1 Tomáš Vaculovič ̶ Principle of laser ablation and ICP-MS ̶ Imaging ̶ corroded layers ̶ in geology ̶ bio-samples ̶ Summary and Outlook of imaging 2 ̶ Inductively Coupled Plasma of Mass Spectrometry ̶ argon plasma – source of atoms and ions (16 eV, 10000 K) 4 ̶ Inductively Coupled Plasma of Mass Spectrometry ̶ argon plasma – source of atoms and ions (16 eV, 10000 K) 3 5 ̶ Inductively Coupled Plasma of Mass Spectrometry ̶ argon plasma – source of atoms and ions (16 eV, 10000 K) ̶ atomization and ionization of the most elements of P.T. ̶ elemental specific detector (no molecules) 6 ̶ Inductively Coupled Plasma of Mass Spectrometry ̶ argon plasma – source of atoms and ions (16 eV, 10000 K) ̶ atomization and ionization of the most elements of P.T. ̶ elemental specific detector (no molecules) X X X X X X X X 4 7 ̶ Inductively Coupled Plasma of Mass Spectrometry ̶ argon plasma – source of atoms and ions (16 eV, 10000 K) ̶ atomization and ionization of the most elements of P.T. ̶ elemental specific detector (no molecules) ̶ analysis of solution and solid samples (laser ablation) ̶ limit of detection – pg/l, ng/g 8 ̶ Inductively Coupled Plasma of Mass Spectrometry ̶ argon plasma – source of atoms and ions (16 eV, 10000 K) ̶ atomization and ionization of the most elements of P.T. ̶ elemental specific detector (no molecules) ̶ analysis of solution and solid samples (laser ablation) ̶ limit of detection – pg/l, ng/g 5 9 ̶ Laser ablation ̶ explosive interaction of the laser beam and material (> 109 W/cm2) ̶ produced dry aerosol (particles and vapours) composition of dry aerosol and analyzed surface are same – necessary for analytical purpose 10 ̶ Advantages ̶ analysis of any type of materials ̶ direct analysis of solid samples ̶ laser beam diameter 4 – 200 μm (optional lateral resolution) ̶ possibility of local microanalysis ̶ possibility of lateral distribution of elements (imaging) ̶ Drawbacks ̶ different ablation rate for various materials (IS needed) ̶ additional equipment 6 11 ̶ Different ablation rate garnet quartz 10 ug/g Sc 10 ug/g Sc 12 ̶ Different ablation rate garnet quartz 10 ug/g Sc 10 ug/g Sc same ablation parameters 7 13 ̶ Different ablation rate garnet quartz 10 ug/g Sc 10 ug/g Sc same ablation parameters garnet quartz 14 ̶ Different ablation rate garnet quartz 10 ug/g Sc 10 ug/g Sc same ablation parameters garnet quartz 8 15 ̶ Different ablation rate garnet quartz 10 ug/g Sc 10 ug/g Sc same ablation parameters garnet quartz 16 sample preparation 9 17 sample preparation measurement 18 measurementsample preparation 10 19 measurementsample preparation 20 measurementsample preparation 11 21 measurementsample preparation data processing 22 Task 1: Steel sample was exposed to molten LiF-NaF salt treatment. Strong corrosion on sample surface occured. Our task is to obtain content of main constituent of steel and Li and Na in corroded layer. Task 2: My colleague geologist: „I have granitoid sample which contains quartz, mica, feldspar and the other minerals. Would it be possible to obtain elemental map of the granite?“ Task 3: Spontaneous regression is the process by which melanoma disappears. What happens with the elements at spontaneous regression? Task 4: Nanoparticles are all around us. Do nanoparticles accumulate in the body or are they excreted out? 12 23 ̶ Steel sample was exposed to molten LiF-NaF salt treatment. Strong corrosion on sample surface occured. Our task is to obtain content of main constituent of steel and Li and Na in corroded layer. 24 ̶ Steel sample was exposed to molten LiF-NaF salt treatment. Strong corrosion on sample surface occured. Our task is to obtain content of main constituent of steel and Li and Na in corroded layer. Why LiF-NaF mixture? 13 25 http://ojs.ujf.cas.cz/~wagner/popclan/transmutace/generaceIV.html GEN IV six concepts of reactors: Very High-Temperature gas-cooled Reactor Gas-cooled Fast Reactor Sodium-cooled Fast Reactor Lead-cooled Fast Reactor Super-critical water-cooled reactor Molten fluoride salt reactor 26 holder for manipulation with the sample wall of the ampoule molten fluoride salt sample movement tested sample ̶ sample preparation (in Energovýzkum, Ltd.) ̶ tested materials: Ni-based alloys and pure nickel ̶ MFS: LiF-NaF, LiF-NaF-ZrF4 ̶ exposure: 680°C, 100, 300, and 1000 hours 14 27 ̶ determination of elements in corroded layer ̶ single line scan (crust-corroded layer-intact material; laser beam diameter – 25 μm) ̶ in 2006 measured in ETH (we did not have ICP-MS) Sample 12 - line Distance from edge / m -400 -300 -200 -100 0 100 200 300 400 Intensity/cps 101 102 103 104 105 106 107 108 Na23 Si29 Li7 K39 Ti49 V51 Cr53 Mn55 Fe57 Co59 Ni60 Rb85 Mo98 Cs133 metalcrustembedding 28 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 12 μm) ̶ spot by spot 15 29 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 4 μm) ̶ spot by spot ̶ quantification – external calibration ̶ calibration standards – steel standards ̶ tested materials – Ni-based alloy element reference value [%] intact layer [%] Ni 76.3 76.8 Cr 7.0 6.9 W 4.5 4.4 Ti 1.7 1.8 Ix wx 30 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 4 μm) ̶ spot by spot ̶ quantification – external calibration ̶ calibration standards – steel standards ̶ tested materials – Ni-based alloy element reference value [%] intact layer [%] corroded layer [%] Ni 76.3 76.8 375 Cr 7.0 6.9 35 W 4.5 4.4 21 Ti 1.7 1.8 10 16 31 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 4 μm) ̶ spot by spot ̶ quantification – external calibration ̶ calibration standards – steel standards ̶ tested materials – Ni-based alloy element reference value [%] intact layer [%] corroded layer [%] Ni 76.3 76.8 375 Cr 7.0 6.9 35 W 4.5 4.4 21 Ti 1.7 1.8 10 What’s wrong? 32 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 4 μm) ̶ spot by spot ̶ Different ablation rate? 17 33 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 4 μm) ̶ spot by spot ̶ Different ablation rate? ̶ Particle size distribution measurements (Dr. Mikuška, UIACH CAS) 6x higher ablation rate in corroded layer! 34 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 4 μm) ̶ spot by spot ̶ quantification – total sum ion normalization (TSIN) ̶ measuring of all elements from the sample 7Li, 23Na, 47Ti, 52Cr, 55Mn, 56Fe, 60Ni, 182W 18 35 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 4 μm) ̶ spot by spot ̶ quantification – total sum ion normalization (TSIN) ̶ measuring of all elements from the sample ̶ recalculation of measured intensities of isotopes on 100% abundance 𝐼 𝐿𝑖 = 𝐼 7 𝐿𝑖 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 7 𝐿𝑖 𝐼 𝑁𝑎 = 𝐼 23 𝑁𝑎 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 23 𝑁𝑎 𝐼 𝑁𝑖 = 𝐼 60 𝑁𝑖 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 60 𝑁𝑖 ... 36 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 4 μm) ̶ spot by spot ̶ quantification – total sum ion normalization (TSIN) ̶ measuring of all elements from the sample ̶ recalculation of measured intensities of isotopes on 100% abundance ̶ calculation of content from the sum of intensities 𝑤 𝐿𝑖 = 𝐼(𝐿𝑖) 𝐼 𝐿𝑖 +𝐼 𝑁𝑎 +𝐼 𝑁𝑖 +⋯ ∙ 100 𝑤 𝑁𝑎 = 𝐼(𝑁𝑎) 𝐼 𝐿𝑖 +𝐼 𝑁𝑎 +𝐼 𝑁𝑖 +⋯ ∙ 100 𝑤 𝑁𝑖 = 𝐼(𝑁𝑖) 𝐼 𝐿𝑖 +𝐼 𝑁𝑎 +𝐼 𝑁𝑖 +⋯ ∙ 100 19 37 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 4 μm) ̶ spot by spot ̶ quantification – total sum ion normalization (TSIN) ̶ measuring of all elements from the sample ̶ recalculation of measured intensities of isotopes on 100% abundance ̶ calculation of content from the sum of intensities ̶ verified by calibration standard element reference value [%] intact layer [%] Ni 28.5 28 Cr 4.3 4.5 Fe 62.0 62.7 Mn 0.8 0.7 38 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 4 μm) ̶ spot by spot ̶ quantification – total sum ion normalization (TSIN) ̶ measuring of all elements from the sample ̶ recalculation of measured intensities of isotopes on 100% abundance ̶ calculation of content from the sum of intensities ̶ verified by calibration standard ̶ tested on Ni-based alloy element EPMA value [%] corroded layer [%] Ni 74 73 Mo 21 22 Cr 5.0 4.4 Fe 1.3 1.5 20 39 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 4 μm) ̶ spot by spot ̶ quantification – total sum ion normalization (TSIN) ̶ measuring of all elements from the sample ̶ recalculation of measured intensities of isotopes on 100% abundance ̶ calculation of content from the sum of intensities ̶ verified by calibration standard ̶ tested on Ni-based alloy element EPMA value [%] corroded layer [%] Ni 74 73 Mo 21 22 Cr 5.0 4.4 Fe 1.3 1.5 TSIN works! 40 ̶ determination of elements in corroded layer ̶ imaging of corroded layer (laser beam diameter – 4 μm) ̶ spot by spot Sample Ni 350 h Ni 1000 h A071EV 350 h A071EV 1000 h Ni-coating 350 h Ni-coating 1000 h Thickness [m] 20 36 144 162 63 81 the most resistant: pure Ni 21 41 Sample 12 - line Distance from edge / m -400 -300 -200 -100 0 100 200 300 400 Intensity/cps 101 102 103 104 105 106 107 108 Na23 Si29 Li7 K39 Ti49 V51 Cr53 Mn55 Fe57 Co59 Ni60 Rb85 Mo98 Cs133 metalcrustembedding 42 ̶ improved lateral distribution from single line scan to elemental maps comparable to EPMA ̶ corrosion provoked by LiF-NaF mixture is very specific ̶ utilization for development of alloys for implants ̶ determination of elements released from implants into tissue (bones, teeth, muscle) 22 43 ̶ My colleague geologist: „I have granitoid sample which contains quartz, mica, feldspar and the other minerals. Would it be possible to obtain elemental map of the granite?“ 44 ̶ My colleague geologist: „I have granitoid sample which contains quartz, mica, feldspar and the other minerals. Would it be possible to obtain elemental map of the granite?“ My answer: „Yes, no problem.“ 23 45 ̶ Li-muskovite (mica) from Argamela mine (Portugal) 46 ̶ Li-muskovite (mica) from Argamela mine (Portugal) ̶ quantification – external calibration with internal standardization Ix wx 𝑤(𝑋) 𝑛𝑜𝑟𝑚 = 𝑤(𝑋) 𝑚𝑒𝑎𝑠 × 𝑤 𝐼𝑆 𝐸𝑃𝑀𝐴 𝑤 𝐼𝑆 𝑚𝑒𝑎𝑠 24 47 ̶ Li-muskovite (mica) from Argamela mine (Portugal) ̶ quantification – external calibration with internal standardization Ix wx 𝑤(𝑋) 𝑛𝑜𝑟𝑚 = 𝑤(𝑋) 𝑚𝑒𝑎𝑠 × 𝑤 𝐼𝑆 𝐸𝑃𝑀𝐴 𝑤 𝐼𝑆 𝑚𝑒𝑎𝑠 w(SiO2)EPMA = 48.1 % 48 Al2O3 Fe2O3 K2O P2O5 MnO SiO2 48.1 % 25 49 SiO2 48.1 % Al2O3 Fe2O3 K2O P2O5 MnO Li2O: 1.1 % Al2O3: 54.6 % K2O: 11.8 % Na2O: 0.7 % P2O5: 0.5 % Fe2O3: 4.3 % SiO2 : 48.1 % ∑ 122.1 % 50 SiO2 48.1 % Al2O3 Fe2O3 K2O P2O5 MnO Li2O: 79.3 % Al2O3: 64.6 % K2O: 0.7 % Na2O: 8.5 % P2O5: 39.7 % SiO2 48.1 % ∑ 240.9 % 26 51 SiO2 48.1 % Li2O: 79.3 % Al2O3: 64.6 % K2O: 0.7 % Na2O: 8.5 % P2O5: 39.7 % SiO2 48.1 % ∑ 240.9 % What is wrong? Al2O3 Fe2O3 K2O P2O5 MnO 52 ̶ more detailed view on the sample: mica core: 45.8 % SiO2 mica rim: 50.5 % SiO2 apatite: < 1 % SiO2 27 53 ̶ more detailed view on the sample: mica core: 45.8 % SiO2 mica rim: 50.5 % SiO2 apatite: < 1 % SiO2 internal standardization is not applicable! 54 ̶ external calibration with sum oxide normalization (SON) to 100 % ̶ content of elements to recalculate to oxide form ̶ no complementary analysis (e.g. EPMA) ̶ all main elements of the sample have to be measured Ix wx 𝑤(𝑋𝑂) 𝑛𝑜𝑟𝑚 = 𝑤(𝑋𝑂) 𝑚𝑒𝑎𝑠 × 100 𝑤(𝑋𝑂) 𝑚𝑒𝑎𝑠 28 55 ̶ external calibration with sum oxide normalization (SON) ̶ content of elements to recalculate to oxide form ̶ no complementary analysis (e.g. EPMA) ̶ all main elements of the sample have to be measured Ix wx 𝑤(𝑋𝑂) 𝑛𝑜𝑟𝑚 = 𝑤(𝑋𝑂) 𝑚𝑒𝑎𝑠 × 100 𝑤(𝑋𝑂) 𝑚𝑒𝑎𝑠 Does it work? 56 ̶ analysis of homogenous sample with easy matrix (CRM) ̶ analysis of real sample (archaeological glass) ̶ analysis of heterogeneous real sample (mica from Argemela) 29 57 ̶ glass standard NIST 612 58 ̶ glass standard NIST 612 Youden graph: if: slope = 1, intercept = 0 then: methods are same 30 59 ̶ glass standard NIST 612 60 ̶ ancient glass – blue beads; Late Bronz Age (1300 A.C.); Holubice (Czech Rep.); SiO2 – 75.6 % (EPMA) 31 61 ̶ ancient glass – blue beads; Late Bronz Age (1300 A.C.); Holubice (Czech Rep.); SiO2 – 75.6 % (EPMA) 62 Li2O: 1.1 % Al2O3: 33.9 % K2O: 9.83 % Na2O: 0.90 % Fe2O3: 2.51 % SiO2 : 45.3 % F: 4.9 % ...: 1.56 % ∑ 100.0 % Al2O3 Fe2O3 K2O P2O5 MnO 32 63 ̶ mica sample froma Argamela Youden graph: if: slope = 1, intercept = 0 then: methods are same 64 Al2O3: 20 – 50 % Rb2O: 0 – 0.8 % K2O: 0 – 10 % Li2O: 0 – 4% Fe2O3: 0 – 3% MnO: 0 – 0.5 % Na2O: 0 – 1 % Al2O3 K2O MnO Na2O Li2O Rb2O Fe2O3 33 65 ̶ normalization on total sum oxide is applicable for heterogeneous samples ̶ improving of explanations „what happen with elements during minerals and rocks forming“ 66 ̶ Spontaneous regression is the process by which melanoma disappears. What happens with the elements at spontaneous regression? 34 67 ̶ Spontaneous regression is the process by which melanoma disappears. What happens with the elements at spontaneous regression? ̶ spontaneous regression – the process leading from melanoma (tumour tissue) to healthy tissue; (GMT – growing melanoma tissue; ESR – early spontaneous regression (approx. 12 weeks); LSR – late spontaneous regression (approx. 22 weeks); FT – fibrous tissue (30 weeks)) ̶ melanoma tissues from Melanoma-bearing Liběchov Minipig (MeLiM) 69 ̶ sample preparation (in Institute of Animal Physiology and Genetics, CAS) ̶ cryosections (thickness of 30 μm) ̶ different stages of spontaneous regression ̶ placed on glass slide ̶ laser ablation parameters ̶ laser spot diameter – 100 μm ̶ scan speed – 200 μm 35 70 ̶ LA-ICP-MS parameters ̶ laser beam spot – 100 μm ̶ scan speed – 200 μm/s ̶ laser beam fluence – 2 J/cm2 ̶ Suppression of different ablation rate ̶ recommended normalization on signal 12C 71 ̶ LA-ICP-MS parameters ̶ laser beam spot – 100 μm ̶ scan speed – 200 μm/s ̶ laser beam fluence – 2 J/cm2 ̶ Suppression of different ablation rate ̶ recommended normalization on signal 12C 36 72 ̶ LA-ICP-MS parameters ̶ laser beam spot – 100 μm ̶ scan speed – 200 μm/s ̶ laser beam fluence – 2 J/cm2 ̶ Suppression of different ablation rate ̶ recomended normalization on signal 12C ̶ C is not homogeneous in sample How to compensate the different ablation rate? 73 tissue glass slide 2 J/cm2 37 74 tissue glass slide 2 J/cm2 8 J/cm2 75 ̶ Higher laser beam fluence ̶ 2 J/cm2 ̶ 8 J/cm2 38 76 5 w 7 w 12 w 16 w 22 w 30 w spontaneousregression Cu Zn 77 ̶ the distribution and content of Cu and Zn changes significantly 39 78 ̶ the distribution and content of Cu and Zn changes significantly Can we determine specific protein? 79 ̶ ICP-MS – elemental specific detector ̶ proteins – C, O, H, N, S, P, Fe, Cu, Zn, Co … ̶ O, H, N – non-determinable by ICP ̶ S, P, C – part of each protein 40 GAL4 amminopeptidase 80 more than 3000 Zn-binding metalloproteins exists metallothionein – 7 atoms of Zn alcoholdehydrogenase carbonic anhydrase ERAP1 ICP27_CTD NCP7 ZIF268 Neprilysin TOP Leishmanolysin Astacin adamalysin 81 Is there some possibility how to determine specific proteins? 41 82  immunochemistry https://www.cellsignal.com/contents/resource s-applications/flourescent-multiplex- immunohistochemistry/fluoresence-mihc 83  immunochemistry https://www.cellsignal.com/contents/resource s-applications/flourescent-multiplex- immunohistochemistry/fluoresence-mihc Waentig L., et al., JAAS, 2012, 27, 1311-1320  REE and chelates MeCAT – 1 REE on 1 chelate SCN-DOTA – 4 REE on 1 chelate 42 84  immunochemistry https://www.cellsignal.com/contents/resource s-applications/flourescent-multiplex- immunohistochemistry/fluoresence-mihc Waentig L., et al., JAAS, 2012, 27, 1311-1320  REE and chelates MeCAT – 1 REE on 1 chelate SCN-DOTA – 4 REE on 1 chelate Could we amplify the signal? 85  immunochemistry https://www.cellsignal.com/contents/resource s-applications/flourescent-multiplex- immunohistochemistry/fluoresence-mihc Waentig L., et al., JAAS, 2012, 27, 1311-1320  REE and chelates MeCAT – 1 REE on 1 chelate SCN-DOTA – 4 REE on 1 chelate Tvrdoňová M., Využití zobrazování prvků v bioaplikacích, Brno, 2019, Ph.D. Thesis, Masarykova univerzita, Faculty of Science  nanoparticles 43 86 ̶ scheme of the labelling of Ab ̶ Au NPs – 10 and 60 nm ̶ MeCAT – with Ho ̶ model analyte: protein IgG 87 MeCAT 10 nm Au NPs 60 nm Au NPs sensitivity 2 × 103 6 × 105 4 × 107 LOD IgG [pg] 260 51 11 sensitivity of NPs is better than MeCAT by factor 20000 LOD „only“ by 20 => non-specific sorption of Au NPs ̶ determination of IgG ̶ antiIgG-AuNPs vs. antiIgG-MeCAT(Ho) 44 88 blank 0.1 ng 1 ng 2.5 ng 0.25 ng 10 ng p53 5 ng 0.5 ng AuNPsAuNPs-DO-1 ̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1 ̶ DO1-Au NPs, negative control Au NPs ̶ standard of p53 Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry 5E5 0 cps AuNPsAuNPs-DO-1 89 standard of p53 spiked protein ladder sensitivity [cps g μg-1] 2.2 × 106 1.2 × 106 LOD p53 [pg] 2 13 ̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1 ̶ DO1-Au NPs, negative control Au NPs ̶ protein ladder spiked with p53 Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry 45 5E5 0 cps AuNPsAuNPs-DO-1 90 standard of p53 spiked protein ladder sensitivity [cps g μg-1] 2.2 × 106 1.2 × 106 LOD p53 [pg] 2 13 ̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1 ̶ DO1-Au NPs, negative control Au NPs ̶ protein ladder spiked with p53 Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry high specificity of the labelled DO-1 91 ̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1 ̶ DO1-Au NPs, negative control Au NPs ̶ MCF-7 cells (breast cancer) ̶ MCF-7 cells treated with cis Pt (doc. Masařík, LF MU) Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry 46 92 ̶ determination of p53 ̶ DO1-Au NPs, negative control Au NPs ̶ MCF-7 cells (breast cancer) ̶ MCF-7 cells treated with cis Pt cis-Pt treatment no treatment Au Cu Au Cu Au negative control (Au NPs) Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry 93 ̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1 ̶ DO1-Au NPs, negative control Au NPs ̶ 30 breast tumor samples (doc. Hrstka, Masaryk Memorial Cancer Institute) Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry 47 94 ̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1 ̶ DO1-Au NPs, negative control Au NPs ̶ 30 breast cancer samples Au Na CaCu Fe Zn KP Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry 95 ̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1 ̶ DO1-Au NPs, negative control Au NPs ̶ 30 breast cancer samples IHC staining dark blue (3) – high intensities lighter blue (2) – middle intensities light blue (1) – low intensities Au Na CCu FeZn KP Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry 48 96 ̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1 ̶ DO1-Au NPs, negative control Au NPs ̶ 30 breast cancer samples Au intensities *107 [cps] dark blue > 1.5*107 cps lighter blue 1.4 – 1.1*107 cps light blue < 1.0*107 cps IHC staining dark blue (3) – high intensities lighter blue (2) – middle intensities light blue (1) – low intensities Au Na CCu FeZn KP Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry 97 ̶ determination of p53 – supressor of tumors („sensor“ of DNA damage); antibody DO-1 ̶ DO1-Au NPs, negative control Au NPs ̶ 30 breast cancer samples Au intensities *107 [cps] dark blue > 1.5*107 cps lighter blue 1.4 – 1.1*107 cps light blue < 1.0*107 cps IHC staining dark blue (3) – high intensities lighter blue (2) – middle intensities light blue (1) – low intensities Au Na CCu FeZn KP Vlčnovská et al., Proof-of-Concept of Simultaneous Elemental and Molecular Mass Spectrometric Imaging – metal/p53 visualization, submitted in Analytical Chemistry 49 98 99 50 100 5 groups of mice ̶ inhalation of PbO NPs (20-30 nm) for 2 weeks ̶ inhalation of PbO NPs (20-30 nm) for 6 weeks ̶ inhalation of PbO NPs (20-30 nm) for 11 weeks ̶ clearance –inhalation of clean air for 5 weeks after inhalation PbO NPs (11 weeks) ̶ control group 3 different organs ̶ lung ̶ liver ̶ kidney 101 51 102 Pb in dissolved form or as NPs? 103 ̶ LA-ICP-MS – applicable for any type of material ̶ supression of different ablation rate – crucial step for correct results ̶ elemental specific detector + imunochemistry = determination of specific proteins ̶ improving of distribution from single line scan of elements to imaging of specific proteins Sample 12 - line Distance from edge / m -400 -300 -200 -100 0 100 200 300 400 Intensity/cps 101 102 103 104 105 106 107 108 Na23 Si29 Li7 K39 Ti49 V51 Cr53 Mn55 Fe57 Co59 Ni60 Rb85 Mo98 Cs133 metalcrustembedding 2006 2020 52 104 ̶ elemental microscope - improving of lateral resolution and shortening time analysis ̶ 1 Mpx images of all elements with resolution 10 μm during 2 hours ̶ molecular microscope – utilization of biorecognition tools ̶ labelling of antibodies – multianalyte detection (a lot of labels – e.g. REE, Au, Ag, QDs,...) ̶ imaging of elements and proteins in one analysis ̶ utilization in clinical analysis 105 Viktor Kanický Vítězslav Otruba Markéta Holá Karel Novotný Aleš Hrdlička Michaela Tvrdoňová Veronika Dillingerová Lucie Šimoníková Tereza Warchilová Kristýná Štůlová Lenka Pospíchalová Matej Medvecký Michaela Tvrdoňová Veronika Dillingerová Barbora Svatošová Aneta Štossová Zuzana Husáková Markéta Vejvodová 53 106 doc. Vaculovičová Dr. Jakubowski Dr. Horák Dr. Vysloužilová doc. Buchtová prof. Uher prof. Gunther Dr. Breiter Dr. Venclová doc. Masařík Dr. Mikuška doc. Hrstka 107 GA17-12774S Využití vícenásobného značení pomocí kovových nanočástic pro bio-zobrazování CEITEC 2020 LQ1601 GA20-02203S Analýza tkáňové odpovědi na inhalaci nanočástic kovů a mechanismus jejich čištění GA14-13600S Otevřené procesy v granitoidech z pohledu zonality minerálů a horninových textur GA13-18154S Elemental mapping of plant and animal accumulators of heavy metals; where are they accumulated? GA101/08/1100 Studium interakcí chladicích médií za vysokých teplot s konstrukčními materiály tepelných výměníků metodami plazmové spektrometrie GA101/08/1100 Studium interakcí chladicích médií za vysokých teplot s konstrukčními materiály tepelných výměníků metodami plazmové spektrometrie ME10012 Laserová ablace se spektrometrií v indukčně vázaném plazmatu a spektroskopie laserem buzeného mikroplazmatu v archeologii a antropologii 54 THANK YOU FOR YOUR ATTENTION