Advanced biochemistry and its methods Lecture 4

Lukáš Žídek

lzidek@chemi.muni.cz

Finkelstein and Ptitsyn: Protein Physics, Academic Press 2002 Daune: Molecular Biophysics, Molecular Biophysics, Oxford University Press 1999 Žídek: Strukturní biochemie (skripta k prednášce C9530), kapitoly 2, 6, A

Image: Image:

Proteins

Amino acids connected by peptide bonds

Protein structure = conformation defined by torsion angles (ϕ , ψ , χ^1 , ...)

< • • • • •

Amino acids

Lukáš Žídek

C6215

æ

Amino acid sequence

SAKIIHLTDDSFDTDVLKAILVDFW AEWCGPCKMIAPILDEIADEYQGKL TAPKYGIRGIPTLLLFKNGEVAATK VGALSKGQLKEFLDANLA

Conformation of protein backbone regular universal repetitive motifs

Image: Image:

Tertiary structure

イロト イロト イヨト イヨト 一日

Tertiary structure

(日)

Tertiary structure

イロト イロト イヨト イヨト 一日

Protein samples in biochemistry:

many molecules with multiple possible conformational states in thermal equilibrium \Rightarrow (statistical) thermodynamics

Energy U:

First law:
$$\Delta U = Q + W$$

Second law: $T\Delta S > Q$

Entropy $S = R \ln \Omega$ (Ω = number of microstates, combinations) Taken together, $\Delta U - T\Delta S \le 0$ if W = 0, including work due to expansion ($p\Delta V = 0$)

A = U - TS (Helmholtz free energy) has minimum at equilibrium at constant temperature & volume dT = 0, dV = 0. Enthalpy H = U + pV:

G = H - TS (Gibbs free energy) has minimum at equilibrium at constant temperature & pressure dT = 0, dp = 0

(日)

Boltzmann's law:

numbers of molecules in states 1 and 2 of the most probable macrostate (with the highest number of microstates):

$$\frac{n_1}{n_2} = e^{-(U_1 - U_2)/RT}$$

"Small" energy is $\ll RT \approx$ 2 500 J/mol at 300 K (room temp.)

Ideal gas: $V_m = 0.0224 \text{ m}^3$, $p_{atm} = 10^5 \text{ Pa} \Rightarrow p_{atm} V_m = 2240 \text{ J/mol}$ Liquid water: $V_m = M_r / \rho = 1.8 \times 10^{-5} \text{ m}^3 \Rightarrow p_{atm} V_m = 1.8 \text{ J/mol}$

$U \approx H$, $A \approx G$ in biochemistry

Energy

Chemistry: electromagnetic force only

Coulomb's law: $F = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2}$ $U = \int_{-\infty}^{r} F dr' = \int_{-\infty}^{r} F dr' = \frac{Q_1 Q_2}{4\pi\epsilon_0} \int_{-\infty}^{r} \frac{1}{r^2} dr' = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r}$ • Force is a vector: $\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2} \cdot \frac{r}{r}$ unit vector • Electric intensity: $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \cdot \frac{\vec{r}}{r}$

• $U = \frac{N_A}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r}$ if expressed in kJ/mol

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Covalent bonds

Quantum mechanics

reference energy

lower energy

higher energy

イロト イヨト イヨト イヨト

Lukáš Žídek

C6215

12/73

Lukáš Žídek

Covalent bonds in proteins

- Define primary structure
- Covalent bonds defining tertiary structure:
 - Metal coordination
 - Disulfide bridges

S–S bridges important (and frequent) in extracellular proteins but play marginal structural role in intracellular proteins: Exchange with glutathione ($\Delta G \approx 0$)

$$\underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{protein}} + 2 }_{\text{protein}} + 2 \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{SH}}_{\text{Gly}} \mathsf{HS}-\mathsf{Cys}}_{\text{Gly}} + \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{SH}}_{\text{protein}} \mathsf{HS}-\mathsf{Cys}}_{\text{Gly}} + \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}}}_{\text{Gly}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}}}_{\text{Gly}} + \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}}}_{\text{Gly}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}}}_{\text{Gly}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}}}_{\text{Gly}} + \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}}}_{\text{Gly}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}}}_{\text{Gly}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}}}_{\text{Gly}} + \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}}}_{\text{Gly}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}}}_{\text{Gly}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}}}_{\text{Gly}} + \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}}}_{\text{Gly}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{S}-\mathsf{Cys}}_{\text{Gly}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{Cys}}_{\text{Gly}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{Cys}}_{\text{Cys}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{Cys}}_{\text{Cys}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{Cys}}_{\text{Cys}} \underbrace{ \underbrace{ \mathsf{Cys}-\mathsf{Cy$$

Interactions of nonpolar molecules

IMPOSSIBLE !

イロト イヨト イヨト イヨト

C6215

Interactions of nonpolar molecules

16/73

intermolecular energy: relative repulsive energy is identical relative attractive energy =-1/r

total relative intermolecular attractive energy =-(1/7+1/5+1/7+1/5) = -4.114 reference energy

total relative intermolecular attractive energy =–(1/5+1/3+1/9+1/7) =–4.724 lower energy

total relative intermolecular attractive energy =–(1/5+1/3+1/9+1/7) =–4.724 lower energy

< □ > < □ > < □ > < □ > < □ >

Dispersion forces

Depends on vibrations: $\langle U \rangle = \frac{3h\nu}{4} \frac{\alpha^2}{(4\pi)^2} \frac{1}{r^6}$ (identical molecules)

크

<ロ> <同> <同> < 同> < 同> < 同> 、

van der Waals interactions

• Dispersion force:

universal (polar and nonpolar molecules/groups) backbone and sidechains

• Pauli repulsion:

steric hindrance – limits possible torsion angles backbone: $\phi, \psi, (\omega)$ Ramachandran diagram sidechains: χ^1, χ^2, \ldots

Lennard-Jones potential:

$$U = U_{\text{opt}} \left(\left(\frac{r_{\text{opt}}}{r} \right)^{12} - 2 \left(\frac{r_{\text{opt}}}{r} \right)^{6} \right)$$

Atom · · · atom	$U_{ m opt}$ / kJ mol $^{-1}$	<i>r</i> _{opt} / nm	<i>r</i> _{min} / nm
He⊷He	0.05	0.28	0.25
$-H \cdots H -$	0.50	0.24	0.20
$-C \cdots C-$	0.50	0.34	0.30
$-N \cdot \cdot \cdot N -$	0.85	0.31	0.27
-O· · · O	0.95	0.30	0.27

C6215

<ロト < 部ト < きと < きと < きと < 300 × 100 ×

크

Repulsion of backbone C and N only

< □ > < 🗗

크

Repulsion including backbone amide H and O

< □ > < 🗗

크

Repulsion including C^{β}

크

ъ

Repulsion including side chains (all, side chain dependent)

Interactions of/in charged and polar molecules

Charged molecules (ions)Neutral polar molecules

Charged groups (ions):

$$F = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2} \qquad U = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r}$$

 $\Delta G = 460 \text{ kJ/mol}$ for charges 0.3 nm appart

イロト イヨト イヨト イヨト

Charged amino acids

Lukáš Žídek C6215

æ

Polar molecules

Permanent electric dipoles:

zero net charge but partial charges $\pm q$ separated by distance *d* polar groups in molecules

Image: Image:

Polar amino acids

Lukáš Žídek

C6215

æ

Permanent electric dipoles

Lukáš Žídek

C6215

æ

Charge Q – **permanent dipole** $q \cdot d$ Charge and permanent dipole in the same molecule

$$U = \frac{1}{4\pi\epsilon_0} \frac{qQ}{r} \frac{d}{r} \cos\theta$$

Charge and permanent dipole in different molecules

$$\langle U \rangle = -\frac{1}{3RT} \left(\frac{1}{4\pi\epsilon_0} \frac{qQ}{r} \frac{d}{r} \right)^2$$

Derived in Žídek: Strukturní biochemie, dodatek A

Permanent electric dipoles

< □ > < □

æ

く目

Permanent dipole $q_1 \cdot d_1$ – **permanent dipole** $q_2 \cdot d_2$ Permanent dipoles in the same molecule

$$U = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r} \frac{\vec{d}_1}{r} \frac{\vec{d}_2}{r} (\sin\theta_1 \sin\theta_2 \cos(\phi_1 - \phi_2) - 2\cos\theta_1 \cos\theta_2)$$

Permanent dipoles in different molecules

$$\langle U \rangle = -\frac{2}{3RT} \left(\frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r} \frac{d_1}{r} \frac{d_2}{r} \right)^2$$

Derived in Žídek: Strukturní biochemie, dodatek A

induced dipole is proportional to inducing force: $\vec{qd} = \alpha \epsilon_0 \vec{E}$ Charge Q – induced dipole $\alpha \epsilon_0 \vec{E}$

$$\langle U \rangle = -\frac{lpha \epsilon_0}{2} N_{A} \left(\frac{1}{4\pi\epsilon_0} \right)^2 \frac{Q^2}{r^2}$$

Permanent dipole $q \cdot d$ – induced dipole $\alpha \epsilon_0 \vec{E}$

$$\langle U \rangle = -\frac{lpha\epsilon_0}{2} N_{\mathsf{A}} \left(\frac{1}{4\pi\epsilon_0}\right)^2 \frac{q^2}{r^2} \frac{d^2}{r^2} (1 + 3\cos^2\theta)$$

induced dipole $\alpha \epsilon_0 \vec{E}$ – **induced dipole** $\alpha \epsilon_0 \vec{E}$ (dispersion forces)

$$\langle U \rangle = -\frac{3h\nu N_{\mathsf{A}}}{4} \left(\frac{\alpha\epsilon_0}{4\pi\epsilon_0}\right)^2 \frac{1}{r^6}$$

Derived in Žídek: Strukturní biochemie, dodatek A

Electrostatic interactions in proteins

- backbone (C=O, N–H \Rightarrow dipole of α -helices)
- sidechains (nonpolar/polar/charged)

• WATER

글 🕨 🗶 글 🕨
Solvation of charges

Interaction of charges with water dipoles greatly reduces interaction between charges

Environment reduces electrostatic interactions

- polarization/orientation of atoms/groups in the molecule
- orientation of solvent molecules
- to maximize energy (enthalpy) of their electrostatic interactions at the cost of lowering entropy
- water does not work as an electrostatic "barrier"
- formally decreases constant in Coulomb's law

 \Rightarrow increases $\epsilon_0 \rightarrow \epsilon_r \epsilon_0$

$$F = \frac{1}{4\pi\epsilon_{\rm r}\epsilon_0} \frac{Q_1 Q_2}{r^2}$$

 $\Delta G = 460 \text{ kJ/mol} \rightarrow 6 \text{ kJ/mol}$ for charges 0.3 nm appart

Solvation of charges

Effect of orientation of water molecules, water does not need to be between charges

Interactions with charge in bulk water

Interactions with charge in bulk water

Interactions with charge at protein sufrace

Interactions with charge at protein sufrace

Image: Image:

Interactions with charge inside protein

Lukáš Žídek

Interactions with charge inside protein

Hydrogen bonds

3

Hydrogen between atoms shortens their optimum distance

Atom · · · atom	$U_{ m opt}$ / kJ mol $^{-1}$	<i>r</i> _{opt} / nm	<i>r</i> _{min} / nm
He⊷He	0.05	0.28	0.25
$-H \cdots H$	0.50	0.24	0.20
-C···C-	0.50	0.34	0.30
$-N \cdots N-$	0.85	0.31	0.27
$-NH \cdots N-$		0.31	
-O· · · O-	0.95	0.30	0.27
–OH· · · O–		0.28	

U(H-bond) = 20 kJ/mol

2

<ロ> <同> <同> < 同> < 同> < 同> <

æ

Hydrogen bonds : 50 kJ/mol

æ

void space less than in ice

æ

-

Hydrogen bonds : 40 kJ/mol

æ

Hydrogen bonds in proteins

 $\Delta G = 0$

æ

Hydrogen bonds in proteins

$\Delta G = -12 \,\text{kJ/mol}$ (entropy of water)

-

< □ ▶ < @

크

- orientation of solvent molecules
- to maximize energy (enthalpy) of their hydrogen bonds at the cost of lowering entropy

< ∃→

6 possible orientations: entropic contribution $-RT \ln 6 = -15 \text{ kJ/mol}$

Image: Image:

3 possible orientations: entropic contribution $-RT \ln 3 = -7.5 \text{ kJ/mol}$

< □ > < 🗗 >

Hydrophobic effect in proteins

- packing nonpolar sidechains reduces entropy cost (less water molecules with restricted orientation)
- the most important contribution to −∆G Ala: 2.5 kJ/mol, Leu: 8 kJ/mol, Phe: 12 kJ/mol
- no specificity

Protein stability

Loss of compactness = \nearrow volume *V* during denaturation High cooperativity (sharp drop of ΔG)

Packed side chains in compact folded proteins

No side chain rotation possible

1 side chain orientation: entropic contribution $-RT \ln 1 = 0$

Protein stability

Less compact protein ("molten globule") Reduced dispersion energy (less $-H \Rightarrow \Delta H > 0$) but side chain rotation possible ($S \nearrow = -T\Delta S \ll 0$)

Image: Image:

Comparison of energy (ΔG) values

Туре	kJ/mol	condition
thermal <i>RT</i>	2.5	at 300 K (27 °C)
covalent bond	350	C–C
ion-ion	460	0.3 nm apart in vacuum
ion-ion	150	0.3 nm apart inside protein
ion-ion	12	0.3 nm apart at protein surface
dipole-dipole	30	0.3 nm apart in vacuum
dipole-dipole	10	0.3 nm apart inside protein
ion-dipole	41	0.5 nm apart in vacuum
ion-dipole	14	0.5 nm apart in protein
hydrogen bond	20	in vacuum ($\Delta Gpprox \Delta H$)
hydrogen bond	6	in water ($\Delta m{G}pprox - T\Delta m{S}$)
hydrophobic effect	8	per Leu side chain
hydrophobic effect	12	per Phe side chain

ion with charge +1/-1, dipole of peptide bond $(1.2 \times 10^{-29} \text{ Cm})$

Summary of interactions stabilizing proteins

- Covalent bonds define primary structure
- Disulfide bridges important outside cell
- Structures limited by steric requirements
- Dominant role of solvent (hydrophobic effect)
- Compaction due to hydrophobic effect
- Exact architecture due to electrostatics, hydrogen bonds

Amphiphilic helices: nonpolar sidechains inside

크

Packing of α -helices

to compact nonpolar sidechains in amphiphilic helices

크

Packing of α -helices

Hydrophobic side chains (blue/green) spheres packed positions 1, 5, 9, 13 (left) and 1, 4, 7 (right)

Hydrophobic residues inside

< D > < B >

æ

< ≣ >

Packing of β -barrels

Hydrophobic residues inside

Lukáš Žídek

C6215

Packing of β -barrels

æ

æ

< □ > < □ > < □ > < □ >

α/β -proteins

Packing in α/β -proteins (TIM-barrel)

Hydrophobic residues inside

Packing of TIM-barrel

(日)

Lukáš Žídek

C6215