-sqrt(-((-4)*v^2+8*g*h)))/(2*g)), list(g = 10, v = 25, h = 20)) poly <- ysym("10*t^2 - 50*t + 40") ko = solve(poly, "t") ko[1] ko[2] library(pracma) rr = roots(c(10, -50, 40)) rr F1 = rr[rr>=0] F1 rr = polyroot(c(40, -50, 10)) # base Re(rr) g = 10 # [m/s^2] h = 20 # [m] v = 25 # [m/s] fun <- function (t) g*t^2 - 2*v*t + 2*h #uniroot(fun, c(-1, 0),extendInt = "yes", tol = 1e-9) # base uniroot(fun, c(0.1, 5),extendInt = "yes", tol = 1e-9) F1 <- uniroot(fun, c(0, 1),extendInt = "yes", tol = 1e-9)$root F1 # udava jen jeden koren library(rootSolve) F1 <- rootSolve::uniroot.all(fun, c(0, 10), tol = 1e-9) F1 library(Rmpfr) F1 <- Rmpfr::unirootR(fun, lower=0.1, upper=10, tol = 1e-9) F1 # udava jen jeden koren # Descartes rule cat("Pocet kladnych korenu:", sum(diff(sign(c(10, -50, 40))) != 0)) # pocet kladnych korenu ###### derivace #################################################################################################### D() deriv() derivative = deriv(~ x^3, "x") x <- 2 eval(derivative ) f = expression(x^3) dx2x <- D(f,"x") dx2x library(pracma) f <- sin xs <- seq(-pi, pi, length.out = 100) ys <- f(xs) y1 <- fderiv(f, xs, n = 1, method = "backward") y2 <- fderiv(f, xs, n = 2, method = "backward") y3 <- fderiv(f, xs, n = 3, method = "backward") y4 <- fderiv(f, xs, n = 4, method = "backward") plot(xs, ys, type = "l", col = "gray", lwd = 2,xlab = "", ylab = "", main = "Sinus and its Derivatives") lines(xs, y1, col=1, lty=2) lines(xs, y2, col=2, lty=3) lines(xs, y3, col=3, lty=4) lines(xs, y4, col=4, lty=5) grid() f <- sin xs <- seq(-pi, pi, length.out = 100) numdiff(f, xs, maxiter = 16, h = 1/2) # derivace v bode library(pracma) f <- function(x) sin(x)*sqrt(1+sin(x)) F <- function(x)integrate(f, 0, x, rel.tol = 1e-12)$value x0 <- 1 (dF0 <- numderiv(F, x0, tol = 6.5e-15)) f(x0) x=x0 eval(sin(x)*sqrt(1+sin(x))) fderiv(F, x0) library(numDeriv) numDeriv::grad(F, x0) ### Hmotny bod kona harmonicky pohyb, zavislost vychylky y na case t je dana vztahem y = A * sin(om*t + phi), kde A, om a phi jsou konstanty. Urcete rychlost hmotneho bodu v case t = 0. library(Deriv) der = Deriv("A*sin(om*t+phi)", "t") der der0 = gsub("t", "0", der, fixed = TRUE) der0 Simplify(der0) library(mosaic) f <- makeFun(m * x + b ~ x, m = 3.5, b = 10) f(x = 2) g <- makeFun(A * x * cos(pi * x * y) ~ x + y, A = 3) # function (x, y, A = 3) A * x * cos(pi * x * y) g g(x = 1, y = 2) plotFun(A * exp(k * t) * sin(2 * pi * t/P) ~ t + k, t.lim = range(0, 10), k.lim = range(-0.3,0), A = 10, P = 4) library(manipulate) plotFun(A * exp(k * t) * sin(2 * pi * t/P) ~ t + k, t.lim = range(0, 10),k.lim = range(-0.3,0), A = 10, P = 4, surface = TRUE) library(mosaic) library(mosaicCalc) D(sin(x) ~ x) # derivace D(A * x^2 * sin(y) ~ x) # 2. derivace D(A * x^2 * sin(y) ~ x + y) # 3. derivace findZeros(sin(t) ~ t, t.lim = range(-5, 1)) findZeros(sin(t) ~ t, nearest = 5, near = 10) findZeros(sin(t) ~ t, near = 0, within = 8) D = function(f,delta=.000001){function(x){ (f(x+delta) - f(x-delta))/(2*delta)} } f = function(x){ x^2 + 2*x } plot(f, 0, 10) ###### integrace #################################################################################################### # integrate() # 1/((x+1)*sqrt(x)) integrand <- function(x) {1/((x+1)*sqrt(x))} integrate(integrand, lower = 0, upper = Inf) # 1/sqrt(2*pi)*exp(-x^2/2) f <- function(x) {1/sqrt(2*pi)*exp(-x^2/2)} integrate(f, lower = -1.96, upper = 1.96) ### mnohorozmerny integral library(cubature) f <- function(x) { 2/3 * (x[1] + x[2] + x[3]) } adaptIntegrate(f, lowerLimit = c(0, 0, 0), upperLimit = c(0.5, 0.5, 0.5)) library(sfsmisc) integrate.xy(x, fx=y, a, b, use.spline=TRUE, xtol=2e-08) ### geometrie ########################################################################################################################################## library(retistruct) line.line.intersection(c(0, 0), c(1, 1), c(0, 1), c(1, 0)) line.line.intersection(c(0, 0), c(0, 1), c(1, 0), c(1, 1)) library(PBSmapping) p1 <- data.frame(PID=rep(1, 4), POS=1:4, X=c(1,1,6,6), Y=c(1,3,3,1)) p2 <- data.frame(PID=rep(2, 5), POS=1:5, X=c(4,4,8,8,6), Y=c(2,4,4,2,1)) p3 <- joinPolys(p1,p2) x11() par(mar=c(3,3,1,1)) plot(1,1,ylim=c(0,5),xlim=c(0,9), t="n", xlab="", ylab="") polygon(p1$X, p1$Y, border=2) polygon(p2$X, p2$Y) polygon(p3$X, p3$Y, col=rgb(0,0,1,0.2)) ### kuzelosecky library(sfsmisc) ellipsePoints(a, b, alpha = 0, loc = c(0, 0), n = 201) library(conics) # 2x2^2 + 2x1x2 + 2x2^2 - 20x1 - 28x2 + 10 = 0 v <- c(2,2,2,-20,-28,10) A <- conicMatrix(v) conicCenter(v) conicAxes(v) conicCenter(A) conicAxes(A) conicPlot(v, main="conicPlot(v)", xlab="", ylab="") conicPlot(v, col="red", lty=3) conicPlot(v, asp=1) conicPlot(v, center=T, sym.axes=T) v <- c(2,2,2,-20,-28,10) conicPlot(v, center=T, lty=1) v[6] <- 30 conicPlot(v, add=T, lty=2) v[6] <- 50 conicPlot(v, add=T, lty=4) v <- c(2,2,-2,-20,20,10) conicPlot(v, xlim=c(-10,10), ylim=c(-5,18)) conicPlot(v, asymptotes=T, sym.axes=T,as.col="red", as.lty=2, ax.col="blue", ax.lty=4, xlim=c(-10,10), ylim=c(-5,18)) conicPlot(v, asymptotes=T, sym.axes=T, xlim=c(-10,10), ylim=c(-5,18), asp=1, col="blue", main="Hyperbola", bty="n") v <- c(-4,0,1,0,0,1) cp <- conicPlot(v, sym.axes=TRUE, asymptote=TRUE, asp=1, ax.lty=2, as.col="gray") points(cp$foci$x,cp$foci$y,col="red",pch=19) text(cp$foci$x,cp$foci$y+0.1,paste("F",2:1,sep="")) points(cp$vertices$x,cp$vertices$y,col="blue",pch=19) #### SYMBOLICKA MATEMATIKA ################################################################## library(rSymPy) # výpocet na daný pocet platných císlic sympy("sqrt(8).evalf()") # default sympy("sqrt(8).evalf(50)") sympy("pi.evalf()") sympy("pi.evalf(3)") sympy("pi.evalf(120)") ## Recognizing numbers sympy("nsimplify(4.242640687119286)") sympy("nsimplify(cos(pi/6))") sympy("nsimplify(6.28, [pi], tolerance=0.01)") sympy("nsimplify(pi, tolerance=1e-5)") sympy("nsimplify(pi, tolerance=1e-6)") sympy("nsimplify(29.60881, constants=[pi,E], tolerance=1e-5)") # x <- Var("x") x+x x*x/x y <- Var("x**3") x/y z <- sympy("2.5*x**2") z + y sympy("one = cos(1)**2 + sin(1)**2") sympy("(one - 1).evalf()") # chyba zaokrouhlení sympy("(one - 1).evalf(chop=True)") # rouding this type of roundoff errors # FUNKCE sympy("sqrt(8)") sympy("sqrt(9)") sympy("sqrt(3.14)") sympy("sin(1)") # create function Exp <- function(x) Sym("exp(", x, ")") Exp(-x) * Exp(x) # rovnice sympy("Eq(x**2+2*x+1,(x+1)**2)") # vytvoreni rovnice # jsou obe strany rovnice ekvivalentni? sympy("a = x**2+2*x+1") sympy("b = (x+1)**2") "0" == sympy("simplify(a-b)") # if they are equal, the result is zero # urceni korenu rovnice sympy("solve(x**2 - 2, x)") # solve x^2-2=0 # zjednoduseni vyrazu sympy("simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))") sympy("factor(x**3 - x**2 + x - 1)") sympy("(x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1)") x <- Var("x") y <- Var("y") z <- Var("z") sympy("collect(x*y + x - 3 + 2*x**2 - z*x**2 + x**3, x)") # organize equation around var 'x' sympy("cancel((x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1))") sympy("simplify((x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1))") # roznasobeni zavorek sympy("(x + 2)*(x - 3)") sympy("expand((x + 2)*(x - 3))") sympy("expand_func(gamma(x + 3))") # pro funkci # limita funkce sympy("limit(1/x, x, oo)") # limit eg, x -> Inf sympy("limit(1/x, x, 0)") sympy("limit(sin(2*x)/(2*x), x, 0)") sympy("limit((1+(1/(3*x)))**(3*x), x, oo)") sympy("limit((exp(x)-E)/(x-1), x, 1)") sympy("limit((ln(x)-1)/(x-E), x, E)") sympy("limit((exp(x)-exp(-x))/sin(x), x, 0)") ### Pri redení daného mnozství kyseliny sírové pridáním vody o hmotnosti x vznikne mnozství tepla y = Ax / x+B , kde A, B jsou kladné konstanty. # Jaké mnozství tepla se uvolní pro x -> oo ? Kolik vody se musí pridat aby vzniklo 80 % tohoto mnozství tepla ? x = Var("x") A = Var("A") B = Var("B") sympy("limit(A*x/(x+B), x, oo)") ### Okamzitá koncentrace látky C, vzniklé pri nevratné chemické reakci A + B = C, je c(t) = ab(1-e^(b-a)kt) / a-bee^(b-a)kt , kde a, b, k jsou kladné konstanty, t > 0. # Jaké hodnoty nabývá koncentrace c pro t -> oo v prípadech a > b, b > a. a = Var("a") b = Var("b") k = Var("k") t = Var("t") sympy("limit(a*b*(1-exp((b-a)*k*t))/(a-b*exp((b-a)*k*t)), t, oo)") ### Molární tepelná kapacita cV dvouatomového ideálního plynu pri konstantním objemu V je dána vztahem cV(T) = 5R/2 + (hv/kT)^2 (R exp(hv/kT))/(exp(hv/kT)-1)^2 R = Var("R") h = Var("h") v = Var("v") k = Var("k") Tk = Var("Tk") sympy("limit(R*5/2 + ((h*v/(k*Tk))**2)*(R*exp(h*v/(k*Tk))/(exp(h*v/(k*Tk))-1)**2), Tk, oo)") ### Molární tepelná kapacita cV závisí na teplote T podle vztahu cV(T) = 3R(hv/kT)^2 (exp(hv/kT))/(exp(hv/kT)-1)^2 R = Var("R") h = Var("h") v = Var("v") k = Var("k") Tk = Var("Tk") sympy("limit(3*R*((h*v/(k*Tk))**2)*(exp(h*v/(k*Tk))/(exp(h*v/(k*Tk))-1)**2), Tk, oo)") sympy("y = x*x") # create a variable 'y' in the SymPy persistant state sympy("A = Matrix([[1,x], [y,1]])") sympy("A**2") sympy("B = A.subs(x,1.1)") # replace x by 1.1 (btw, SymPy objects are immutable) sympy("B**2") # more replacement, a subexpression by another: sympy("expr = sin(2*x) + cos(2*x)") sympy("expr.subs(sin(2*x), 2*sin(x)*cos(x))") sympy("expr.subs(x,pi/2)") x <- Var("x") y <- Var("y") (x+y)*(x+y) ### Derivace ### D(expression(sin(2*x)), "x") # also possible in base R sympy("diff(sin(2*x), x, 1)") # first derivative sympy("diff(sin(2*x), x, 2)") # second derivative sympy("diff(sin(2*x), x, 3)") # third derivative sympy("diff(exp(x*y*z), x, y, y)") # d^3/dxdy^2 sympy("diff(exp(x*y*z), x, z, 3)") # d^4/dxdz^3 library(Deriv) Deriv("sin(2*x)", "x", cache.exp=FALSE) # differentiate only by x ### Závislost mnozství m látky získané chemickou reakcí v case t je dána vztahem m = A(1-exp(-kt)), kde A a k jsou konstanty. Jak závisí rychlost reakce na case t ? D(expression(A*(1-exp(-k*t))), "t") # base R library(rSymPy) sympy("diff(A*(1-exp(-k*t)), t, 1)") library(Deriv) Deriv("A*(1-exp(-k*t))", "t", cache.exp=FALSE) ### Pri chemické reakci A + B = C v níz obe pocátecní koncentrace výchozích látek nabývají stejné hodnoty a, je závislost koncentrace x vznikající látky na case dána vztahem x(t) = (a^2)kt / 1+akt. Jak se mení koncentrace s casem, je-li k > 1 ? kt . D(expression((a^2)*k*t/(1+a*k*t)), "t") # base R library(rSymPy) sympy("diff((a**2)*k*t/(1+a*k*t), t, 1)") library(Deriv) Deriv("(a^2)*k*t/(1+a*k*t)", "t", cache.exp=FALSE) library(Deriv) Deriv("sin(x^2) * y", "x") # differentiate only by x Deriv("sin(x^2) * y", "y") # differentiate only by x Deriv("sin(x^2) * y", cache.exp=FALSE) # differentiate by all variables (here by x and y) Deriv("sin(x^2) * y", cache.exp=TRUE) # differentiate by all variables (here by x and y) Deriv("sin(cos(x + y^2))", cache.exp=FALSE) # differentiate by all variables (here by x and y) Deriv("sin(cos(x + y^2))", "x") Deriv("sin(cos(x + y^2))", "y") # Compound function example (here abs(x) smoothed near 0) fc <- function(x, h=0.1) if (abs(x) < h) 0.5*h*(x/h)**2 else abs(x)-0.5*h Deriv("fc(x)", "x", cache.exp=FALSE) Simplify("x^3 - x^2 + x - 1") Simplify("x*y + x - 3 + 2*x^2 - z*x^2 + x^3") Simplify("(x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1)") ### Integral ### integrate(function(x) exp(-x), 0, Inf) # integration is possible in R sympy("integrate(exp(-x))") # indefinite integral sympy("integrate(exp(-x*y),x)") # indefinite integral sympy("integrate(exp(-x), (x, 0, oo))") # definite integral sympy("integrate(x**2 - y, (x, -5, 5), (y, -pi, pi))") # definite integral ### Mnozství tepla Q (v J) potrebné na zahrátí 10 kg zeleza o 1 K je pro T = <273.15, 473.15> vyjádrena funkcí Q = 4.1686 (105.3T + 0.42T^2). Vypocítejte strední mnozství tepla (v J / kg K) potrebného na zahrátí zeleza z teploty 293.15 K na 373.15 K. qm = integrate(function(Tk) 4.1868*(105.3*Tk + 0.142*Tk^2), 293.15, 373.15) # integration is possible in R unlist(qm) 0.1*unlist(qm)$value/(373.15-293.15) # [J / kg K] Tk = Var("Tk") smp = sympy("integrate(4.1868*(105.3*Tk + 0.142*Tk**2), (Tk, 293.15, 373.15))") # definite integral 0.1*as.numeric(smp)/(373.15-293.15) # [J / kg K] ### Merné teplo c benzínu (pri konstantním tlaku) v závislosti na teplote T je vyjádrené funkcí c = -0.06 + 0.0010228T. Vypocítejte strední merné teplo benzínu pro T = <389.15, 491.15>. qm = integrate(function(Tk) -0.06 + 0.0010228*Tk, 389.15, 491.15) # integration is possible in R unlist(qm) 0.1*unlist(qm)$value/(491.15-389.15) # [J / kg K] Tk = Var("Tk") smp = sympy("integrate(-0.06 + 0.0010228*Tk, (Tk, 389.15, 491.15))") as.numeric(smp)/(491.15-389.15) # [J / K] ################################################################################################################## library(Ryacas) # https://www.andrewheiss.com/blog/2019/02/16/algebra-calculus-r-yacas/ yac_str("N(Pi, 50)") yac_str("x+x+x+x") yac_expr("x+x+x+x") eval(yac_expr("x+x+x+x"), list(x = 4)) yac_str("Factor(x^2+x-6)") yac_expr("Factor(x^2+x-6)") eq <- "x^2 + 4 + 2*x + 2*x" yac_str(eq) # Evaluate yacas command x (a string) and get result as string/character. No task was given to yacas, so we simply get the same returned # zjednodusení výrazu yac_str(paste0("Simplify(", eq, ")")) # Simplify(x): Simplify an expression eq <- "x^2 + (x + 14)^2 - 34^2" rr = yac_str(paste0("Simplify(", eq, ")")) # zjednodusení výrazu x = 2 eval(parse(text="x^2+14*x-480")) yac_str(paste0("Factor(", eq, ")")) # Factor(x): Factorise an expression yac_str(y_fn(eq, "Factor")) y_fn(eq, "Factor") yac_expr(paste0("Factor(", eq, ")")) zz = y_fn(eq, "Factor") yac_expr(paste0("Expand(", zz, ")")) # expr <- yac_expr(paste0("Factor(", eq, ")")) expr eval(expr, list(x = 2)) x <- ysym("x") 2*x^2 - 5 c(-2, 5)*x c(2*x, -x^3) as_r(c(-2, 5)*x) # or yac_expr(c(-2, 5)*x) xs <- ysym("x") poly <- xs^2 - xs - 6 poly zeroes <- solve(poly, "x") # Solve(x^2 - x - 6 == 0, x) zeroes solve(poly, 3, "x") # Solve(x^2 - x - 6 == 3, x) x <- ysym("x") y <- ysym("y") lhs <- c(3*x*y - y, x) rhs <- c(-5*x, y+4) sol <- solve(lhs, rhs, c("x", "y")) sol sol_vals <- lapply(seq_len(nrow(sol)), function(sol_no){y_rmvars(sol[sol_no, ])}) sol_vals sol_envir <- lapply(sol_vals, function(l){list(x = as_r(l[1]), y = as_r(l[2]))}) sol_envir do.call(rbind, lapply(seq_along(sol_envir), function(sol_no) {sol_val <- sol_envir[[sol_no]] data.frame(sol_no = sol_no, eq_no = seq_along(sol_val), lhs = eval(as_r(lhs), sol_val), rhs = eval(as_r(rhs), sol_val))})) # Rosenbrock function: x <- ysym("x") y <- ysym("y") f <- (1 - x)^2 + 100*(y - x^2)^2 f N <- 30 x <- seq(-1, 2, length=N) y <- seq(-1, 2, length=N) f_r <- as_r(f) f_r z <- outer(x, y, function(x, y) eval(f_r, list(x = x, y = y))) levels <- c(0.001, .1, .3, 1:5, 10, 20, 30, 40, 50, 60, 80, 100, 500, 1000) cols <- rainbow(length(levels)) contour(x, y, z, levels = levels, col = cols) g <- deriv(f, c("x", "y")) # minimum g crit_sol_all <- solve(g, c("x", "y")) crit_sol_all Solve(expr, var) solve an equation (refer to the Ryacas function y_rmvars()) Variables(): List yacas variables # yacas( "OldSolve({a*x+y==0,x+z==0},{x,y})" ) # equation $a x = b$ for $x$. solve(a,b) # ???nd roots of a for variable b, i.e. yacas Solve(a == 0,b) solve(a,b,v) # ???nd solutions to a == b for variable v, i.e. yacas Solve(a == b,v) # also works for a system of equations (when a is a vector) A <- outer(0:3, 1:4, "-") + diag(2:5) a <- 1:4 B <- ysym(A) b <- ysym(a) solve(A) solve(B) solve(A, a) solve(B, b) poly <- ysym("x^2 - x - 6") solve(poly, "x") # Solve(poly == 0, x) solve(poly, 3, "x") # Solve(poly == 3, x) sum(expr, var, lower, upper, ..., na.rm = FALSE) ## D(x) expr: Take the derivative of expr with respect to x yac_str("D(x) x^2+x-6") yac_expr("D(x) x^2+x-6") L <- ysym("x^2 * (y/4) - a*(3*x + 3*y/2 - 45)") L deriv(L, "x") my_log <- function(x){return(sin(log(2 + x)))} deriv(my_log(x), x) integrate(my_log(x), x) integrate(f, var, lower, upper ) # Hessian(function, var) # Create the Hessian matrix Hessian(L, "x") deriv(L, c("x", "y", "a")) H <- Hessian(L, c("x", "y", "a")); H as_r(H) eval(as_r(H), list(x = 2, y = 2, a = 2)) # Jacobian(function, var) # Create the Jacobian matrix L2 <- ysym(c("x^2 * (y/4) - a*(3*x + 3*y/2 - 45)", "x^3 + 4*a^2")) # just some function L2 Jacobian(L2, "x") Jacobian(L2, c("x", "y", "a")) # lim(f, var, val, from_left, from_right) # Limit of f(n) for n going towards a (e.g. Infinity or 0) cmd <- "Limit(n, Infinity) (1+(1/n))^n" yac_str(cmd) yac_expr(cmd) yac_str("Limit(h, 0) (Sin(x+h)-Sin(x))/h") # sum(k, a, b, f(k)) # Sum of f(k) for k from a to b # urcity integral yac_str("Sum(k, 0, n, a^k)") yac_expr("Sum(k, 0, n, a^k)") yac_str("poly := (x-3)*(x+2)") yac_silent("poly := (x-3)*(x+2)") yac_str("Expand(poly)")