Advanced biochemistry and its methods Lecture 5

Lukáš Žídek

lzidek@chemi.muni.cz

Z´ıdek: Strukturn´ı biochemie (skripta k predn ˇ a´sce C9530), kapitoly 11–14 ˇ

4 同

COMPUTATIONAL:

De novo structure calculation not reliable

Homology modeling

using a similar known structure as a starting model

Prediction based on Machine Learning

using sequence alignment and database including known structures (AlphaFold) using a similar known structure as a starting model

Structure determination based on experiment usually MD simulation with experimental restraints

 QQQ

⊀ 御 ⊁ ∢ 重 ⊁ ∢ 重 ⊁

EXPERIMENTAL:

Mass Spectrometry

mostly analysis of cross-linked fragments

Scanning surface

e.g. Atomic Force Microscopy (various modes)

Interactions of electromagnetic (other) waves with molecules:

Spectroscopy

how molecules change characteristics of the wave (intensity, phase, polarization, frequency)

diffraction methods (Microscopy)

how molecules change direction of wave in space

K 御 ▶ K 君 ▶ K 君 ▶

Atomic force microscopy

Atomic force microscopy

Scanning probe microscopy

Imaging mode in atomic force microscopy

Feedback : lever deflection the feedback system adjusts the height of the cantilever base to keep this deflection constant as the tip moves over the surface (friction force microscopy, conductive probe AFM)

Feedback : oscillation amplitude

the cantilever oscillates close to the sample surface. but without making contact with the surface. Electrostatic / magnetic force microscopy

Intermittent contact

Feedback: oscillation amplitude The cantilever oscillates and the tip makes repulsive contact with the surface of the sample at the lowest point of the oscillation (Tapping mode AFM)

Feedback: lever deflection the tip does not leave the surface at all during the oscillation cycle. (interfacial force microscopy)

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

Atomic force microscopy

重

メロトメ 伊 トメ ミトメ ミト

image reconstruction "localization AFM" cf. super-resolution microscopy

(ロトス個) (運) (運)

UV/VIS spectrophotometry

absorption, transition of electrons to higher orbitals concentration, content of aromatic amino acids, heme, prosthetic groups

IR spectroscopy

absorption, transition of nuclei to higher vibration states

⊀ 御 ▶ す 重 ▶ す 重

E

メロトメ 伊 トメ ミトメ ミト

Lukáš Žídek

イロト イ団 トイミトイモ

重

 \rightarrow

重

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

Luka´sˇ Z´ıdek ˇ [C6215 12/69](#page-0-0)

E

ミドメ 重き

← ロ ▶ + 伊 × \prec

CD Spectroscopy

CD spectroscopy

absorption differences of polarized light by chiral molecules

 $2Q$

CD spectroscopy and secondary structure

overall content of secondary structures

Luka´sˇ Z´ıdek ˇ [C6215 14/69](#page-0-0)

É

重

NMR spectroscopy

precession of magnetic moments of nuclei in magnetic field magnetic moments are slightly aligned in a static magnet axis of alignment is tilted by electromagnetic (radio) waves aligned magnetic moments precess about the static field resulting oscillating magnetic field is measured we do not observe the applied electromagnetic waves interactions of magnetic moments (mutual, with electrons) \Rightarrow resolution, structural information atomic resolution structure determination, dynamics, interactions

(ロ) (個) (目) (美)

Nuclear magnetic resonance

• molecule

magnetic moment

quadrupolar (relax fast) rare isotopes (enrichment)

(ロ) (伊)

NMR sample outside magnet

in equilibrium (spherical symmetry)

C6215

Polarization

Boltzmann distribution: $P(\theta) \propto \mathrm{e}^{-\frac{E}{k_{\mathrm{B}}T}} = \mathrm{e}$ $\vec{\mu} \cdot \vec{B}$ $\overline{^{k_{\mathsf{B}}\mathsf{T}}} \Rightarrow \mathsf{M}_{\mathsf{Z}} = \frac{\mathsf{N}}{\mathsf{V}}$ *V* μ^2B 3*k*B*T* Precession (angular momentum in a field): $\vec{\omega} = -\gamma B$

Excitation

画

メロトメ部 トメミトメミト

Coherent evolution

重

 \rightarrow

イロト イ団 トイミトイモ

NMR signal detection

reproduced from M. H. Levitt: Spin Dynamics

K ロ ▶ K 御 ▶ K 唐

重

重 \rightarrow \prec

Interactions with other nuclei and electrons

Luka´sˇ Z´ıdek ˇ [C6215 22/69](#page-0-0)

重

メロトメ 倒 トメ ミトメ ミト

Nuclear Overhauser effect from NOESY spectra

Nuclear Overhauser effect: result of dipole-dipole interactions Peak intensities are proportional to nuclear Overhauser effect

4 D F

Distances from nuclear Overhauser effect

Nuclear Overhauser effect proportional to 1/*d* 6 (*d* = distance)

Model of the protein built from known distances

C6215 Lukáš Žídek

Model of the protein built from known distances

Lukáš Žídek C6215

Model of the protein built from known distances

C6215 Lukáš Žídek

Model of the protein built from known distances

Lukáš Žídek C6215

重

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

重

メロトメ 伊 トメ ミトメ ミト

重

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

重 \rightarrow

イロト イ団 トイミトイモ

重

メロトメ 伊 トメ ミトメ ミト

Scattering by large molecules

重 \rightarrow

イロト イ団 トイミトイモ

Scattering by large molecules

重 \rightarrow

K ロメ X 御 メ X 君 メ X 君
Scattering by large molecules

重

メロトメ 伊 トメ ミトメ ミト

Constructive interference in crystals

É

∍

Electron density

Lukáš Žídek

Luka´sˇ Z´ıdek ˇ [C6215 40/69](#page-0-0)

Luka´sˇ Z´ıdek ˇ [C6215 41/69](#page-0-0)

Luka´sˇ Z´ıdek ˇ [C6215 42/69](#page-0-0)

重

メロトメ 伊 トメ ミトメ ミト

X-ray crystallography

重

イロト イ部 トイミト イヨト

重

メロトメ 伊 トメ ミトメ ミト

Structure calculation

Lukáš Žídek

É

Electron density equation & PHASE PROBLEM

$$
\rho(x \ y \ z) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} \left| F(h \ k \ l) \right| \exp\left[-2\pi i (hx + ky +ුz) + i \widehat{\alpha(h \ k \ l)}\right]
$$

$$
F(h \ k \ l) = |F(h \ k \ l)| e^{i \alpha(h \ k \ l)}
$$

4 0 8 一句

Direct interpretation of amplitudes

mutual positions of atoms calculated from amplitudes for simple molecules (Patterson function/map)

Using heavy atoms

Molecular replacement

Diffraction back-calculated from a known structure similar to the studied proteins Orientation and position of the molecule in the crystal obtained by searching for the match of diffraction patterns (measured vs. back-calculated) Calculated phases used for the unknown molecule

Patterson maps

Lukáš Žídek

∩

ОČ O

Ó

 \circ O

 \circ

O \circ O

 \bigoplus

O.

0

 \circ

O € El XI റ

K 母 ▶ K 글

 $\mathbf{F} \rightarrow \mathbf{E}$

- b

႙ၟ၀

O

0

O

 $\frac{8}{2}$

 \circ_{o}

 \circ°

O \circ

O

႙ၟင O

Molecular replacement

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

Observed **amplitudes** (tailed cat), calculated **phases** (Manx cat)

Even the tail becomes visible!

4 0 8 一句

Model building & resolution

K ロメ X 御 メ X 君 メ X 君

Model building & refinement

←ロト→ 伊ト→ ミト→

÷,

R-factor, R_{free} factor

Luka´sˇ Z´ıdek ˇ [C6215 54/69](#page-0-0)

重

メロトメ 伊 トメ ミトメ ミト

É

重

メロトメ 伊 トメ ミトメ ミト

Refractive index

Luka´sˇ Z´ıdek ˇ [C6215 59/69](#page-0-0)

(ロ) (包)

 $\mathcal{A} \times \mathcal{B} \rightarrow \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{B}$

Refractive index

Luka´sˇ Z´ıdek ˇ [C6215 60/69](#page-0-0)

 \rightarrow 重

K ロメ X 御 メ X 君 メ X 君

重

メロトメ 伊 トメ ミトメ ミト

 \rightarrow 重

イロト イ団 トイミトイモ

Lukáš Žídek

 \rightarrow 重

K ロメ X 御 メ X 君 メ X 君

Lukáš Žídek

É \rightarrow

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐

crystal diffraction:
\n
$$
I(\vec{q}) = \int_V \int_V \Delta \rho(\vec{r}) \Delta \rho(\vec{r} + \Delta \vec{r}) e^{i\vec{q} \cdot \Delta \vec{r}} d\vec{r} d(\vec{r} + \Delta \vec{r})
$$
\nSAXS:
$$
I(q) = \left\langle \int_V \int_V \Delta \rho(\vec{r}) \Delta \rho(\vec{r} + \Delta \vec{r}) e^{i\vec{q} \cdot \Delta \vec{r}} d\vec{r} d(\vec{r} + \Delta \vec{r}) \right\rangle_{\theta_q, \phi_q}
$$
\n
$$
= 4\pi \int_0^{D_{\text{max}}} r^2 \left\langle \int \Delta \rho(\vec{r}) \Delta \rho(\vec{r} + \Delta \vec{r}) d\Delta \vec{r} \right\rangle_{\theta_r, \phi_r} \frac{\sin(qr)}{qr} dr
$$
\n
$$
P(r) = r^2 V \rho^2 \gamma_0(r)
$$
\nGuinier law:
$$
I(q) \approx I(0) e^{-R_g^2 q^2/3} \text{ for } q \to 0
$$

 θ : scattering angle \vec{q} : scattering vector $q = |\vec{q}| = 4\pi \sin(\theta/2)/\lambda$: momentum transfer *I*(*q*): scattering intensity in direction given by *q* γ_0 : probability of finding a point at *r* from a given point *R*g: radius of gyration

Svergun and Koch, Rep. Prog. Phys. 66 (2003) 1735, stacks.iop.org/RoPP/66/1735

(ロ) (個) (目) (目)

 299

E

 299

Luka´sˇ Z´ıdek ˇ [C6215 69/69](#page-0-0)

Refractive index

Luka´sˇ Z´ıdek ˇ [C6215 70/69](#page-0-0)

Phase vs amplitude objects

Phase vs amplitude objects

- **a** Perfect lens in focus provide contrast in intensity of scattered vs. original wave if the scattered wave is absorbed by the sample
- **b** Perfect lens in focus provide no contrast in intensity of scattered vs. original wave if the scattered wave is not absorbed by the sample, but only phase-shifted by 90 ◦
- **c** Imperfect and defocused lens provide contrast in intensity of scattered vs. original wave if the scattered wave is absorbed by the sample
- **d** Defocus and spherical aberration of lens provide contrast in intensity of scattered vs. original wave if the scattered wave is not absorbed by the sample, but only phase-shifted by 90°. Defocus and spherical aberration introduce another phase shift ⇒ scattered have oposite phase and cancel each other.

Diffraction by aperture

Limitation of optical microscopy

Photons scatter as waves \Rightarrow limited resolution resolution $< 0.61 \lambda/n$ ($\lambda =$ wavelegth, $n =$ refractive index $\Rightarrow \lambda \approx 0.1$ nm (distances of atoms in molecules), X-rays Lens are not available for X-rays ($\lambda \approx 0.1$ nm) no material has sufficient refractive index

SOLUTIONS:

Analysis of diffraction patterns

intensity enhanced if molecules are aligned in crystals

⇒ **X-ray crystallography**

applicable also to electron and neutron waves

Microscopy with electrically charged waves

electrons scatter as waves electron beams are bent in electromagnetic field

⇒ **Electron microscopy**

イロメ イ団メ イヨメ イヨメー

Transmission electron microscope

Transmission Electron Microscope

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁

Cryo-electron microscopy

Alternative: Cryo-EM

Proteins in vitrous ice, can reach atomic resolution **Prote**

Þ h ⊳ ⊲

Macromolecules in water / vitreous ice are phase objects

Samples damaged by electrons

Signal to noise ratio

Luka´sˇ Z´ıdek ˇ [C6215 79/69](#page-0-0)

Alignment and classification at least \sim

Images contain diffrent views of possibly different molecules

← ロ → → イ 同 →

Alignment and classification

Classification and averaging (principal component analysis)

4 D F

3D reconstruction

Iterative process: 2D projections are calculated from a 3D model alignment and classification are improved iteratively When the angles between the different classes are known e process:
, a 3D model can be calculated.

