
Letters
https://doi.org/10.1038/s41587-020-00806-2

1Broad Institute of Harvard and MIT, Cambridge, MA, USA. 2Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. 3Division of 
Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA. 4Department of Systems Biology, Harvard Medical School, Boston, MA, USA. 
5IT-Research Computing, Harvard Medical School, Boston, MA, USA. 6Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 
Chicago, IL, USA. 7Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA. 8Present address: 
Inzen Therapeutics, Cambridge, MA, USA. 9Present address: Merck Research Laboratories, Boston, MA, USA. ✉e-mail: golub@broadinstitute.org

Although genomic analyses predict many noncanonical open 
reading frames (ORFs) in the human genome, it is unclear 
whether they encode biologically active proteins. Here we 
experimentally interrogated 553 candidates selected from 
noncanonical ORF datasets. Of these, 57 induced viability 
defects when knocked out in human cancer cell lines. Following 
ectopic expression, 257 showed evidence of protein expres-
sion and 401 induced gene expression changes. Clustered 
regularly interspaced short palindromic repeat (CRISPR) til-
ing and start codon mutagenesis indicated that their biologi-
cal effects required translation as opposed to RNA-mediated 
effects. We found that one of these ORFs, G029442—renamed 
glycine-rich extracellular protein-1 (GREP1)—encodes a 
secreted protein highly expressed in breast cancer, and its 
knockout in 263 cancer cell lines showed preferential essenti-
ality in breast cancer-derived lines. The secretome of GREP1- 
expressing cells has an increased abundance of the oncogenic 
cytokine GDF15, and GDF15 supplementation mitigated the 
growth-inhibitory effect of GREP1 knockout. Our experiments 
suggest that noncanonical ORFs can express biologically 
active proteins that are potential therapeutic targets.

Early analyses of the human genome sequence suggested the 
existence of 100,000 or more protein-coding genes, but further scru-
tiny revealed that the majority of those candidate genes were more 
likely to be producing noncoding RNAs, fragmented complemen-
tary DNA clones or RNAs expressed at inconsequential levels1–3. 
The current Human Proteome Project NeXtProt database recog-
nizes ~17,600 protein-coding genes confirmed by mass spectrom-
etry and ~2,100 unconfirmed protein-coding genes4. Nevertheless, 
a growing body of evidence utilizing high-throughput profiling of 
ribosome-associated RNAs suggests that additional, noncanonical 
translation exists in genes currently annotated as noncoding RNAs 
or pseudogenes, as well as 5′ and 3′ untranslated regions (UTRs) 
of protein-coding genes5–8. Nevertheless, it is unclear whether 
such translation reflects proteins overlooked during the construc-
tion of reference genome databases9–12, leaky ribosome scanning 

or confounded computational predictions13–15, since stringent 
conservation-based analyses have added only a small number of 
new proteins to the human genome13. Indeed, systematic experi-
mental evidence interrogating whether such predicted proteins are 
in fact stably translated and biologically functional is lacking.

To address this, we curated a list of 553 high-priority ORFs 
nominated in long noncoding RNAs and regions upstream and 
downstream of known protein-coding genes (uORFs and dORFs, 
respectively). These were selected based on integrative analyses of 
published predictions of ORF translation, with additional analy-
ses to eliminate pseudogenes and ORFs representing variants of 
known protein-coding regions5,6,14,16–33 (Supplementary Table 1, 
Supplementary Figs. 1 and 2 and Methods). At least two independent 
studies identified 227/553 (41%) as translated. Overall, mass spec-
trometry and computational predictions contributed fewer candidates 
compared to ribosome-profiling datasets (Supplementary Fig. 2). We 
annotated the 553 ORFs according to 12 metrics including evolution-
ary conservation, expression and structural features (Supplementary 
Tables 2–13, Supplementary Fig. 3 and Methods). Out of 553 selected 
ORFs, 450 (81%) scored highly for at least two metrics in support of 
relevance (Supplementary Fig. 1 and Supplementary Table 2).

We next asked whether systematic functional studies could test the 
predicted translation of these ORFs (Fig. 1a). The capacity for ORFs 
to produce a stably translated protein was assessed by three indepen-
dent methods. First, we queried independent, publicly available mass 
spectrometry databases (Methods) and observed 707 distinct tryp-
tic peptides supporting 174 of 553 ORFs (31%). Many tryptic pep-
tides were reproducibly detected in numerous independent samples 
and datasets, for a total of 6,724 peptides identified (Supplementary 
Fig. 4 and Supplementary Tables 14 and 15). Next, we designed a 
cDNA expression library of the 553 ORFs containing a V5 epitope 
tag and developed a scalable assay for individual protein evalua-
tion by anti-V5 detection (Fig. 1b and Extended Data Fig. 1a–d).  
A total of 257 ORFs (46%) yielded a V5-tagged protein detect-
able by in-cell visualization (Fig. 1c–e, Extended Data Fig. 1e–g  
and Supplementary Table 16). ORFs nominated through ribosome  
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profiling, mass spectrometry and bioinformatic approaches vali-
dated at similar rates (Supplementary Fig. 2). Lastly, we detected a 
protein for ten of 30 ORFs tested by in vitro transcription and trans-
lation (Extended Data Fig. 1h). Taken together, experimental evi-
dence of protein translation was obtained for 334/553 (60%) of the 
ORFs. Translatability was associated with evolutionary conservation 
(Fig. 1f), with ancient ORFs being more likely to be translated com-
pared to evolutionarily recent ORFs as determined by phylostratig-
raphy (P < 0.001, two-way analysis of variance (ANOVA); Fig. 1g 

and Supplementary Table 17). Pairwise analysis of combinations of 
ORF biological features highlighted conservation, size and identifi-
cation of a mass spectrometry peptide as the strongest predictors of 
V5-tagged ORF translation (Supplementary Fig. 5). ORFs predicted 
to encode proteins with <50 amino acids were less likely to yield a 
detectable protein (Fig. 1f), although this may be explained by the 
deleterious effect of fusing a 14-amino acid V5 tag to a very small 
protein. uORFs validated at a higher rate than lncRNA-derived 
ORFs, largely due to more frequent mass spectrometry evidence for 
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Fig. 1 | Identification of translated unannotated or unstudied ORFs. a, Schematic overview of the research project. b, Experimental setup for in vitro 
detection of protein translation by transfection of V5-tagged cDNAs into HEK293T cells followed by in-cell immunoblotting. c, In-cell immunoblot signal 
for each ORF; values are the average of three replicates. d, Correlates for three ORFs (shown in c) identified by in-cell immunoblotting; results were 
repeated in three independent experiments. e, Overview of biological support for translation of a subset of ORFs. f, Subgroup analyses of ORF biological 
features demonstrating ORF fractions supported by ectopic V5 translation assays, mass spectrometry or both. g, Fractions of ORFs supported by evidence 
of translation across major epochs in evolutionary time. Evidence of translation shown as the fraction of ORFs with V5 immunoblot signal, endogenous 
mass spectrometry peptides and the summation of both. CRISPRi, CRISPR interference.
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small uORFs of <50 amino acids, though this may be confounded 
by the small sample size of uORFs (n = 18) (Supplementary Fig. 6).

Since the majority of noncanonical ORFs show evidence of 
translatability, we next asked whether such translation is associated 
with biological activity. To address this, we expressed the 553 ORFs 
in each of four cell lines (MCF7, A549, A375 and HA1E) and then 
performed RNA expression analysis using the L1000 platform34  
(Fig. 2a), which monitors the expression of 978 messenger RNAs. 
Ectopic expression of 401 ORFs (73%) yielded a reproducible gene 
expression consequence, of which 237 induced a high transcriptional 
activation score (TAS) indicating marked cellular changes34 (Fig. 2b, 
Supplementary Fig. 7 and Supplementary Table 18). In comparison, 
81% of 2,283 canonical protein-coding genes yielded a gene expres-
sion consequence in this assay, indicating that the frequency of bio-
logical activity of known genes and unannotated ORFs is similar 
(Fig. 2b). To exclude the possibility that the observed transcriptional 
signature was due simply to overexpression of RNA, we mutated 
translational start sites and repeated the L1000 profiling. In 48 of 
51 (94%) cases, the perturbational response was lost when transla-
tion was prevented, indicating that the biological effect was indeed 
mediated by a protein rather than a noncoding RNA (Fig. 2c–f,  
Extended Data Fig. 2 and Supplementary Tables 19 and 20).

The transcriptional responses observed following ORF expres-
sion could conceivably be a consequence of overexpression of 
the transgene. To address the functional relevance of endog-
enous expression of these ORFs, we performed CRISPR/Cas9 
loss-of-function viability screens in eight cancer cell lines using a 
guide RNA library targeting the 553 ORFs (Fig. 3a, Supplementary 
Fig. 8a and Supplementary Table 21). Knockout of 57 of the 
553 ORFs (10%) demonstrated growth-inhibitory effect (Fig. 3b,c 
and Supplementary Tables 22 and 23). Of these, 31 (54%) impaired 
survival of all eight cell lines whereas 26 (46%) displayed selective 
dependency (Supplementary Fig. 8b–e).

To compare these data to knockout of canonical proteins, we 
analyzed the Cancer Dependency Map (www.depmap.org) for the 
viability effects of 553 randomly selected genes. Among canonical 
proteins, 17% demonstrated a viability effect in eight randomly 
chosen cell lines compared to approximately 10% for noncanoni-
cal ORFs (Fig. 3d and Supplementary Fig. 8f,g), indicating that the 
frequency of dependencies between known genes and noncanonical 
ORFs is approximately in the same order of magnitude. These results 
were validated in both a secondary CRISPR screen of 147 ORFs  
(Fig. 3e, Supplementary Fig. 8h,i and Supplementary Tables 24–28)  
and individually performed CRISPR assays for selected ORFs 
(Extended Data Fig. 3 and Supplementary Table 29). Analyses for 
off-target effects of sgRNAs suggested that only five of the 57 CRISPR 
hits (RP11-138J23.1, RP11-346D14.1, LINC01873, LINC01184 and 
RP11-277L2.3) were likely to have been confounded by sgRNA 
cutting at unintended genomic loci (Supplementary Fig. 9 and 
Supplementary Tables 30 and 31).

Because the viability effects from knockout of noncanonical ORFs 
could be explained by loss of a regulatory region in the genome rather 
than the protein itself, we subjected 41 ORFs to dense tiling of sgRNAs 
across the genomic locus of each ORF. Only 7/41 (17%) genomic 
regions demonstrated nonspecific viability loss suggestive of a regula-
tory region of the genome. For 18/41 ORFs (44%), the viability effect 
mapped exclusively to predicted coding exons or the coding region, 
as well as adjacent nucleotides in the transcript, which may reflect 
sites of translational regulation or sgRNAs generating indels that also 
impact the ORF (Fig. 3f, Extended Data Fig. 4 and Supplementary 
Table 32). Further, there were 4/41 (10%) ORFs where the viability 
effect mapped exclusively to the predicted coding region but where 
a nonoverlapping, neighboring gene also demonstrated a viability 
effect following knockout (Extended Data Fig. 4a,h).

Interestingly, in several cases a new ORF overlapped with an anno-
tated protein-coding gene but it is the new ORF that best explained the 

knockout phenotype (Fig. 3g). As examples, we observed that ORFs 
arising from CTD-2270L9.4 and ZBTB11-AS1, which overlap coding 
exons of COG7 and ZBTB11, respectively, demonstrated markedly 
more dramatic viability phenotypes using sgRNAs that target the 
new ORF compared to adjacent sgRNAs that target only the known, 
parent ORF (Fig. 3g,h and Extended Data Fig. 4b). These findings 
were supported by Cancer Dependency Map data in which sgRNAs 
targeting both new and known ORFs had a more pronounced phe-
notype than those targeting only the known ORF (Supplementary 
Fig. 10). For ZBTB11-AS1, we validated the specificity of this phe-
notype through exclusive small interfering RNA knockdown of the 
ZBTB11-AS1 transcript, which was rescued by ectopic expression 
of a siRNA-resistant ZBTB11-AS1 ORF cDNA but not by a mutant 
ZBTB11-AS1 cDNA removing the start codon (Extended Data Fig. 5).  
Taken together, we conclude that a surprisingly high proportion of 
noncanonical ORFs exhibit a viability phenotype following knockout 
and that previous CRISPR vulnerability screens may be confounded 
by cryptic, new ORFs arising from the same genomic locus.

We next noted that 13 ORFs scored highly in all three 
high-throughput assays, supporting translation, bioactivity and 
CRISPR vulnerability (Fig. 4a) and suggesting that they may have 
particularly important biological roles. Among these, we especially 
focused on G029442 (LA16c-380H5.3 in GENCODE) because its 
knockout resulted in selective cancer cell killing (one of eight cell 
lines killed), and it is highly expressed in several human cancer 
types (Fig. 4b and Extended Data Fig. 6). We subsequently renamed 
this gene glycine-rich extracellular protein-1 (GREP1) for reasons 
elucidated below.

To systematically explore the importance of GREP1 in cancer 
cell viability, we infected a pool of 486 barcoded human cancer cell 
lines with a single lentivirus harboring both Cas9 and a guide RNA 
targeting GREP1 (Fig. 4c and Methods). Because lentiviral infection 
rates vary across cell lines, we focused our analysis on the 263 cell 
lines yielding the highest-quality data (Supplementary Fig. 11a–g, 
Supplementary Tables 33 and 34 and Methods). GREP1 knockout 
resulted in preferential loss of viability in certain cell lineages, most 
notably breast cancer (Fig. 4d). We validated these pooled screening 
results with knockout and rescue experiments for GREP1 in breast 
and nonbreast cell lines, which confirmed a striking breast cancer 
viability phenotype that correlated with GREP1 mRNA expres-
sion (Fig. 4e,f, Extended Data Fig. 7a,b and and Supplementary 
Fig. 11h). Sequencing of the GREP1 sgRNA genomic loci dem-
onstrated an array of insertions, deletions and substitutions at the 
expected genomic position, confirming sgRNA target specificity 
(Supplementary Fig. 12). Finally, GREP1 expression was higher in 
human breast cancers compared to normal breast tissue (P = 1.4 × 
10−10) (Extended Data Fig. 6c) and was associated with decreased 
patient survival in breast, but not in colon, cancer patients (Extended 
Data Fig. 7c,d). Together, these data implicate GREP1 as a previ-
ously unrecognized, prognostic breast cancer vulnerability gene.

To explore the function of GREP1, we noted the presence of a 
signal localization sequence for extracellular secretion as well as 
sites of glycosylation documented by mass spectrometry (Fig. 4g 
and Supplementary Table 35). We confirmed that ectopic expres-
sion of a GREP1 fusion protein with a C terminus V5 epitope tag, 
but not an N-terminal truncation mutant lacking the signal localiza-
tion sequence, was indeed both secreted and cleaved into a smaller 
product (Fig. 4h,i, Extended Data Fig. 7e,f and Supplementary  
Table 36). Analyses of the GREP1 amino acid sequence revealed 
a conserved, glycine-rich and intrinsically disordered protein 
(Extended Data Fig. 8a–c), characteristics that resemble certain 
members of the extracellular matrix35. As expected, immunopre-
cipitation of ectopically expressed GREP1 from cell culture media 
followed by mass spectrometry revealed strong enrichment for 
extracellular matrix proteins, including fibronectin and collagen 
(Extended Data Fig. 8d–k and Supplementary Table 37).
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To establish the cellular consequence of GREP1 expression, we 
examined the impact of GREP1 knockout and overexpression on 
other secreted proteins by testing a panel of 102 secreted proteins 
using antibody arrays across three cell lines (Fig. 4j). The meta-
bolic cytokine GDF15 (refs. 36,37) demonstrated the most dramatic 
change, with GREP1 knockout resulting in decreased GDF15 
levels and GREP1 overexpression resulting in increased GDF15 
levels (Fig. 4k,l and Extended Data Fig. 9a,b). Inducing nonspe-
cific cellular stress through pharmacological treatment with toxic 

compounds did not increase GDF15 levels, indicating specificity 
(Supplementary Fig. 13a,b). In addition, impairment of GREP1 
secretion through deletion of the signal localization sequence, but 
not mutation of the GREP1 glycosylation sites, prevented increase 
in GDF15 secretion (Supplementary Fig. 13c,d). In human cancers, 
expression of GREP1 and GDF15 was correlated across multiple 
tumor types in the The Cancer Genome Atlas (TCGA) database 
(Extended Data Fig. 9c,d). To determine whether GDF15 is func-
tionally important in the requirement by cancer cells of GREP1 for 
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survival, we tested the effect of GREP1 knockout in the presence 
and absence of recombinant GDF15. Remarkably, supplementation 
of recombinant human GDF15 rescued the loss of viability caused 

by GREP1 loss of function (Extended Data Fig. 9e,f). The fact that 
GDF15 only partially rescues GREP1 knockout in some cell lines 
suggests that there may be additional mechanisms downstream of 
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GREP1 that regulate cell survival (Extended Data Fig. 9g). While 
GDF15 has previously been implicated in a number of cancer phe-
notypes, including chemoresistance38,39, immune evasion40, cellular 
survival and invasiveness41,42, its regulation by GREP1, which itself 
is a cancer dependency, is entirely new.

Despite the fact that the human genome was sequenced 18 years 
ago, the precise number of protein-coding genes in it remains a 
point of controversy. Our sampling of >550 uncharacterized ORFs 
provides experimental evidence that a substantial proportion of 
such ORFs may be functional (Supplementary Fig. 14). Importantly, 
we establish that approximately 10% of the ORFs in our dataset 
are required for the survival of cancer cells, a rate only about half 
that observed for known, canonical proteins. Although our dataset 
represents a curated list of ORFs rather than a random sampling 
of all possible ORFs, these experiments suggest that further inves-
tigations of unannotated ORFs in cancer and other disease states 
will probably yield new insights. Since computational estimates 
of such ORFs now exceed 5,000 (ref. 43), our data suggest that a 
substantial number of those predicted ORFs may indeed encode  
functional proteins.

Consistent with this conclusion, a recent report by Chen 
et al. similarly suggests functional roles for a substantial fraction 
of noncanonical ORFs44. While a head-to-head comparison of the 
two datasets is difficult because they utilize different cell lines for 
functional analyses, the Chen et al. dataset identifies the existence 
of additional functional long intergenic noncoding RNA-derived 
ORFs beyond those identified in our dataset (Supplementary Table 
38). This result suggests that the functional ORFs discovered in our 
study do not represent the entirety of those encoded by the human 
genome—more functional ORFs probably remain to be discovered. 
Of note, whereas our study focused primarily on lncRNA-derived 
ORFs, Chen et al. also expand upon the potential functional 
importance of a subset of uORFs44. While the precise number of 
noncanonical ORFs encoded by the human genome remains to 
be determined, our work suggests that future systematic interro-
gation of noncanonical proteins is likely to yield a rich source of 
previously unrecognized proteins with key roles in development  
and disease.
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author contributions and competing interests; and statements of 
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Methods
Data statement. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.

Cell lines and reagents. All parental cell lines were obtained from the American 
Type Culture Collection (ATCC). Cas9-derived cell lines were obtained from the 
Broad Institute. Cell lines were maintained using standard media and conditions.  
In brief, cell lines derived from ZR-75-1, HCC1806, HCC1954, HCC202, T47D,  
HT-29, HCC15, KYSE410, KYSE510, SNU503, SW837, HCT116, AU565, CAMA-1  
and MDA-MB-231 were maintained in RPMI 1640 (Invitrogen) supplemented 
with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin in a 5% CO2 
cell culture incubator at 37 °C. Cell lines derived from HDQP1, BT-474, JIMT1, 
A375, A549, MIAPACA2, MCF7, HEK293T and MDA-MB-468 were maintained in 
DMEM supplemented with 10% FBS (Invitrogen) and 1% penicillin/streptomycin 
(Invitrogen) in a 5% CO2 cell culture incubator. Green fluorescent protein 
(GFP)-positive Cas9-derived cell lines were drug selected using 2 µg ml–1 blasticidin.

For stable knockout cell lines, ZR-75-1 Cas9- and HDQP1 Cas9-expressing 
cells were infected with lentivirus for the indicated sgRNAs that had been  
cloned into LentiGuide-Puro plasmid (plasmid 52963, Addgene) with 4 µg ml–1 
polybrene. Sixteen hours after transduction, cells were selected with cell 
culture medium containing 2 µg ml–1 puromycin. Cells were maintained in 
puromycin-containing medium for 72 h before transitioning back to standard 
culture medium. Stable GREP1-overexpressing cell lines were generated in  
ZR-75-1 and CAMA-1 cells by infection with a sgRNA-resistant GREP1  
cDNA construct and selecting with 350 µg ml–1 hygromycin for 96 h, before 
transitioning back to standard culture medium.

RNA isolation, cDNA synthesis and quantitative PCR experiments. Total RNA 
was isolated using Qiazol and an miRNeasy Kit (Qiagen) with DNase I digestion 
according to the manufacturer’s instructions. RNA integrity was verified on an 
Agilent Bioanalyzer 2100 (Agilent Technologies). cDNA was synthesized from 
total RNA using Superscript III (Invitrogen) and random primers (Invitrogen). 
Quantitative real-time PCR (qPCR) was performed using Power SYBR Green 
Mastermix (Applied Biosystems) on a Thermo QStudio FLX Real-Time PCR 
System (Thermo Fisher Scientific). GAPDH was used as the housekeeping control 
gene. The relative quantity of the target gene was completed for each sample using 
the ΔΔCt method by comparison of the mean cycle threshold (Ct) of the gene to 
the average Ct of the geometric mean of the indicated housekeeping genes.  
The primer sequences are listed below:

GREP1 3′ UTR-forward: AGCCTCCAAATGGCTATGGAC
GREP1 3′ UTR-reverse: CTCGAGGCCACCATTAAAAC
GREP1 ORF-forward: CTGGATATCCGGCTGGAGATG
GREP1 ORF-reverse: ATTGCTGCCTCTCTTCACGTC
GAPDH-forward: TGCACCACCAACTGCTTAGC
GAPDH-reverse: GGCATGGACTGTGGTCATGAG
Beta-actin forward: AAGGCCAACCGCGAGAAG
Beta-actin reverse: ACAGCCTGGATAGCAACGTACA
Fibronectin forward: GAGAAAATGGCCAGATGATGA
Fibronectin reverse: AATGGCACCGAGATATTCCTT
Emilin2 forward: AACAAAGTGCTGGTGAACGAC
Emilin2 reverse: CTCTCCTGTACCCAGCGGTAT
ZBTB11-AS1 forward: CCGTTTTTACGTTTGAGACTCC
ZBTB11-AS1 reverse: ATGTAAATGGGCTGTCTCTGGT
ZBTB11 forward: GGAACGGGTGTGTGAAAAAT
ZBTB11 reverse: CAGCCCAAGCTACTCCACAT
HP08474 forward: GTGTAAAGAGGTCCTGGGACAG
HP08474 reverse: GCACTCCAGTCTAGACGACACA
RP11-54A9.1 forward: TTGGTGAGATGTTCCTTGAGC
RP11-54A9.1 reverse: CTCCACTTCACTGTCGGTCTC
G083755 forward: ATCCCATCTGAGTGCTTACCAA
G083755 reverse: CATGCATAATCTCCTTCCCTGC
OLMALINC forward: AGGAACATCTTGCCAATTTCA
OLMALINC reverse: TGTGGATCTTCAGTTGCTTCA
CTD-2270L9.4 forward: AGTCGTTGGCCGTTACCATA
CTD-2270L9.4 reverse: CTTCCCAGGCTCAAGCAAT
ASNSD1 uORF forward: ACAATTCGACCCCACACAAG
ASNSD1 uORF reverse: GGTTAGAAAGTTCATCCACCACA
RP11-277L2.3 forward: CTACGTGGGGCTGGAAATAC
RP11-277L2.3 reverse: CCCTTCCCAGTTCTCTGACC
GREP1_sgRNA1_amplicon_CRISPRSeq_Forward:  

GGCCTTAACCCTTTCTCTCCT
GREP1_sgRNA1_amplicon_CRISPRSeq_Reverse:  

ATCAAGGCGGGGTATGAATG
GREP1_sgRNA2_amplicon_CRISPRSeq_Forward:  

TTCTGGGGTGGATCTGAGTT
GREP1_sgRNA2_amplicon_CRISPRSeq_Reverse:  

CCCATTCCCATTCCCTAATC

Selection process for candidate ORFs. Candidate ORFs were collated via 
manual curation from 25 published studies and one in-house analysis of 
ribosomal profiling data (Z. Ji, personal communication). Published studies are 
listed in Supplementary Table 1. Data types included were 14 studies with mass 
spectrometry data, six with ribosomal profiling data, four with computational ORF 
predictions and one with both mass spectrometry and ribosomal profiling data. 
In total, there were 9,918 candidate ORFs among which 4,433 unique Ensembl 
transcripts were represented.

We integrated the ORF nominations with mRNA expression data across the 
Cancer Cell Line Encyclopedia (CCLE). There were 6,305 ORFs arising from 
transcripts with expression of at least one transcript per million (TPM), with at 
least one cell line having >10 TPM. Because candidates nominated only from 
computational predictions were unlikely to have any ribosome profiling or mass 
spectrometry correlate (Supplementary Figs. 1 and 2), we considered only the 
3,825 candidates that had either literature peptide support in mass spectrometry, 
ribosome profiling data or both. Among this list, there were 917 annotated 
pseudogenes and 513 variants of known coding proteins (including N-terminal 
extension ORFs, ORFs of known proteins with new predicted exons and alternative 
ORFs located entirely within the genomic nucleotides of an annotated protein); 
these were removed from consideration. For the remaining 2,395 ORFs arising 
from a putative noncoding RNA, we recomputed PhastCons scores, ribosome 
read abundance, PhyloCSF scores and protein domain scores as indicated below 
(Supplementary Tables 2 and 3). A total of 553 high-priority ORFs were manually 
curated as candidates according to the criteria described below. See Supplementary 
Fig. 1 for an overview.

ORFeome library inclusion criteria. To be selected for the ORFeome library, 
an ORF had to exhibit at least one of the characteristics detailed below 
(Supplementary Tables 3 and 4); among 2,395 ORFs, 669 exhibited two or more of 
these features. Following manual inspection to eliminate overlapping candidates 
(for example, isoforms or variants of the same ORF), we selected the longest ORF 
on each transcript for 353 of the 669 examples (53%). Of the 1,726 ORFs exhibiting 
only one feature, we eliminated overlapping candidates and manually inspected 
1,018 examples to select 200 ORFs for inclusion in the ORFeome library. Details of 
these features are now described.

DNA conservation. An ORF was considered to have high DNA conservation if the 
average PhastCons score (v.hg19_20110909) for 100 placental mammals was ≥0.20 
for the entire ORF; 677 ORFs meeting this metric were manually inspected and 
filtered for overlapping or multiple predictions on the same mRNA. In total, 172 of 
the 677 ORFs (26%) were included in the ORFeome library.

Codon substitution rate. ORFs were stratified if they had a codon PhyloCSF 
decibans score (29-mammal alignment) of ≥5.0 averaged across the whole ORF; 
74 ORFs meeting this metric were manually inspected and filtered for overlapping 
or multiple predictions on the same mRNA. Nineteen of 74 ORFs (26%) were 
included in the ORFeome library.

High read coverage. Ribosome profiling read abundance data for ORFs identified by 
Ji et al.6 were used, along with in-house analyses (Z. Ji, personal communication). 
ORFs were stratified if they had a read/length ratio of ≥1.0 in available ribosomal 
profiling data; 2,136 ORFs meeting this metric were manually inspected and 
filtered for overlapping predictions or multiple predictions on the same mRNA, 
and 203 ORFs (9%) were included in the ORFeome library.

Protein domain structure. We utilized the Pfam web server (http://pfam.xfam.
org/search#tabview=tab1) to identify peptide sequences harboring a putative 
Pfam domain (including both Pfam-A and Pfam-B), and used the default cutoff 
e-value <1. In addition, ORF amino acid sequences were also input into the 
NCBI Conserved Domain finder (https://www.ncbi.nlm.nih.gov/Structure/cdd/
wrpsb.cgi) with default settings to identify putative domains. ORFs with domain 
structures scoring at an e-value confidence score of <0.01 were considered; 
195 ORFs meeting these criteria were then manually inspected and filtered for 
overlapping predictions, and 88 of 195 ORFs (45%) were included in the ORFeome.

Multiple overlapping ORF predictions. Published ORF predictions from 
25 large datasets were integrated5,6,16,18–22,25–29,31,33 and queried for overlapping 
ORF predictions with at least two publications supporting their existence 
(Supplementary Tables 1–3). Of 643 candidates, we manually inspected and 
removed overlapping nominations or multiple isoforms of one gene. We included 
227 of 643 ORFs (35%) in the ORFeome library.

Cancer expression. We analyzed a dataset from Iyer et al.22 that identified 
980 transcripts of unknown coding potential defined by a coding-potential 
assessment tool coding score of >0.5 and a statistical enrichment for human cancer 
tissue expression compared to benign tissue (n = 707) or cancer lineage expression 
compared to other cancer types if no benign tissue was available (n = 273).  
Of these, 437 (45%) exhibited an expression level of ≥1 TPM in one of the cell  
lines used for CRISPR knockout studies.
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Lineage association. ORFs were searched in the NIH Roadmap Epigenome Project 
data45, which transcriptionally profiled human embryonic stem cells before 
and after differentiation into mesenchymal stem cells, neural progenitor cells, 
trophoblast-like cells or mesoendoderm; 243 transcripts were nominated, of which 
123 (50%) harbored an ORF nomination and were included in the ORFeome.

Upstream and downstream ORFs. We used candidates from Ji et al.6 and considered 
conserved upstream and downstream ORFs between mouse and human, as defined 
by an interspecies alignment with an e-value of <0.0001. We evaluated ORFs with all 
of the following attributes: (1) conservation ratio of the number of nonsynonymous 
substitutions per nonsynonymous site (Ka) to the number of synonymous 
substitutions per synonymous site (Ks) <0.5; (2) ORF length ≥25 amino acids;  
(3) an ATG start site; (4) a predicted higher translational efficiency compared to the 
annotated protein residing on the same mRNA; and (5) the ORF was nonoverlapping 
with the annotated ORF; 49 dORFs and 195 uORFs met these criteria, and these  
were then manually reviewed to select candidates included in the ORFeome.

Additional subanalyses performed on the 553 ORF candidates selected  
are now shown.

Murine homolog. Murine homologs were defined by the Slncky program46.

Cancer function association. ORFs were searched in the PubMed database for 
associations with the word ‘cancer’ and screened for those studies implicating 
potential roles in cancer.

Predicted ORF CRISPR phenotype. Data from a CRISPR interference screen of 
lncRNAs were employed47. Of 492 lncRNA hits nominated in that study, there were 
312 hits with GENCODE identifiers that could be further evaluated. Of those 312 
there were 292 unique GENCODE identifiers, which were manually reviewed; 
52 GENCODE identifiers overlapping ORFs in this ORFeome are indicated.

Signal peptide. All ORFeome ORFs were analyzed by SignalP v.4.1 using standard 
default settings48, and mean difference was divided by the overall s.d. of ≥0.45 to 
nominate ORFs with a classical signal localization sequence.

Structural modeling. All ORFeome ORFs ≥40 amino acids were analyzed by Phyre2 
structural domain prediction software using default settings49. To distinguish ORFs 
enriched for structural models, we generated a random amino acid sequence library 
of 500 random 150-mer amino acid sequences with a methionine start codon. We 
then derived a structural model score: (percentage ORF alignment to the structural 
model) × (percentage confidence of the model). A structural model score of 0.175 
was used to maximally differentiate ORFeome ORFs from random amino acid 
sequences; 145 ORFs were classified as having a robust structural prediction score.

Overall ORF confidence score. Each criterion described above, in addition to mass 
spectrometry peptide evidence (see below), was given a binary score of 1 if the 
criterion was met by the ORF, or 0 if not met by the ORF. The ORF confidence 
score is the summation of these binary scores.

Identification of ORFs in proteomics datasets. A fasta database containing 
the amino acid sequences of the 553 ORFs was appended to a reference protein 
database (UCSC, RefSeq) and used to search peptide mass spectra of datasets 
acquired or analyzed in our laboratory. These datasets predominantly comprised 
studies conducted by the Clinical Proteomics Tumor Analysis Consortium 
(CPTAC) (Supplementary Table 14). Raw mass spectrometry data were analyzed 
in Spectrum Mill MS Proteomics Workbench v.6.0 (Agilent Technologies) 
employing search parameters specific for each project. Detailed descriptions of 
search parameters, including enzyme definition and specificity or the number 
of types of variable modifications included in the database search, can be found 
in the corresponding publications (Supplementary Table 14). Peptide–spectrum 
matches (PSMs) to the ORF database were identified by automatically parsing 
through database search results generated by Spectrum Mill Software using an 
in-house-developed R script. Only PSMs validated by target-decoy-based false 
discovery rate (FDR) estimation were used for subsequent analysis. To further 
minimize the possibility of false-positive identifications, we required a minimal 
Spectrum Mill PSM score of 8, which roughly translates to a minimum of eight 
identified fragment ions in the tandem mass spectrometry (MS/MS) spectrum. All 
PSMs meeting the criteria described above are listed in Supplementary Table 14.

Phylostratigraphy analysis. All ORFs with ≥40 amino acids were analyzed as 
described previously50,51 using TimeTree52 (http://www.timetree.org) to identify 
evolutionary strata. Using a BLASTP e-value threshold of 10−3 and a maximum 
number of 200,000 hits, we identified the phylostratum in which each ORF 
appeared. For clarity, we aggregated results into the following evolutionary eras: 
invertebrates (phylostrata 1–9, including cellular organisms through Craniata, 
~540 Ma); vertebrates (phylostrata 10–17, including Vertebrata through 
Amniota (312 Ma)); mammals (phylostrata 18–22, including Mammalia through 
Euarchontoglires (95 Ma)); primates (phylostrata 23–27, including primates 
through Hominoidae (20 Ma)); great apes (phylostrata 28–30, including Hominidae 
through Homo); and humans (phylostratum 31, including Homo sapiens).

Generation of the ORFeome library. Initial prototype plasmids were generated in 
the pLX_307 vector backbone designed for previous ORF studies53, obtained from 
the Broad Institute Genomic Perturbation Platform, by PCR amplification from 
cell line cDNA (HeLa, HEK293T, K562 or MCF7). PCR products were gel purified 
(Qiagen), cloned into the nondirectional Gateway PCR8 vector (Invitrogen) as an 
entry vector and shuttled to pLX_307 using LR clonase II (Invitrogen) according 
to the manufacturer’s instructions. pLX_307 is a Gateway-compatible expression 
vector where EF1a is the promoter of the ORF and SV40 is the puromycin 
resistance gene (details available at https://portals.broadinstitute.org/gpp/public/
resources/protocols). Following technical optimization of the insert sequence to 
include a barcode sequence following the V5 tag, the final ORF construct design is 
as follows:

vector backbone → ORF sequence lacking stop codon → C terminus V5 
sequence (GGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACG) → 
triple stop codon (TAGTAATGA) → P1 primer site (TCTTGTGGAAAGGACGA) 
→ barcode sequence → AC (linker sequence) → vector backbone.

Following the ORF sequence, each construct therefore had the additional 
sequence:

GGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGTAGTA 
ATGATCTTGTGGAAAGGACGA_BARCODE_AC

The ORFeome library was then generated via insert synthesis and cloning of 
unique plasmid inserts consisting of unique barcodes (Supplementary Table 2), by 
a commercial vendor (GenScript), in arrayed barcoded tube format. Each plasmid 
therefore had a barcode sequence flanked by common PCR primer pair for 
amplification of a 233-base pair (bp) amplicon, where the sense primer was located 
in the ORF insert and the antisense primer in the plasmid backbone as follows:

P1 sense primer: TCTTGTGGAAAGGACGA
P2 antisense primer: TTAAAGCAGCGTATCCACATAGCGT

Generation of paired mutant ORFs. The 85 mutant constructs employing 
an identical plasmid insert construct, as detailed above, were utilized with the 
following modifications: the putative ORF start codon was mutated to GCG 
(encoding alanine) and all internal in-frame ATG codons (encoding methionine) 
were mutated to GCG to reduce the likelihood of internal initiation of translation. 
Constructs were generated via commercial gene synthesis (GenScript).

In-cell immunoblotting. HEK293T cells were plated at a density of 20,000 per well 
in a 96-well black plate format, to minimize autofluorescence. Six to eight hours 
after plating, cells were transiently transfected with 0.1 µg of an individual plasmid 
with Fugene HD reagent (Promega). After 48 h, cell culture medium was removed 
and cells were fixed for 20 min with 150 µl of 3.7% formaldehyde solution in 
1× PBS at room temperature with no shaking. Fixing buffer was removed and 
cells were washed five times with 200 µl of PBS containing 0.1% Triton X-100 
(Sigma-Aldrich) for permeabilization. Following this, cells were blocked with 
150 µl of Odyssey Blocking Buffer (LI-COR) for 90 min at room temperature on a 
plate shaker. Cells were then treated with anti-V5 antibody (1:200 concentration) 
in Odyssey Blocking Buffer or no-antibody control wells. Cells were incubated 
with the primary antibody overnight at 4 °C. The next day, the primary antibody 
was removed and cells were washed five times with 200 µl of PBS containing 0.1% 
Triton X-100 as above. Then, 50 µl of secondary antibody was applied at 1:1,000 
dilution and samples were incubated for 1 h with gentle shaking and protection 
from light. Next, wells were washed five times with 200 µl of PBS containing 0.1% 
Tween 20 (Sigma-Aldrich). After a final wash, plates were blotted on tissue paper to 
remove excess wash buffer and immediately scanned on a LI-COR Odyssey system 
using the 800-nm light channel to image and quantify anti-V5 abundance.

Analysis of in-cell immunoblot data. First, a preliminary dilution series was 
performed with decreasing amounts of transfected plasmid and decreasing numbers 
of HEK293T cells plated per well (Extended Data Fig. 1). This was performed for 
two high-expressing plasmids that were verified by immunoblot (enhanced GFP 
(eGFP) and LINC00116), and one low-expressing verified plasmid (RP11-539I5.1). 
Using eGFP and RP11-539I5.1, we defined a dynamic range for the assay (Extended 
Data Fig. 1) by normalizing the V5 800-nm light signal to the plate background. 
This defined a threshold above which signal was reproducibly detected, even in 
low-expressing plasmids when transfected into 1,000 plated HEK293T cells.

Then, for the full ORFeome library, all plasmids were run in biological 
triplicate on three unique 96-well plates for in-cell immunoblot analysis. Each 
plate was normalized by median centering raw 800-nm signals within each plate 
to minimize variance in plate background. Normalized 800-nm signals were then 
averaged across replicates. Plasmids with averaged signal above the previously 
defined threshold based on RP11-539I5.1 expression were considered to have 
generated a protein by V5 tag detection.

In vitro transcription/translation. Thirty ORFs were selected at random from the 
ORFeome library for synthesis of the ORF insert lacking a V5 tag and containing a 
5′ T7 promoter sequence. This tag-free insert was then cloned into pUC57 plasmid. 
Linearized purified plasmid (1 mcg) was then subjected to wheat germ extract 
in vitro transcription/translation, employing the nonradioactive Transcend tRNA 
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Cell lines and lentiviral transduction for L1000 expression profiling. A549 and 
A375 cells were cultured in RPM1 medium supplemented with 10% FBS and 1% 
penicillin/streptomycin. MCF7 and HA1E cells were cultured in DMEM medium 
supplemented with 10% FBS and 1% penicillin/streptomycin. To perform L1000 
high-throughput gene expression profiling, cells were robotically seeded (40 µl per 
well) into 384-well plates. Optimized seeding densities were either 250 cells per 
well (MCF7) or 400 cells per well (A549, A375 and HA1E). Twenty-four hours post 
seeding, cells were spin infected in the presence of polybrene (4 µg ml–1 for A549 
and HA1E and 8 µg ml–1 for MCF7 and A375). The plates were then centrifuged for 
30 min at 1,178g at 37 °C. The supernatant was robotically removed and replaced 
with fresh medium at either 3 h (A549) or 24 h post infection (A375, MCF7, 
HA1E), and cells were cultured for an additional 72 h till assay.

Infections were carried out in five replicates, three of which were used for the 
L1000 assay and two for assessment of infection efficiency. To assess infection 
efficiency, cells were treated with or without puromycin selection (1.5 µg ml–1) 24 h 
post infection, and cell viability was determined using CellTiter-Glo (Promega) 
after 72 h of selection. For the remaining plates, medium was removed 96 h post 
infection and cells were lysed with the addition of TCL buffer (Qiagen). Plates were 
then sealed and stored at −80 °C until gene expression profiling.

L1000 experimental design. Two 384-well plates of perturbational ORFs were 
designed for cell treatment before L1000 profiling, each containing 352 unique 
ORFs, negative control ORFs, internal technical controls and untreated wells. The 
plate format can be found in Supplementary Fig. 7. In each plate, 346 wells were 
devoted to treatment ORFs and ten to ORFs targeting L1000 landmark genes, 
which were included for positive control purposes. These positive control wells 
would later be assessed for targeted gene z-score (≥2) and targeted gene rank 
(computed relative to the expression levels of that same gene across the assay plate). 
Control genes included were ACAA1, ACD, AURKB, BMP4, CBR1, CCDC90A, 
CDK6, CSNK1A1, ETV1 and SOX2. Genes were selected for overall high baseline 
expression levels in the lines profiled and previous reproducibility in the L1000 
assay. Additionally, 16 wells of negative control ORFs targeting blue fluorescent 
protein, eGFP or HcRed were added. Each plate also contained 12 untreated wells.

Cell lines MCF7, HA1E, A549 and A375 were chosen to represent a diversity  
of tissue types, and also to match CMap cell lines previously profiled extensively 
and that were constituents of the CMap reference database Touchstone34.

L1000 data processing. Detailed protocols for the L1000 assay are provided at 
https://clue.io/sop-L1000.pdf. Each plate was profiled 96 h post infection. Antibiotic 
selection was not employed, and each plate was processed using the standard 
L1000 data-processing pipeline, which has been described elsewhere34. Briefly, 
mRNA was initially captured using 384-well oligo deoxythymidine (dT)-coated 
Turbocapture plates; after removal of lysate and addition of a reverse-transcription 
mix containing Moloney murine leukemia virus reverse transcriptase, the plate 
was washed and a mixture was added of both upstream and downstream probes 
(each containing a gene-specific sequence and a universal primer site) for each of 
the 978 (‘Landmark’) genes measured. The probes were first annealed to cDNA 
over a 6-h period and then ligated together to form a PCR template. After ligation, 
Hot Start Taq and universal primers were added to the plate, the upstream primer 
was biotinylated to facilitate subsequent staining with streptavidin-pycoerythrin, 
and the PCR amplicon was hybridized to Luminex microbeads using the 
complementary and probe-specific barcode on each bead. After overnight 
hybridization the beads were washed and stained with streptavidin-pycoerythrin, 
and Luminex FlexMap three-dimensional scanners were used to measure each bead 
independently, reporting bead color, identity and fluorescence intensity of the stain. 
Fluorescence intensity of staining values was then converted into median intensity 
values for each of the 978 measured genes using a deconvolution algorithm 
(resulting in ‘GEX’-level data). These GEX data were then normalized relative 
to a set of invariant genes, and subsequently quantile normalized (resulting in 
‘QNORM’-level data). An inference model was applied to the QNORM data to infer 
gene expression changes for a total of 10,174 genes, which corresponds to the best 
inferred genes reported below. Next, expression values of each individual well were 
converted to robust z-scores by z-scoring gene expression relative to corresponding 
expression across the entire plate population; these z-scored differential expression 
gene signatures were finally replicate collapsed to a single differential expression 
vector per treatment, which we term a signature (and ‘MODZ’-level data).

L1000 quality control. All samples profiled passed internal technical L1000 
assay quality control measures described elsewhere34. Additionally, all samples 
included passed an internal fingerprinting algorithm that verifies the identity of 
cell lines on L1000 plates by comparing quantile-normalized gene expression data 
in each well to a ranked reference library of >1,000 cancer cell lines; samples are 
defined as passed if the Spearman correlation to their respective reference profile 
is higher than equivalent correlation values to all other reference cancer profiles. 
Additionally, 67% of positive control ORFs included had a replicate correlation 
of 0.25 or greater and an induced a z-score of 2 or greater in their target gene. 
Notably, ORFs targeting CNSK1A1 represented the majority of poorly performing 
positive control ORFs. Positive control ORFs showing a high transcriptional 
activity score (TAS) also clustered together (Supplementary Fig. 7c).

system according to the manufacturer’s instructions (Promega). From 50 µl of the 
reaction volume, 10 µl was then heat denatured in the presence of DTT and protein 
bands were detected by SDS–polyacrylamide gel electrophoresis (SDS–PAGE) 
using Tris-glycine 10–20% gel (Thermo Fisher Scientific).

Immunoblot analysis. Cells were lysed in RIPA lysis buffer (Sigma-Aldrich) 
and then allowed to homogenize on ice for 30 min. Cell debris was removed by 
centrifugation for 15 min at 13,200 r.p.m. and the debris pellet was discarded. 
HALT protease inhibitor (1×, Thermo Fisher Scientific) was added to lysate 
supernatants. Protein abundance was quantified by the bicinchoninic acid method 
using the bovine-specific albumin standard curve for normalization of protein 
abundance. Aliquots of each protein extract were boiled in LDS sample buffer, size 
fractionated by SDS–PAGE at 4 °C by Tris-glycine 10–20% gels and transferred 
onto nitrocellulose membranes with precast gels via the iBlot-2 system (Thermo 
Fisher Scientific). The membrane was then incubated at room temperature 
for 1–2 h in LI-COR Odyssey blocking buffer, and at 4 °C with the appropriate 
antibody overnight. Following incubation, the blot was washed four times with 
1× TBS with 0.1% Tween 20, incubated with fluorophore-specific IRDye secondary 
antibodies (LI-COR) and imaged on a LI-COR Odyssey machine.

For conditioned media immunoblots, conditioned medium of GFP- or 
GREP1-expressing HEK293T cells was concentrated by a factor of five using 3-kDa 
exclusion filter tubes (Millipore), then 1× HALT protease inhibitor was added to 
the samples. Samples were maintained at 4 °C and not frozen, to preserve protein 
fidelity. Immunoblots were then performed as detailed above. Uncropped and 
unprocessed scans of relevant immunoblots are included in the Source Data.

Antibodies used. 

Antibody Species Monoclonal/
polyclonal

Dilution Catalog no. Vendor Conditions

V5 (D3H8Q) Rabbit Monoclonal 1:2,000 13202S Cell Signaling 
Technology

4 °C 
overnight

ZBTB11 Rabbit Polyclonal 1:1,000 A303-
240A-M

Bethyl 
Laboratories

4 °C 
overnight

Beta-Actin Mouse Monoclonal 1:4,000 A5316 Sigma- 
Aldrich

4 °C 
overnight

Goat 
anti-mouse 
secondary

Goat NA 1:5,000 926–32210 LI-COR 20 °C for 1 h

Goat 
anti-rabbit 
secondary

Goat NA 1:5,000 926–68021 LI-COR 20 °C for 1 h

Goat 
anti-rabbit 
HRP

Goat NA 1:10,000 7074S Cell Signaling 
Technology

20 °C for 1 h

NA, not applicable.

Nondenaturing immunoblot. Nondenaturing immunoblot analysis was 
performed using the NativePage system (Thermo Fisher Scientific). In brief, 
HEK293T cells were transfected with plasmid-encoding GREP1; 72 h after 
transfection, conditioned medium was collected and cellular debris removed via 
centrifugation and filtering of the medium. Protease inhibitor was added to the 
conditioned medium for preservation. Conditioned medium was then prepared 
with 4× NativePAGE sample buffer without heat, detergents or reducing agents. 
For comparison, conditioned medium was also prepared using 4× NativePAGE 
sample buffer and also 1% SDS and 10% NuPAGE sample-reducing agent (Thermo 
Fisher Scientific), followed by boiling at 95 °C for 5 min. Samples were then run 
on a NativePAGE Novex Bis-Tris gel using NativePAGE running buffer and 
NativePAGE 20× Cathode Buffer according to the manufacturer’s instructions. 
Proteins were transferred to a polyvinylidene difluoride membrane after 
membrane activation with isopropanol using a semi-dry system of 7 V for 30 min at 
room temperature. After blocking for 1 h at room temperature in Odyssey Blocking 
Buffer, membranes were treated with rabbit anti-V5 antibody at 1:2,000 dilution 
(clone D3H8Q, no. 13202S, Cell Signaling Technology) overnight at 4 °C, then 
washed four times in 1× TBS-Tween and treated with goat anti-rabbit horseradish 
peroxidase (HRP) secondary antibody at 1:10,000 dilution (Cell Signaling, no. 
7074S). Chemiluminescence was achieved with SuperSignal West Dura Extended 
Duration Substrate (Thermo Fisher Scientific), and images were developed with 
CareStream Kodak BioMax light film (Kodak).

Lentivirus production for L1000 experiments. Complete details of standard virus 
production pipelines can be found at the Broad Institute Genetic Perturbation 
Platform website: https://portals.broadinstitute.org/gpp/public/.

Virus was produced in arrayed 96-well plates via triple transfection of 
HEK293T cells with each packaging vector (100 ng), envelope plasmid (10 ng)  
and each respective pLX317 plasmid (100 ng). Lentiviral-containing supernatants 
were harvested at 32–56 h post transfection and stored in polypropylene plates  
at −80 °C until use.
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Measures of L1000 signature bioactivity. Each perturbagen’s transcriptional 
activity was represented using a TAS, which has been described in depth 
elsewhere34. Briefly, TAS is computed as a geometric mean of signature strength 
(SS—the number of landmark (n = 978) genes in a signature with absolute z-score 
greater than or equal to 2) and replicate correlation (RC—the 75th quantile of all 
pairwise Spearman correlations between replicate-level z-score profiles):

TAS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS ´max RC; 0ð Þð Þ=978

p
´ RC; 0ð Þ

Signatures were considered to be bioactive if they had a TAS score of 0.2 or higher, 
which represents the value at which 95% of negative control wells fall below34.

L1000 signature queries. Each MODZ-level signature profiled was queried against 
the other L1000 signatures in the dataset and the CMap dataset that has been 
published and described elsewhere34. Similarity values between these signatures 
were assessed using a percentile score derived from a normalized weighted 
connectivity score (WTCS). Briefly, WTCS is a similarity measure based on the 
weighted Kolmogorov–Smirnov enrichment statistic (ES) described previously54 
and is computed as follows for a given query gene set pair (qup, qdown) and a 
reference signature r:

wq;r ¼
ESup � ESdown

2
if sgn ESup

� �
≠sgn ESdownð Þ; 0 otherwise

� �

where ESup is the enrichment of qup in r, and ESdown is the enrichment of qdown in r. 
WTCS ranges between −1 and 1, and is positive for signatures that are positively 
related, negative for the converse and near zero for unrelated signatures.

WTCS is then normalized to allow for comparison of connectivity scores 
across cell and perturbagen types; this normalization is similar to that used in gene 
set enrichment analysis and accounts for differences in connectivity that may occur 
across such covariates. Given a vector of WTCS values from a query, normalization 
occurs as follows:

NCSc;t ¼
wc;t

μþc;t
if sgnðwc;tÞ>0;

wc;t

μ�c;t
otherwise

( )

where NCSc,t, wc,t, µ+c,t and µ–c,t are, respectively, the normalized connectivity 
scores, raw WTCS and signed means (the mean of positive and negative values 
evaluated separately) of the WTCS values within the subset of signatures 
corresponding to cell line c and perturbagen type t.

Lastly, NCS scores are converted to percentile scores accounting for whether 
the connectivity between the queried (q) and reference signature (r) is significantly 
different from that observed between r and other queries. This is done by 
comparing each observed NCS value, ncsq,r, between q and r to a distribution 
of NCS values representing the similarities between a reference compendium of 
queries (Qref) and r. This procedure results in a standardized measure we refer to as 
Tau (τ), that ranges from −100 to +100 and represents the percentage of queries in 
Qref with a lower |NCS| than |ncsq,r|, adjusted to retain the sign of ncsq,r and reliant 
on the following formula:

τq;r ¼ sgn ncsq;r ´
100
N

 
´
XN

i¼1
ncsq;i
 < ncsq;r

  

where ncsq,r is the normalized connectivity score for signature r with respect to query 
q; ncsi,r is the normalized connectivity score for signature r relative to the ith query 
in Qref (a set of query signatures obtained from exemplar signatures of perturbagens 
matching the cell line and perturbagen type of r; and N is the number of queries in Qref.

L1000 software packages used. L1000 data were analyzed using the ‘tidyverse’ 
suite55 of R packages (v.1.2.1) and the ‘cmapR’ package56 (v.1.0.1) in R v.3.5.0  
(R Core Team 2018).

CRISPR sgRNA design. Single-guide RNAs for the ORFs in this study were 
designed using the Broad Institute GPP sgRNA designer for Streptococcus pyogenes 
Cas9 against genome coordinates for the GRCh38 assembly of the human genome 
(https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design). 
Only exonic coding regions for ORFs were used. A maximum of eight unique 
sgRNAs were employed per gene: if fewer than eight were nominated due to 
small gene size and lack of available photospacer adjacent motif (PAM) sites, all 
nominated sgRNAs were used. If more than eight sgRNAs were nominated, the 
eight top-ranked were used according the Broad Institute GPP sgRNA designer 
pick analysis. For the secondary CRISPR screen, 147 ORFs were tested. These were 
chosen to include all ORFs with a viability phenotype in the primary screen in the 
appropriate cell lines (A375, MCF7 and HEPG2), as well as additional ORFs that 
did not have a viability phenotype.

For tiling sgRNA analyses, additional nominated sgRNAs for each ORF were 
selected. Also, we selected sgRNAs to putative 3′ UTR, 5′ UTR and promoter 
regions (defined as within 1,000 bp of the transcript start site). A maximum of 
16 sgRNAs were designed for each region. If multiple UTR exons were present, 
a maximum of 16 sgRNAs were designed for each. Intronic sgRNAs were used 

where available and were limited to six sgRNAs per intron. sgRNAs for adjacent 
protein-coding genes were also employed as indicated, and designed in an identical 
manner. The number of sgRNAs for adjacent coding genes and various genome 
regions is detailed in Supplementary Tables 25 and 26.

Determination of infection conditions for CRISPR pooled screens. Optimal 
infection conditions were determined in each cell line to achieve 30–50% infection 
efficiency, corresponding to a multiplicity of infection (MOI) of ~0.5–1. Spin 
infections were performed in 12-well plate format with 3 × 106 cells per well. Optimal 
conditions were determined by infecting cells with different virus volumes at a 
final concentration of 4 µg ml–1 polybrene. Cells were spun for 2 h at 1,000g at 30 °C. 
Approximately 24 h after infection, cells were trypsinized and A375, HT-29 and PC-3 
cells (2 × 105); A549 and HeLa cells (1.5 × 105); HepG2 cells (3 × 105); and MCF7 cells 
(5 × 105) from each infection were seeded in two wells of a six-well plate, each with 
complete medium; one was supplemented with the appropriate concentration of 
puromycin (1.5 µg ml–1 for A375; 2 µg ml–1 for A549, MCF7 and PC-3; and 1 µg ml–1 
for HeLa, HA1E, HepG2 and HT-29). For the secondary screen, only HepG2, MCF7 
and A375 were used. Cells were counted 4–5 d post selection to determine infection 
efficiency, comparing survival with and without puromycin selection. Volumes of 
virus that yielded ~30–50% infection efficiency were used for screening.

Primary and secondary CRISPR pooled proliferation screens. The lentiviral 
barcoded library used in the primary screen contains 5,235 sgRNAs, which 
includes an average of eight guides per gene and 500 nontargeting control guides. 
The validation library contains 6,996 sgRNAs targeting selected regions of the 
ORFs. Genome-scale infections were performed in three replicates with the 
predetermined volume of virus in the same 12-well format as the viral titration 
described above, and pooled 24 h post centrifugation. Infections were performed 
with sufficient numbers of cells per replicate, to achieve a representation of at least 
1,000 cells per sgRNA following puromycin selection (~1.5 × 107 surviving cells). 
Approximately 24 h after infection, all wells within a replicate were pooled and 
were split into T225 flasks. Twenty-four hours after infection, cells were selected 
with puromycin for 7 d to remove uninfected cells. After selection was complete, 
1.5–2.0 × 107 cells were harvested for assessment of the initial abundance of the 
library. Cells were passaged every 3–4 d and harvested ~21 d after infection. For 
all genome-wide screens, genomic DNA was isolated using Midi or Maxi kits 
according to the manufacturer’s protocol (Qiagen). PCR and sequencing were 
performed as previously described57,58. Samples were sequenced on a HiSeq2000 
(Illumina). For analysis, read counts were normalized to reads per million and 
then log2 transformed. The log2(fold change (FC)) of each sgRNA was determined 
relative to the initial time point for each biological replicate.

Analysis of CRISPR screening data. CRISPR data were analyzed as log2(FC) 
values computed between the day 21 time point and the input plasmid DNA: 
log2(FC) ≤ −1 was defined as a scoring sgRNA, which was depleted from the 
analysis. In the primary screen, a gene with at least two sgRNAs with log2(FC) ≤ −1 
in at least one cell line was defined as a putative vulnerability hit. Because the 
vast majority of genes in the primary screen had eight sgRNAs per cell line, genes 
could be compared against each other with this metric. In the secondary screen, 
because of variation in the number of sgRNAs for each gene, a scoring candidate 
was defined as a gene in which at least 10% of sgRNAs had log2(FC) ≤ −1 and there 
were at least two sgRNAs with log2(FC) ≤ −1 in at least one cell line. sgRNAs were 
also analyzed using STARS v.1.3 and CERES scores as previously described57,59.

Analysis of CRISPR tiling screen. log2(FC) values for each sgRNA at day 21 
of the screen were considered as above. sgRNAs were then grouped into their 
respective genomic region (for example, UTR, ORF exon, adjacent gene exon or 
intron). The mean log2(FC) for each region was computed. A mean log2(FC) ≤ −1 
was considered a scoring hit. Genes were then classified in the following manner 
according to the viability affect of sgRNAs: ‘specific to ORF’ if only the ORF 
region sgRNAs scored; ‘specific to ORF and transcript subregion’ if ORF sgRNAs 
and sgRNAs to only one other region of the RNA transcript scored; ‘specific to 
transcript’ if sgRNAs to any part of the ORF or RNA transcript scored, but not 
sgRNAs to introns or genomic regions; ‘shared with adjacent gene’ if the ORF and 
an annotated adjacent protein-coding gene both scored; and ‘nonspecific to the 
genome’ if sgRNAs to any part of the genomic region, intron, RNA transcript or 
ORF all demonstrated depletion.

Comparison of CRISPR screen data with Project Achilles. For each gene of ORF 
in each of the eight cell lines used in the primary ORF CRISPR screen, knockout 
was determined as having produced depletion if at least two guides produced at 
least 50% depletion from initial abundance after RPM normalization. The file 
‘Achilles_logfold_change’ in DepMap_public_19Q4 was used for Achilles screens 
(available at https://depmap.org/portal/download). To determine the expected 
number of genes or ORFs that deplete in any cell line given n cell lines, all possible 
subsets of n lines were selected and the number of genes with at least one depleted 
line were counted. For a negative control, this process was repeated in Achilles 
screens using only genes proposed as nonessential by previously published RNA 
interference data60, to generate a null distribution.
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Off-target sgRNA effect prediction. For the 57 putative hits in the primary 
CRISPR screen, we analyzed scoring sgRNAs for off-target genomic homology sites 
using the Cas-OFFinder v.1.0 algorithm61. Homology sites were computed using 
default program settings with a mismatch tolerance of 0, DNA bulge of 0 and RNA 
bulge of 0. Predicted off-target sites are listed in Supplementary Tables 30 and 31. 
In addition, all ORF-targeting sgRNAs in the primary screen were analyzed for 
specificity or off-target sites using BLAT through the UCSC Genome Browser.

GREP1 annotation analysis and expression data. GREP1 annotation status was 
evaluated using the indicated historical versions of the GENCODE database with 
graphic visualization of the locus. In cell lines, GREP1 expression was evaluated 
through Cancer Cell Line Encyclopedia data for LINC00514 (NR_033861.1), a 
RefSeq annotation that incorporates the first portion of GREP1. CCLE data were 
downloaded from https://portals.broadinstitute.org/ccle.

Pooled GREP1 knockout. For the pooled GREP1 CRISPR knockout assay, we used 
a pool of 486 barcoded, adherent human cancer cell lines developed at the Broad 
Institute62. The cell line pool was grown in RPMI 1640 medium supplemented 
with 10% FBS. sgRNAs used for this experiment were noncutting control sgLacZ 
(AACGGCGGATTGACCGTAAT), cutting control sgChr2 (GGTGTGCGTATGAA 
GCAGTGG), sgGREP1 no. 1 (ACTCAAAATGGCTATAGACC) and sgGREP1 no. 2  
(AGGCTTTAGAGGGGACATGA). On Day 0, the cell line pool was plated in six-well 
plates at 400,000 cells per well in 3 ml of cell culture medium. Twenty-four hours 
later, using an all-in-one Cas9/sgRNA plasmid, the cell line pool was infected with 
each lentivirus at an MOI of 10; lentivirus was concentrated before use to obtain 
a concentration of >1 × 107 particles ml–1. Cells were also treated with 4 µg ml–1 
polybrene in 2 ml per well for lentiviral infection, and spun at 2,250 r.p.m. for 1 h 
at 37 °C. Twenty-four hours after transduction, cells were split from one well in a 
six-well plate into two T25 flasks; at this time point the baseline cell DNA lysate was 
harvested as a ‘no infection’ control. Seventy-two hours after infection, cell culture 
medium was changed and puromycin selection was started at a concentration of 
1 µg ml–1 puromycin. Thereafter, cell culture medium was changed every 72 h and 
cells were expanded as needed into T75 and T175 flasks. Pooled cell line DNA was 
collected from the input plasmid pool, on day 6 as an early time point and on day 15 
as a late time point, to assess for dropout of cell line. At each sample time point, cells 
were counted and 2 × 106 cells were removed for lysis for DNA. For lysis, cells were 
pelleted, washed in PBS and genomic DNA was extracted with the DNA Blood and 
Tissue Kit according to the manufacturer’s instructions (Qiagen). The remaining  
cells not required for lysis were reseeded into T75 and T175 flasks for continuation  
of cell growth.

For sequencing, time point DNA was subjected to PCR using universal barcode 
primers. PCR products were run on a 2% agarose gel to confirm amplicon size, 
then 10 µl from each PCR product was pooled and purified with AMPur beads 
(Beckman Coulter). DNA concentration was measured via Qubit fluorometric 
quantification (Thermo Fisher Scientific) and DNA was sequenced using NovaSeq 
(Illumina) at the Genomics Platform at the Broad Institute.

Analysis of pooled GREP1 knockout sequencing data. Cell line abundance was 
calculated based on cell line barcode detection by next-generation sequencing as 
previously described62. To analyze the pooled GREP1 CRISPR knockout data, we 
first calculated the theoretical number of cells in each well at each time point based 
on the experimental measurements of the total number of cells and the number of 
cells removed for sequencing. We accounted for these discarded cells by scaling the 
measured number of cells at a given time point by the ratio of the total number of 
cells at the previous time point to the number of reseeded, or retained, cells from 
the previous time point.

Next, for quality control, we computed the purity of each sample as the 
percentage of read counts mapping to cell lines not included in the pool. We 
removed samples with purity <95%, then filtered out cell lines with <12 reads in 
more than one replicate of either of the two negative control conditions, LacZ and 
Chr2. The conservative threshold of 12 was determined from the minimum number 
of counts at which we are able to distinguish between that number of counts and 
half that number, at a confidence level of 0.05, under a Poisson distribution.

Next, we added a pseudocount of 1 to each of the read counts and normalized 
updated read counts by library size and theoretical total cell count. We define 
the log(FC) of a cell line in a sample as the log2-transform of the ratio of the 
normalized read count of the cell line in the sample to the normalized read count 
of the cell line at day 0. Finally, we define viability as the difference between 
log(FC) in the cell line and treatment of interest and the average of log(FC) in the 
cell line and the two negative controls.

We then developed a series of data-processing steps to empirically improve 
the quality of the dataset (Supplementary Fig. 11). First, we excluded cell lines 
believed to be puromycin resistant based on the criterion of positive viability in 
the puromycin, no-virus condition. These filters resulted in a viability dataset of 
400 out of 486 cell lines. We then removed cell lines exhibiting excessive lentiviral 
toxicity given the high MOI used for this experiment; this left 320 cell lines. Next, 
we eliminated cancer type cohorts with ≤5 cell lines, due to insufficient numbers 
for analysis, leaving 294 cell lines. Lastly, we calculated the number of cell lines per 
cancer cohort expressing GREP1 above a minimal threshold, and excluded cohorts 

with insufficient expression because any change in those cohorts may be spurious 
due to population shifts in the cell line pool or off-target effects.

CRISPR-sequencing. ZR-75-1 cells infected with lentivirus for sgCh2-2 negative 
control, sgGREP1 nos. 1 or 2 and antibiotic-resistant cells were selected with 
2 µg ml–1 puromycin for 48 h as described previously. Ninety-six hours after 
infection, genomic DNA from cells was isolated using the Qiagen DNeasy Blood 
and Tissue Kit (Qiagen) according to the manufacturer’s instructions; 100 ng of 
DNA was amplified by PCR with the following thermocycler conditions: 94 °C for 
2 min, followed by 30 cycles at 94 °C for 30 s, 52 °C for 30 s and 68 °C for 1 min; final 
elongation was at 68 °C for 7 min. PCR products were confirmed for specificity 
with a 1% agarose gel and then gel purified using a Qiagen Gel Extraction kit 
according to the manufacturer’s instructions. DNA was diluted to a concentration 
of 25 ng µl–1 and submitted to the Massachusetts General Hospital Center for 
Computational and Integrative Biology DNA Core for sequencing. FASTQ 
sequencing files were analyzed using CRISPResso63 v.2 (http://crispresso.pinellolab.
partners.org) according to default parameters.

Patient outcome analysis for GREP1. Expression data for GREP1 in the TCGA 
samples was acquired from the publicly available MiPanda tool using the 
LA16c-H380H5.3 gene annotation as a query64. Data for the GDC TCGA Breast 
Cancer and GDC TCGA Colon Cancer datasets were used. LINC00514 expression 
was extracted as a proxy for GREP1 given that LINC00514 is a fragment of the 
longer gene. Overall survival was also extracted for these datasets. Kaplan–Meier 
curves and statistical significance by log-rank P value were generated using 
GraphPad Prism8 software, with P < 0.05 being considered statistically significant.

GREP1 copy number analysis. CCLE copy number data from the 2013-12-03 
segmentation were downloaded from https://depmap.org/portal/download. Data 
for LINC00514 (283875) were used as a proxy for GREP1 given overlapping 
genomic regions. Copy number data were then aggregated by cell line lineage.

CRISPR validation experiments. Cells were plated in 96-well plates and allowed 
to grow for 4–8 h before infection with the indicated sgRNA or treatment 
condition; 1,000–5,000 cells per well were plated depending on the cell line. 
sgRNAs were obtained from either the Broad Institute Genomic Perturbation 
Platform or direct synthesis into the LentiGuide-Puro plasmid backbone via a 
commercial vendor (GenScript). sgRNA sequences are listed below.

Gene sgRNA no. sgRNA sequence

ASNSD1 1 GCTCACGTCCTACACTTGAG
ASNSD1 2 TTTGGGTGCCAACTGAAGAG
ASNSD1 uORF 1 GCTTAGATCCTCCTTGTGTG
ASNSD1 uORF 2 TAAAGAACAAAAAATTGTGG
chr2-2 NA GGTGTGCGTATGAAGCAGTGG
COG7 2 TGTTGAAGCCCTAAAACAGG
COG7 1 CTACTACTACAAGTGTCACA
GREP1 1 ACTCAAAATGGCTATAGACC
GREP1 2 AGGCTTTAGAGGGGACATGA
GREP1 3 GCTCAAAATGGCTTTGGACC
HP08474 1 TGTGTTTGAGCCAGGCATGG
HP08474 2 AGTCCCAGCAGCTACTCCGG
RP11-277L2.3 1 CGCCTCCTGGGTTCCAGCAG
RP11-277L2.3 2 GGGACTAGATGGAGCCGAAG
RP11-54A9.1 1 TGGGTCTCCTCACAGAGTGA
RP11-54A9.1 2 TCCTCAGACCAACCAGCTCA
LacZ NA AACGGCGGATTGACCGTAAT
ZBTB11-AS1 1 GCGGGACTCTGTATTACCAG
ZBTB11-AS1 2 GCGACGCCGGGACCTCATCG
CTD-2270L9.4 1 CGTGAAGGAGTGGATCAATG
CTD-2270L9.4 2 GAACTTGGAGAAGTCCATGG
G083755 1 CCAACAGGTGACCTCAGCAA
G083755 2 GGACCTCTTACATCATGGAA
SF3B1 NA AAGGGTATCCGCCAACACAG
ZBTB11 1 ACAGGTTGACACCAAAGGAG
ZBTB11 2 GCATATATTCGACTACACAA
OLMALINC 1 ACAGGGCACTGGTCTCCCAA

OLMALINC 2 CAAGGCTGTATATTTCACCT

Nature Biotechnology | www.nature.com/naturebiotechnology

https://portals.broadinstitute.org/ccle
http://crispresso.pinellolab.partners.org
http://crispresso.pinellolab.partners.org
https://depmap.org/portal/download
http://www.nature.com/naturebiotechnology


Letters Nature Biotechnology

All sgRNAs were sequenced and verified. Following sequence verification, 
constructs were transfected with packaging vectors into HEK293T with Fugene 
HD (Sigma-Aldrich). After plating, cells were then infected with sgRNA 
lentivirus to achieve maximal knockout but without viral toxicity. Sixteen hours 
after infection, cells were selected with 2 µg µl–1 puromycin (Invitrogen) for 48 h. 
Cell viability was measured using CellTiter-Glo reagent (Promega) at 16 h post 
transfection for baseline assessment, and at additional time points as needed. For 
stable knockout cell lines, cells were plated at equal densities and cell viability was 
measured by CellTiter-Glo every 24 h as indicated.

GREP1 overexpression rescue experiments. For CRISPR rescue experiments, 
Cas9-derived cell lines were infected with lentivirus GFP- or GREP1-coding 
plasmids cloned into the pLX_TRC313 vector, which has EF1a promoter and 
hygromycin resistance (https://portals.broadinstitute.org/gpp/public/vector). 
Cells were selected in 350 µg ml–1 hygromycin for 72 h before transitioning back to 
standard culture medium.

In 96-well plates, 5,000 ZR-75-1-derived cells were plated and infected with 
the indicated sgRNA lentivirus 4–6 h after plating; 16 h after infection, cells were 
selected with 2 µg ml–1 puromycin for 48 h and grown for 7 d before cell viability 
analysis using CellTiter-Glo reagent.

Conditioned media rescue experiments. On day –2, HEK293T cells were plated 
and transiently transfected with GFP and GREP1 using Fugene HD reagent. On 
the same day, either 5,000 ZR-75-1-derived cells or 2,500 AU565-derived cells 
were plated in wells of a 96-well plate. On day –1, ZR-75-1 and AU565 cells were 
switched to serum-free medium. On day 0, conditioned medium from GFP- or 
GREP1-expressing HEK293T cells was cleared of cellular debris by centrifugation 
and then 100 µl of conditioned medium was applied to each well. Conditioned 
medium was then refreshed daily and cell viability was determined with 
CellTiter-Glo reagent at the indicated time points.

Immunoprecipitation. HEK293T cells were transiently transfected with GFP-V5 
or GREP1-V5 fusion proteins using OptiMem and Fugene HD (Sigma-Aldrich). 
Seventy-two hours after transfection, cell culture medium was harvested and cell 
debris sedimented by centrifugation twice at 1,500 r.p.m. for 5 min. The resulting 
cell culture medium was concentrated in a 10:1 ratio using a 3-kDa size-exclusion 
filter (Millipore), and concentrated culture medium treated with HALT protease 
inhibitor. Next, all immunoprecipitation steps were performed either on ice or in 
a cold room (4 °C). First, culture medium was cleared with Pierce magnetic A/G 
beads (Thermo Fisher Scientific) for 1 h while rotating at 18–20 r.p.m.. Beads were 
then discarded, and 10% of the medium was removed as an input sample and kept 
at 4 °C without freezing. The remaining culture medium was then treated with 
50 µl of magnetic anti-V5 beads (MBL International) and rotated at 18–20 r.p.m. 
overnight at 4 °C. The following day, the supernatant was discarded and beads 
were washed four times in immunoprecipitation wash buffer (50 nM Tri-HCl 
pH 8.0, 150 nM NaCl, 2 mM EDTA pH 8.0, 0.2% NP-40 and 1 µg ml–1 PMSF 
protease inhibitor) with rotation for 10 min per wash. After the final wash, beads 
were gently centrifuged and residual wash buffer was removed. Then, proteins 
were eluted twice with 2 µg µl–1 V5 peptide in water (Sigma-Aldrich) at 37 °C for 
15 min with shaking at 1,000 r.p.m. The two elution fractions were pooled and 
samples were prepared with 4× LDS sample buffer and 10× sample-reducing agent 
(Thermo Fisher Scientific), followed by boiling at 95 °C for 5 min. One-third of 
the eluate was then run on a 10–20% Tris-glycine SDS–PAGE gel and stained 
with SimplyBlue Coomassie stain (Thermo Fisher Scientific) for 2 h. Gels were 
destained with a minimum of three washes in water for at least 2 h per wash. Bands 
were visualized using Coomassie autofluorescence on LI-COR Odyssey in the 
800-nM channel. Gel lanes were then cut into six equal-sized pieces using a sterile 
razor under sterile conditions, and stored in 1 ml of diethyl pyrocarbonate-treated 
water before MS analysis.

Methods for protein sequence analysis by liquid chromatography–MS/MS. 
Liquid chromatography–MS/MS was performed in the Taplin Biological Mass 
Spectrometry Facility at Harvard Medical School. Briefly, excised gel bands 
were cut into pieces of approximately 1 mm3, which were then subjected to 
a modified in-gel trypsin digestion procedure65. Gel pieces were washed and 
dehydrated with acetonitrile for 10 min. followed by removal of acetonitrile and 
then completely dried in a speed-vac. Rehydration of gel pieces was performed 
with 50 mM ammonium bicarbonate solution containing 12.5 ng µl–1 modified 
sequencing-grade trypsin (Promega) at 4 °C. After 45 min, excess trypsin solution 
was removed and replaced with 50 mM ammonium bicarbonate solution to cover 
the gel pieces. Samples were then placed in a room overnight at 37 °C. Peptides 
were later extracted by removal of the ammonium bicarbonate solution, followed 
by one wash with a solution containing 50% acetonitrile and 1% formic acid. The 
extracts were then dried in a speed-vac (~1 h) and stored at 4 °C until analysis.

On the day of analysis, samples were reconstituted in 5–10 µl of 
high-performance liquid chromatography (HPLC) solvent A (2.5% acetonitrile, 
0.1% formic acid). A nanoscale reverse-phase HPLC capillary column was created 
by packing 2.6 µm of C18 spherical silica beads into a fused silica capillary (100 µm 
inner diameter × ~30 cm length) with a flame-drawn tip66. After equilibration of 
the column, each sample was loaded using a Famos autosampler (LC Packings) 

onto the column. A gradient was formed, and peptides were eluted with increasing 
concentrations of solvent B (97.5% acetonitrile, 0.1% formic acid).

As peptides eluted they were subjected to electrospray ionization and then 
entered into an LTQ Orbitrap Velos Pro ion-trap mass spectrometer (Thermo 
Fisher Scientific). Peptides were detected, isolated and fragmented to produce 
a tandem mass spectrum of specific fragment ions for each peptide. Peptide 
sequences (and hence protein identity) were determined by matching protein 
databases with the acquired fragmentation pattern using the software program 
Sequest67 (Thermo Fisher Scientific). All databases include a reversed version of 
all sequences, and data were filtered to FDR = 1–2%. Glycosylated peptides were 
defined using the A score method as previously described68.

Immunoprecipitation–MS and gene ontology analysis. We analyzed 
Immunoprecipitation–MS (IP–MS) data from two independent experiments for 
V5 immunoprecipitation for GFP-V5- and GREP1-V5-conditioned media in 
HEK293T cells, and from one biological replicate for GFP-V5 and GREP1-V5 in 
CAMA-1 and ZR-75-1 cells. IP–MS data were merged for the two experiments 
and all proteins with fewer than two total peptides were removed to exclude 
technical artifacts. To the remaining proteins, a pseudocount of 1 was added to 
ensure a nonzero denominator. Next, the fold change of (GREP1 + 1)/(GFP + 1) 
peptide count was calculated and log10-transformed. Enriched peptides with a 
(GREP1 + 1)/(GFP + 1) ratio of ≥2 were further analyzed using the Gene Ontology 
database (http://geneontology.org) for cellular component analysis; corrected FDR 
values were plotted.

GREP1 disorder analysis. The GREP1 primary amino acid sequence was analyzed 
via the DISOPRED3 package69 on the PsiPred server (http://bioinf.cs.ucl.ac.uk/
psipred/) using default settings. Disorder scores were plotted as indicated.

GREP1 evolutionary analysis. The GREP1 amino acid sequence 
(ENST00000573315.2_prot) was aligned to nonredundant protein sequences 
using the NCBI BlastP suite, and manually aligned to the genomes of the common 
rat (RGSC 6.0/rn6, July 2014 assembly) and domestic dog (Broad CanFam3.1/
canFam3 assembly). The resulting protein hits were then ranked by e-value 
and the most significant result was used for each organism. Predicted proteins 
and low-quality protein assemblies were included in this analysis. Resultant 
species-specific amino acid sequences were then aligned by the Clustal Omega 
sequence aligner (https://www.ebi.ac.uk/Tools/msa/clustalo/), and percentage 
similarity to human GREP1 was plotted.

GREP1 codon usage analysis. We calculated the triplet codon frequency for all 
triplet codons for the GREP1 amino acid sequence, the whole ORFeome in total 
and GENBANK genes by collating all mRNA sequences within these respective 
groups and calculating codon usage per group. Each codon usage was normalized 
to a standard rate of codon usage per 1,000 codons. Triplet codons were then 
collapsed into single amino acids by scaling codon usage rate to the relative 
frequency of usage for each codon per amino acid. Aggregate frequency of amino 
acid representation was then calculated and compared across groups.

Cytokine profiling array. Cytokine profiling was performed simultaneously using 
the Human XL Cytokine Array (R&D Systems, no. ARY022). Briefly, cell culture 
media were cleared of cellular debris and Halt protease inhibitor was added as 
above. Then, cytokine arrays were blocked in 2 ml of array buffer 6 (blocking 
buffer), each for 1 h on a shaker at room temperature. Samples were prepared with 
300 µl of culture medium and diluted with 1,200 µl of array buffer 6. Cytokine 
arrays were then removed from the blocking buffer and incubated with samples 
overnight at 4 °C on a rocker. The following morning, array membranes were 
washed in 20 ml 1× wash buffer for a total of three washes. Then, arrays were 
placed in 1.5 ml of 1× array buffer 4/6 (a 1:2 mixture of array buffers 4 and 6), 
and 30 µl of reconstituted detection antibody cocktail was added. Samples were 
incubated for 1 h at room temperature on a shaker. Subsequently, membranes 
were washed in 20 ml of 1× wash buffer for a total of three washes and then 
transferred to 2.0 ml of 1× streptavidin-HRP for 30 min at room temperature on 
a shaker, followed by three more washes in 20 ml of 1× wash buffer. Subsequently 
the membranes were blotted on tissue paper to remove excess buffer, and signal 
was developed with chemiluminescent reagent mix. Images were developed with 
CareStream Kodak BioMax light film (Kodak).

Cytokine profiling analysis. Immunoblot images of cytokine arrays were scanned, 
and the signal intensity of all array antibody spots was determined using ImageJ 
v.2.0.0 (https://imagej.nih.gov/ij/index.html). Raw data values were then inverted 
using the formula y = 255 – x, where x is raw signal intensity. Inverted values were 
then normalized according to knockout or overexpression experiments. For the 
former, signal was analyzed as sgControl – sgGREP1; for the latter, signal was 
analyzed as GREP1 – GFP. The absolute value of signal change was then averaged 
across experiments and rank-listed according to the magnitude of average change.

GDF15 enzyme-linked immunosorbent assay. The GDF15 Quantikine ELISA kit 
(R&D Systems) was used. In brief, cell culture media samples were diluted 1:3 by 
volume in Diluent RD5-20. To prepare microplate wells, 100 µl of Assay Diluent 
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RD1-9 was added to each well, then 50 µl of standards, controls or diluted samples 
was added to a given well. The plates were incubated for 2 h at room temperature 
on a horizontal orbital microplate shaker at 500 r.p.m. Wells were then washed 
four times with 400 µl of 1× wash buffer for 5 min per wash; after the final wash, 
plates were inverted and blotted on tissue paper to remove excess. Then, 200 µl 
of Human GDF15 conjugate was added to each well and the plate was incubated 
for 1 h at room temperature on an orbital shaker. Following this, wells were then 
washed four times with 400 µl of 1× wash buffer for 5 min per wash; after the final 
wash, plates were inverted and blotted on tissue paper to remove excess. Then, 
200 µl of substrate solution was added per well and plates were incubated for 
30 min at room temperature without shaking and protected from light. Next, 50 µl 
of stop solution was added per well and samples were mixed with gentle tapping. 
The optical density of samples at 450 and 570 nM was determined on a microplate 
reader within 15 min of completion of the protocol. For analysis, background signal 
from 570 nM was subtracted per well from the 450-nM signal. Samples were then 
calculated based on a standard curve to obtain GDF15 concentration values. For 
pharmacologic treatments preceding GDF15 measurements, HEK293T cells were 
treated with 10 µM of either vorinostat, idarubicin, GSK265, bortezomib, GSK132 
or luminespib for 24 h. Cells with transient transfection of GFP or GREP1 cDNA 
were treated with DMSO as controls. After 24 h, GDF15 abundance was measured 
in conditioned medium by enzyme-linked immunosorbent assay (ELISA).

Correlation of GREP1 and GDF15 expression. Expression of GREP1, GDF15, FN1 
and EMIL2 was downloaded via the MiPanda portal64 as TPM values. GTex and 
TCGA samples were used. Spearman rho correlation coefficients and Spearman 
P values were calculated using GraphPad Prism8 and plotted.

Recombinant GDF15 experiments. Recombinant human GDF15 (R&D Systems, 
catalog no. 957-GD-025) was resuspended in water at 10 µg µl–1. Knockout 
with sgGREP1 no. 2 or controls in ZR-75-1 was performed as described above. 
Twenty-four hours after infection with lentiviral sgRNA, cell culture medium 
was refreshed with the addition of puromycin, as described above for antibiotic 
selection, and GDF15 or vehicle control was supplemented at the following 
concentrations: 0.01, 0.1, 1.0, 10 and 100 pg ml–1. Thereafter, cell culture medium 
and recombinant GDF15 were refreshed every 24 h. Cell viability was measured 7 d 
after lentiviral infection using CellTiter-Glo reagent (Promega).

Generation of GREP1 glycosylation mutants. V5-tagged GREP1, T63V, T265V 
and T63V/T265V double-mutant cDNA constructs were generated through a 
commercial service with GenScript in the plx307 vector. Briefly, for each respective 
construct, threonine at position 63 was mutated to valine with mutations A187G 
and C188T to change codon ACC to GTC; the threonine at position 265 was 
mutated to valine with mutations A748G and C749T to change codon ACC to 
GTC. The GREP1 T63V/T265V double-mutant construct harbored all four base 
pair changes. For GDF15 analyses, the indicated constructs were transiently 
transfected into HEK293T cells as described previously and GDF15 was measured 
in conditioned medium 48 h later as previously described.

ZBTB11-AS1 knockdown experiments. A549 cells with transduced lentivirus 
encoding GFP, ZBTB11-AS1 ORF or mutant ZBTB11-AS1 ORF with mutated 
ATG and antibiotic-resistant cells were isolated with 2 µg ml–1 puromycin for 
72 h, and 500,000 cells of the given cell line were plated in six-well plates in 
serum-free medium. Four hours after plating, wells were individually transfected 
with 20 µM of the indicated siRNA oligonucleotide or nontargeting control 
mixed in 135 µl of OptiMem with 10 µl of Lipofectamine 2000 (Thermo Fisher 
Scientific). Twelve hours later, serum-containing medium was added and cells 
were grown for 48 h. Cells were then trypsinized and plated in 96-well plates 
at a density of 5,000 per well in six replicates. Cell viability was measured 72 h 
later using CellTiter-Glo reagent (Promega). siRNA sequences were as follows: 
Lincode ZBTB11-AS1 no. 1, 5′-GGACGAAUCUGCAGCGCUC-3′ (catalog no. 
N-188908-01-0002, Dharmacon, Horizon Discovery); Lincode ZBTB11-AS1 
no. 3, 5′-GUUGAGAGUUCAGCCGAAA-3′ (catalog no. N-188908-03-0002, 
Dharmacon, Horizon Discovery); ON-TARGET plus nontargeting siRNA no. 1, 
5′-UGGUUUACAUGUCGACUAA-3′ (catalog no. D-001810-01-20, Dharmacon, 
Horizon Discovery); and ON-TARGET plus nontargeting siRNA no. 3, 
5′-UGGUUUACAUGUUUUCUGA-3′ (catalog no. D-001810-03-20, Dharmacon, 
Horizon Discovery). Knockout efficiency was monitored by qPCR.

Statistical analyses for experimental studies. All data are expressed as 
means ± s.d. All experimental assays were performed in duplicate or triplicate. 
Statistical analysis was performed by either two-tailed Student’s t-test, one- or 
two-way ANOVA, Kolmogorov–Smirnov test, log-rank P value or other tests as 
indicated. P < 0.05 was considered statistically significant.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Processed data for CRISPR screens (Figs. 3 and 4d) are available in Supplementary 
Tables 22 and 27. Raw data are available in the Source data files accompanying this 

manuscript, as well as through the NCBI Sequence Read Archive at: SRR13126801, 
SRR13128583, SRR13132373, SRR13142215 and SRR13142421. Mass spectrometry 
data relating to Fig. 1 are available in Supplementary Table 14. Raw MS spectra are 
available through the original datasets at: https://cptac-data-portal.georgetown.
edu/study-summary/S060 (CPTAC2_BRCA_prosp), https://cptac-data-portal.
georgetown.edu/study-summary/S045 (CPTAC2_COAD_prosp), https://
cptac-data-portal.georgetown.edu/study-summary/S050 (CPTAC3_ccRCC), 
https://cptac-data-portal.georgetown.edu/study-summary/S056 (CPTAC3_LUAD), 
https://cptac-data-portal.georgetown.edu/study-summary/S051 (CPTAC3_
PTRC_DP1), https://cptac-data-portal.georgetown.edu/study-summary/S053 
(CPTAC3_UCEC), ftp://massive.ucsd.edu/MSV000080527 (HLA_Abelin), ftp://
massive.ucsd.edu/MSV000084787 (HLA_Ouspenskaia), ftp://massive.ucsd.edu/
MSV000084172/; ftp://massive.ucsd.edu/MSV000080527; ftp://massive.ucsd.
edu/MSV000084442/ (HLA_Sarkizova), ftp://massive.ucsd.edu/MSV000082644 
(CPTAC Medulloblastoma) and http://www.peptideatlas.org (PeptideAtlas 
database). L1000 data relating to Fig. 2 and Supplementary Figs. 8 and 9 are 
available through the NIH LINCS program and at https://clue.io/data. The website 
lincsproject.org provides information about the LINCS consortium, including data 
standards. Source data are provided with this paper.

Code availability
L1000 data analysis code and preprocessed data are available via GitHub: https://
github.com/cmap/cmapM. There is additional information about this database and 
tools at http://clue.io/connectopedia. L1000 data were analyzed via the following: 
the ‘tidyverse’ suite36 of R packages (v.1.2.1), the ‘cmapR’ package37 (v.1.0.1) in 
R v.3.5.0 (R Core Team 2018) and in-house code available through github (https://
github.com/johnprensner/smORF_analyses). Mass spectrometry peptides were 
processed via Spectrum Mill MS Proteomics Workbench v.6.0. Additional code for 
computational tools used in this study is listed here: PhyloCSF (https://github.com/
mlin/PhyloCSF/wiki) for 29-mammal alignment, Slncky (https://slncky.github.io),  
STARS v.1.3 (http://www.broadinstitute.org/rnai/public/software/index) and 
CERES v.1.0 (https://github.com/cancerdatasci/ceres).
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Extended Data Fig. 1 | Generation and validation of a non-canonical ORF cDNA library. a, Vector design and sequence details for the ORF library. The 
vector used is a modified version of the plx307 vector developed by the Genomic Perturbation Platform at the Broad Institute. b, Titration analyses of in 
cell western experiments. Three ORFs were chosen: eGFP (positive control), LINC00116 (high-expressing ORF), and RP11-539I5 (low expressing ORF). 
Increasing amounts of plasmid were transfected into increasing numbers of HEK293T cells as shown. c, Quantification the in cell western titration shown 
in b, demonstrating signal detection over noise and signal plateau. Signal was quantified using pixel density in the 800 nM green color channel. d, Replicate 
experiments assessing signal-to-noise thresholds for a low-expressing ORF transfected into HEK293T cells with a low DNA plasmid concentration, as 
well as a high-expressing ORF (eGFP) transfected into HEK293T cells at a high DNA plasmid concentration. e, Example in cell western data in triplicate 
experiments for selected ORFs. f, Abrogation of protein translation via mutation of the ORF for selected examples. g, A systematic evaluation of in cell 
western signal for wild type and mutant ORFs for all pairs. ORFs are separated into those with signal above the baseline threshold, and those without 
reproducible signal. h, An immunoblot showing in vitro transcription/translation of selected tag-free ORFs using a wheat germ lysate system. Red arrows 
indicate the translated ORFs. Results were repeated in two independent experiments.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Analysis of paired wild-type and mutant constructs in L1000 data. a, A strategy for ORF mutagenesis strategy in which the start 
codon and downstream methionines were mutated to alanine. The shown amino acid sequence is a fictional sequence. b, A pie chart showing the number 
and percentage of amino acids changed per ORF from the mutagenesis. c, A violin plot showing the number of Perturbational Class (PCL) connections 
made at the 98th percentile for matched mutant and wild type constructs (n = 47 for each, all data points are biologically independent experiments). 
P value by a two-tailed Wilcoxon matched pairs rank test. d, Left, the overall distribution of PCL connections across all ranks in wild type and mutant 
constructs (n = 19,012 independent comparisons for each). Right, an inset image of distribution of PCL connections at high connectivity, showing a bias in 
connections made with wild type compared to mutant constructs (n = 1,920 independent comparisons each). P value by a two-tailed Wilcoxon matched 
pairs rank test. e, All PCL connections in wild type constructs at either the > =95th percentile or < = -95th percentile, with the matched percentile 
connectivity in the mutant constructs. f, The distribution of percentile connectivity results in wild type or mutant constructs for the indicated genes. In 
brief, all ORF L1000 signatures were queried against all PCL classes and a percentile connectivity was generated for each individual cell line and for both 
wild type and mutant constructs. Cell line and construct data was then aggregated and ranked from highest to lowest connectivity. The rank positions of 
wild type and mutant ORFs were then plotted to reveal a depletion of mutant constructs at high connectivity scores. g, Two example heatmaps for the 
TINCR and SLC35A4 uORF plasmids showing clustering of PCL connectivity among wild type constructs that is not shared with mutant constructs. Purple 
bars denote wild type ORF experiments and green bars denote mutant ORF experiments. h, L1000 signature replicate reproducibility for all wild type and 
mutant pairs across all cell lines. All ORF signatures with at least one reproducible wild type signature are shown.
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Extended Data Fig. 3 | Validation of CRISPR hits via manual assays. a–i, CRISPR assays using doxycycline-inducible Cas9 in HeLa cells. Targets are 
divided in ones that validated and ones that did not. For each experiment, the right-set panel is qPCR data of expression 96 hours after induction of  
Cas9 with doxycycline. a) ZBTB11-AS1 b) HP08474 c) GREP1 d) RP11-54A9.1 e) G083755 f) OLMALINC g) CTD-2270L9.4 h) RP11-277L2.3 i) ASNSD1 uORF.  
j-k, CRISPR assays using stably-expressing A375 Cas9 cells. j) CTD-2270L9.4 k) ASNSD1 uORF. For all data in this figure, n = 6 technical replicates for  
each data point. Error bars represent standard deviation. Data was also acquired a 3 independent biological replicates based on doxycycline dose level 
(0.2 ug/mL, 1.0 ug/mL and 2.0 ug/mL doxycycline, as well as 0 ug/mL doxycycline). The data shown are the 1.0 ug/mL dosing level, with similar results 
observed for the 0.2 ug/mL and 2.0 ug/mL doxycycline dosing levels.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Tiling CRISPR assays to elucidate functional non-canonical ORFs. a, A heatmap showing log fold change viability loss at Day 
+21 in the secondary CRISPR screen for the indicated non-canonical ORFs tested by multiple tiling sgRNA regions. b-e, Examples of non-canonical ORFs 
with a CRISPR tiling phenotype. b-e) Graphical representation of tiling CRISPR assays in which each dot represents an individual sgRNA. sgRNAs are 
mapped to their genomic loci and the genomic region of the tiling assay is shown. The location of the putative non-canonical ORF is shown in the gene 
annotation above. b) CTD-2270L9.4 c) OLMALINC d) RP11-54A9.1 e) RPP14 dORF / HTD2. f - k, Representative sgRNA log fold change data for the indicated 
transcripts. Each tiling experiment is classified as indicated. f) LINC00662 g) RP11-195B21.3 h) LYRM4-AS1 i) ESRG j) TCONS_I2_00007040 k) LINC01184.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


LettersNature Biotechnology

Extended Data Fig. 5 | Specific siRNA knockdown of ZBTB11-AS1 mRNA transcript causes a viability phenotype which is specifically rescued by the wild 
type ZBTB11-AS1 ORF. a, A schematic showing the genomic location and sequences for the two siRNAs used for ZBTB11-AS1. b, mRNA expression levels 
for ZBTB11-AS1 or ZBTB11 transcripts 48 hours after siRNA knockdown of ZBTB11-AS1 in A549 cells. N = 3 independent replicates for all conditions. Barplots 
represent mean ± standard deviation. c, Relative cell viability of A549 cells treated with ZBTB11-AS1 siRNAs at 72 hours. Parental A549 cells were used 
along with A549 cells expressing cDNAs for GFP, wild type ZBTB11-AS1 ORF sequence, or mutant ZBTB11-AS1 ORF lacking translational start sites. Only the 
wild-type ZBTB11-AS1 ORF sequence rescues the viability phenotype. N = 6 independent replicates for all conditions. Barplots represent mean ± standard 
deviation. d, DNA and amino acid sequences of the wild type and mutant ZBTB11-AS1 ORF cDNAs. *p < 0.05, **p < 0.01. n.s., non-significant. For P values: 
Parental, non-targeting vs siRNA #1 P < 0.0001, non-targeting vs siRNA #2 P < 0.0001; GFP, non-targeting vs siRNA #1 P = 0.0008, non-targeting vs 
siRNA #2, P < 0.0001; WT ORF, non-targeting vs siRNA #1 P = 0.04, non-targeting vs siRNA #2 P = 0.83; MUT ORF, non-targeting vs siRNA #1 P = 0.001, 
non-targeting vs siRNA #2 P = 0.02. P values by a two-tailed Student’s T test.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | The GREP1 locus and expression. a, A schematic representation of the GREP1 gene structure and the annotation of this locus in the 
indicated databases. The year of release for each database is indicated. b, mRNA expression level of GREP1 across tumor lineages in the Cancer Cell Line 
Encyclopedia. The Y axis is in a log10 scale. c, mRNA expression of GREP1 across tumor types using TCGA and GTex data. A two-tailed Student’s t-test 
was used to calculate significance of change between normal and cancer tissues. Cell lineages are grouped according to whether GREP1 expression is 
specifically modulated in cancer, universally expressed as a lineage gene, or not robustly expressed in the indicated lineage.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | GREP1 is implicated in cell proliferation and breast cancer patient outcomes. a, Cell viability curves following GREP1 knockout 
in three sensitive and three insensitive cell lines. GREP1 expression in the Cancer Cell Line Encyclopedia is indicated in transcripts per million (TPM) b) 
A scatter plot showing lineage-specific correlation between cell viability and GREP1 mRNA expression on the X axis with the average GREP1 expression 
level on the Y axis. c, Overall survival for breast cancer patients in the TCGA database stratified by GREP1 expression. N = 1,036 individual patients. 
N = 969 GREP1-low and N = 67 GREP1-high patients. Significance by a one-sided log-rank P value. d, Overall survival for colon cancer patients in the TCGA 
database stratified by GREP1 expression. N = 296 individual patients. N = 38 GREP1-high and N = 258 GREP1-low patients. Significance by a one-sided 
log-rank P value. e, Immunoblot of V5-tagged GREP1 or GFP in HEK293T cells in both whole cell lysate and conditioned media. A mutant GREP1, in which 
translational start sites were mutated to alanine, lacks protein translation initiation ability. Results were repeated in three independent experiments.  
i, Abundance of mass spec peptides detected in the full length GREP1 or cleavage product GREP1 proteins. Peptide abundance is represented as a  
fraction of total peptides detected. All error bars represent standard deviation.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | GREP1 is associated with the extracellular matrix. a, Total fraction of amino acid usage in the ORFeome, GENBANK, GREP1, 
and the Collagen alpha-1 family. Sequence similarities between GREP1 and the collagen family are indicated. b, Predicted disorder score for the GREP1 
amino acid sequence. c, Amino acid conservation for detected homologs of GREP1 in the indicated species. d, Non-denaturing native western blot of 
GREP1 in conditioned media from HEK293T cells expressing V5-tagged GREP1. e, Representative Commassie-stained gels for immunoprecipitation of 
GREP1 from the conditioned media of HEK293T cells. Two representative biological replicates are shown. f, Enrichment of extracellular matrix proteins 
in the IP-MS data for GREP1 compared to IP-MS data for GFP. g, Gene Ontology Cellular Component analysis of proteins > = 2 fold enriched in GREP1 
immunoprecipitation compared to GFP immunoprecipitations. h, IP MS total peptide count for fibronectin shown for three separate experiments.  
i, Commassie stain of V5 immunoprecapitation of V5-tagged GFP, GREP1 del_SLS or GREP1 constructs expressed in CAMA-1 cells following fractionation 
of cell lysate into cytoplasmic, membrane and cell media components. Results were repeated in 2 independent experiments. j, Western blot of  
endogenous fibronectin, E-cadherin, beta-actin and GAPDH in cell lysate or cell culture media for CAMA-1 cells expressing GFP, GREP1 del_SLS or  
GREP1 constructs as in panel i. Results were repeated in two independent experiments. k, IP mass spectrometry data showing the total peptide count for 
GREP1 and other top-scoring proteins following IP of V5-tagged GREP1 in HEK293T, ZR-75-1, and CAMA-1 cells. N = 4 independent IP MS experiments. 
Lines represent median ± interquartile (25-75%) range.
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Extended Data Fig. 9 | GREP1 regulates GDF15 in vitro and correlates with GDF15 expression in patient tumor tissues. a, Cytokine profiling in 
HEK293T cells with transient ectopic GREP1 or GFP overexpression, ZR-75-1 cells with stable GREP1 knockout, or HDQP1 cells with stable GREP1 knockout. 
The change in signal abundance was calculated for each control/GREP1 pair. To rank cytokines, the average of the absolute values for the individual signal 
changes was plotted. b, GDF15 abundance by ELISA in ZR-75-1 and CAMA-1 cells overexpressing a GREP1 or GFP cDNA plasmid. N = 3 technical replicates. 
N = 2 independent experiments performed, with representative results shown. c, Spearman’s rho for GREP1 expression correlation with GDF15, EMILIN2, 
or FN1 in the indicated TCGA datasets. d, Spearman’s p value for the GREP1 correlation coefficient for GREP1 correlation with GDF15, EMILIN2, or FN1 in 
the indicated TCGA datasets. e-g, Recombinant GDF15 partially rescues GREP1 knockout. CAMA-1, ZR-75-1 or T47D Cas9 cells were infected with the 
indicated sgRNAs. 24 hours after infection, cells were treated with vehicle control or increasing concentration of recombinant human GDF15 as shown. 
Relative abundance was measured 7 days after infection. N = 5 for all conditions in panel e. N = 6 for all conditions in panel f. N = 5 for all conditions in 
panel g. All error bars represent standard deviation. Two independent experiments were performed for panels e–g.
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