

Functional Genomics and Proteomics National Centre for Biomolecular Research Faculty of Science Masaryk University

Protein characterization by mass spectrometry

C7250

Part III

Zbyněk Zdráhal

RG Proteomics, CEITEC-MU Proteomics CF, CEITEC-MU NCBR FS MU zdrahal@sci.muni.cz

Functional Genomics and Proteomics National Centre for Biomolecular Research Faculty of Science Masaryk University

Characterization of Protein Modifications

Why?

PTM type number number of PTM sites > 400
 ≈ 90 000 (detected experimentally)
 ≈ 230 000 (prediction) (SwissProt, per ≈ 530 000 proteins)

G. A. Khoury et al., Sci. Rep. 1, 90; (2011); http://selene.princeton.edu/PTMCuration

...PTMs are known to act alone and in combination to regulate nearly all aspects of protein function...

...Post-translational modifications (PTMs) occur on nearly all proteins. Many domains within proteins are modified on multiple amino acid sidechains by diverse enzymes to create a myriad of possible protein species. How these combinations of PTMs lead to distinct biological outcomes is only beginning to be understood...

A. P. Lothrop, M. P. Torres, S. M. Fuchs, FEBS Letters. 587 (2013) 1247-1257

Protein p53

p53 exerts **irreplaceable anti-neoplastic functions** at homeostasis and thus is considered to be **'the guardian of the genome**'.

p53 is able to coordinate a regulatory network that supervises and responds to a variety of stress signals:

- DNA damage
- aberrant oncogenic activation
- ➢ telomere erosion
- ribosomal stress
- Ioss of cell-cell or cell-matrix adhesion
- hypoxia

Mutations of p53 or disruptions of p53 coordination,

to a lesser extent, can disturb the normal physiological balance, if genome disarrangement reaches a critical value **it leads to cancer**

SnapShot: Histone Modifications

He Huang,¹ Benjamin R. Sabari,² Benjamin A. Garcia,³ C. David Allis,² and Yingming Zhao¹ ¹Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA ²Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10021, USA ³Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA

se online version for for legend and references.

Potential of MS in analysis of modifications

- Type
- Site localization
- Site occupancy

MS

"screening" detailed characterization of individual modification

Western blot detection of PTM type localization of selected single modification

Specific staining of gels

detection of PTM type without site localization (phospho, glyco proteins)

C7250

Modification groups:

mutation (AA replacement)
chemical
posttranslational

Overview of PTMs and prediction SW tools : DeltaMass - https://www.abrf.org/delta-mass ExPASy - http://www.expasy.org/proteomics/post-translational_modification

C7250

"Chemical modifications:

□ wanted modifications (carbamidomethylation Cys, N-terminal acetylation, quantification tags, etc.)

□ unwanted modifications (Met oxidation, deamidation $N \rightarrow D$ during sample preparation, drug adducts, etc.)

Common Posttranslational Modifications

Common Posttranslational Modifications

	Methylation +14.0) <mark>269</mark> F		Formylation		+28.0104
Amines (K/N-terminus)	Acetylation	+42.0	373		Lipoic acid		+188.3147
	Farnesylation	+204.	3556	56 M		istoylation	+210.3598
	Biotinylation	+226.2	2994	Palmitoylation		nitoylation	+238.4136
	Stearoylation	+266.4674 Geran		anylgeranylation		+272.4741	
Acids & amides	Pyroglutamic acid (Q)		-17.0306 Dea		eamidation (Q/N	N) +0.9847	
(E/D/Q/N)	Carboxylation (E/D)		+44.0098		107 10 -		
Hydroxyl groups (S/T/Y) Phosphory		ylation	+79.9799		9	Sulphation	+80.0642
	Pentoses		+132.1161		Ι	Deoxyhexoses	+146.1430
Carbohydrates (S/T/N)	Hexosamines		+161.1577		Hexoses		+162.1424
	N-acetylhexosamines		+203.1950		Sialic acid		+291.2579

Further details e.g.: <u>http://themedicalbiochemistrypage.org/protein-modifications.php</u>

MS/MS fragmentation of peptides

repetition

C7250

CID vs ETD

b, *y c*, *z*

C-terminus (z- series)

N-terminus (c-series)

Functional Genomics and Proteomics National Centre for Biomolecular Research Faculty of Science Masaryk University

Characterization of mutations

Identification of AA replacement

. . .

. . .

. . .

. . .

Protein detected in two variants in on 2-DE spot

Initial information: Detection of two variants of tryptic peptide with mass difference: -14 Da

DEEELQKENVKNTASLTGK**ITLSVTQSKPETGEVIGVFESIQPSDTDLGAK**VPKDVKIQG

MALDI-MSconfirmation of tryptic peptide mass difference (2 proteases)
localization of sequence region with the changeMALDI-PSDambiguous results

LC-MS/MS mutation D/E in position 210 confirmed

DEEELQKENVKNTASLTGKITLSVTQSKPETGEVIGVFESIQPSDTDLGAKVPKDVKIQG

C7250

MS/MS of peptide LSVTQSKPXTGEVIGVFES, MW 2006.0 (1992.0)

D, E a C-terminal

Confirmation of D in position 210 by methylation and LC-MS/MS

after methylation

exchange of H for CH3 in each carboxyl group

mass increase 14 Da/group

 $\Delta = 42 \text{ Da}$

 y_8 nederiv m/z 787.2 pro D y_8 methyl m/z 829.3 pro D

MS/MS spectrum of peptide VTQSKPXTGEVIG before and after methylation

Functional Genomics and Proteomics National Centre for Biomolecular Research Faculty of Science Masaryk University

Characterization of modifications "chemical"

MALDI–MS spectrum of tryptic digests before a after modification (spectrum detail)

unmodified peptide

2060

162 Da

Protein identification – MS/MS data (Mascot)

gi|15803837 Mass: 13532 Score: 487 Queries matched: 5
 50S ribosomal protein L14 [Escherichia coli O157:H7]

LC-MS/MS

 $b_9 - M_1 IQEQTM_7 LN$

 y_{10} – LNVADNSGAR y_{11} – M_7 LNVADNSGAR

Shifts in m/z of selected fragments for individual $M_{(ox)}$ peptide forms

	no	1 Ox	1 Ox	2 Ox
		M ₁	M ₇	both
<i>y</i> ₁₀	0	0	0	0
<i>y</i> ₁₁	0	0	16	16
b ₉	0	16	16	32

LC-MS/MS spectrum (detail)

Confirmation of modification of Cys

Fryčák P. et al., J. Mass Spectrom., 40 (10), 1309-1318 (2005)

Histone H3, detection of acetylation (in-vitro) MALDI-MS digestu (spectrum detail)

c₁₄

Functional Genomics and Proteomics National Centre for Biomolecular Research Faculty of Science Masaryk University

Characterization of modifications "posttranslational "

Phosphorylation

Protein Phosphorylation is of Fundamental Importance in Biological Regulation cca 10-30% of all proteins are phosphorylated

♥ S, T, Y
♥ H
???

Whereas phosphorylation of **serine**, **threonine or tyrosine** results in the formation of **a phosphoester linkage**, phosphorylation of **histidine** residues occurs **on nitrogen atoms**, producing a phosphoramidate bond. Phosphohistidines have a large standard free energy of hydrolysis making them **the most unstable** of any known phosphoamino acid.

Klumpp et al, Eur. J. Biochem. 269, 1067-1071 (2002)

Phosphorylation sites db:

http://www.phosphosite.org/homeAction.do http://phospho.elm.eu.org

Phospho.ELM version 9.0 (September 2010) contains 8,718 substrate proteins from different species covering 3,370 tyrosine, 31,754 serine and 7,449 threonine instances.

Phosphorylation

9 aminoacid, which might be phosphorylated

serine (Ser) > threonine (Thr) > tyrosine (Tyr)

histidine (His)

aspartic acid (Asp), glutamic acid (Glu)

lysine (Lys), arginine (Arg), cysteine (Cys)

Phosphoproteome - troublemaker

most of signaling proteins are low abundant

enrichment necessary

- proteins are usually in several phospho variants
- proteins can be easily dephosphorylated during sample preparation by phosphatases present in sample
- signal suppression in MS
 - preferential ionization of unmodified peptides (only small portion out of total peptide content is phosphorylated; love ionization efficiency of phosphopeptides)

C7250

Sample preparation

phosphostatus stabilization

- phosphatase inhibitors (as soon as possible)
- denaturation (e.g. FASP lysis in SDT buffer)
- phosphopeptide(protein) enrichment
 - TiO₂ (or other metal oxides, MOAC "metal oxide affinity chromatography")
 - **IMAC** (*"immobilized metal affinity chromatography"*)
 - SCX resp. SAX or HILIC (,, ion exchange or hydrophilic interaction chromatography")
 - immunoprecipitation by specific antibody

I.L. Batalha, Trends in Biotechnology 30 (2), 100-110 (2012)

MS analysis

CID

other types of MS/MS fragmentation ETD (ECD) electron transfer (capture) dissociation HCD higher-energy collision dissociation **EThcD** electron-transfer/higher-energy collision dissociation Frese at al., J. Proteome Res., 12, 1520-1525 (2013) neutral loss scan (different variants) precursor scan

Specific staining of phosphoproteins, 2D GE

phosphoproteins
(Pro-Q Diamond , blue)
proteins
(SYPRO Ruby, red).

C7250

alternatives **Metabolic tagging by** ³²**P** radioactivity measurement

immunoblotting

phosphatase treatment phosphoproteins display a basic shift in their pl after the dephosphorylation. comparison 2D gels

(https://www.lifetechnologies.com/order/catalog/product/P33300)

C7250

Mobility Shift Detection of Phosphorylated Proteins

SDS-PAGE using an Phos-tagTM complex with two manganese(II) ions Mn2+–Phos-tagTM[™]

E. Kinoshita et al., *Molecular* & *Cellular Proteomics*, *5*, 749-757 (2006)

Immobilized metal affinity chromatography (IMAC)

charging

specific binding

 $(Cu^{2+}, Fe^{3+}, Ga^{3+})$

C7250

eluce

IMAC enrichment of -Casein phosphopeptides (1 pmol of tryptic digest)

Technical note - Millipore

Casein (1 ug) after tryptic digestion

Casein (1 ug) after tryptic digestion

Casein (1 ug) after tryptic digestion

MALDI-MS spectrum of peptide w/o and with phosphorylation

Confirmation of phosphorylation by alkaline phosphatase

ESI-MS (IT) spectrum of peptide w/o and with phosphorylation positive mode

000

C7250

Characterization of Histone H4 phosphorylation by Aurora B kinase (K. Šedová)

C7250

Experimental procedure

- protein phosphorylation in vitro
- tryptic digestion
- TiO₂ phosphoenrichment
- LC-MS/MS analysis neutral loss scan (ETD) in ion trap

design of MS analysis

LC-MS chromatogram

Identification of phosphopeptide by database searching MS/MS Ion Search (MASCOT)

 m/z
 Charge
 RT (min)
 Expect Mr

 559.0
 3+
 22.063
 1674.0

MASCOT

• gi|223582 Mass: 11230 Score: 74 Queries matched: 2 histone H4

Observed	Mr(expt)	Mr(calc)	Delta	Miss	Score	Expect	Rank	Peptide	
558.98	1673.93	1673.86	0.076	2	(23)	7.8	1	K.RKTVTAMDVVYALK.R + Phospho (ST)	CID
558.98	1673.93	1673.86	0.076	2	75	5e-05	1	K.RKTVTAMDVVYALK.R + Phospho (ST)	ETD

Modifications: Optional: Phospho (ST) Search Parameter: Charge=2+ and 3+, MS Tol.:0.500000 Da, MSMS Tol.:0.500000 Da, Trypsin Mascot 2.2.03, NCBInr NCBInr_20081101.fasta

Score (Biotools)	Score (Mascot)
520	23
518	22
6149	75
774	47
	Score (Biotools) 520 518 6149 774

C7250

RKTVTAMDVVYALK

based on CID MS/MS data localization of phosphorylation is not possible

RKTVTAMDVVYALK

based on ETD MS/MS data phosphorylation is reliably assigned to T(3)

T(3) x T(5)

Enrichment method	Description	Advantage	Disadvantage	References
Immunoaffinity enrichment	Use of antibodies directed against pTyr, pSer, pThr, and more recently against the surrounding consensus sequences for pSer/pThr.	Highly specific.	Low efficiency, high cost, use of different antibodies for different phosphorylation motifs.	Stokes et al., 2012
Immobilized metal affinity chromatography (IMAC)	Negatively charged phosphate groups on the phosphorylated amino acids interact with positively charged metal ions such as Ni ²⁺ , Fe ³⁺ , Ga ³⁺ , Zr ⁴⁺ , and Ti ⁴⁺ that are chelated with silica or agarose through nitriloacetic acid or iminodiacetic acid.	Good for both phosphoproteins and phosphopeptides. When used with peptides, it can enrich mono- and multiple phosphorylated peptides.	Tends to bind strongly to monophosphorylated peptides, which makes it difficult for elution. Non-specific binding of acidic peptides can occur.	Fila and Honys, 2012
Metal oxide affinity chromatography (MOAC)	Similar to IMAC, the phosphate groups on the amino acids interact with positively charged metal oxides, e.g., titanium or zirconium that acts as anchoring molecules to trap phosphopeptides through the formation of multi-dentate bonds.	Good for both phosphoproteins and phosphopeptides. When used with peptides, it can enrich mono- and multiple phosphorylated peptides.	Tends to binds strongly to multiple phosphorylated peptides, which makes it difficult for elution. Nonspecific binding of acidic peptides can occur.	Gates et al., 2010
Phos-Tag chromatography,	Uses 1,3-bis[bis(pyridine-2- ylmethy()amino]propan-2-olato dizinc(II) complex as a selective phosphate binding tag in aqueous solution at neutral pH.	Increased sensitivity due to complete deprotonation of phosphoproteins/ phosphopeptides at neutral pH. Elution at the physiological pH allow for protein activity and functional analysis.	Mainly used to confirm the phosphorylation state in relatively pure proteins, but not with complex mixtures.	Kinoshita et al., 2006
Prefractionation by strong cation exchange (SCX) and strong anion exchange (SAX)	In SCX, tryptic peptides often carry a charge of +2, except for phosphopetides with a net charge of +1, making them elute early in the chromatography. SAX retains phosphor-peptides, allowing separation based on the number of phosphorylated residues.	Used for fractionation of highly complex mixtures, it can be performed on-line with mass spectrometry.	Similar degree of unspecific binding as IMAC and MOAC.	Leitner et al., 2011
Hydrophilic interaction liquid chromatography (HILIC)	Phosphopeptides with polar phosphate groups are strongly retained on the HILIC stationary phase resulting in separation from non-phosphorylated species.	Good for both phosphoproteins and phosphopeptides. When used with peptides, it can enrich mono- and multiple phosphorylated peptides.	Similar degree of unspecific binding as IMAC and MOAC.	(Yang et al., 2013)
Electrostatic repulsion hydrophilic interaction chromatography (ERLIC)	ERLIC is a variation of HILIC using electrostatic repulsion as an additional phase to adjust selectivity by varying pH or organic solvents.	Good for both phosphoproteins and phosphopeptides. When used with peptides, it can enrich mono- and multiple phosphorylated peptides.	Similar degree of unspecific binding as IMAC and MOAC.	Gan et al., 2008
Hydroxyapatite chromatography	It takes advantage of the strong interaction between positively charged hydroxyapatite and phosphate ions.	Good for fractionating mono-, di-, tri-, and multi-phosphorylated peptides when using gradient of a	Developed with phosphoprotein standards, not tested with complex samples.	Marnone et al., 2010

phosphate buffer.

TABLE 1 | Phosphopeptide/phosphotprotein enrichment methodologies.

Li et al., Front. Plant Sci., 6, 430 (2015)

C7250

Ubiquitination

Ubiquitination is an enzymatic, protein post-translational modification (PTM) process in which the carboxylic acid of the terminal glycine from the **di-glycine motif** in the activated ubiquitin forms an amide bond to the epsilon amine of the lysine in the modified protein.

Protein ubiquitination regulates many cellular processes including transcription, endocytosis, cell cycle control, signal transduction, stress response, DNA repair as well as **proteasomal-mediated degradation**

S. Liu, Z.J. Chen, Cell Research (2011) 21:6–21

Ubiquitination

(A) Homotypic and heterotypic Ub chains

The complex Ub code contains numerous variants of homotypic and heterotypic (mixed or branched) chains. Based on the eight possible linkages (M1, K6, K11, K27, K29, K33, K48, and K63) between two Ub moieties, **at least 92 different Ub chain types exist**.

Stolz A. et al., Trends in Cell Biology, 28 (1), 1-3 (2018)

Akutsu M. et al., J. Cell Sci., 129, 875-880 (2016)

C7250

ubiquitin – protein 8.5 kDa (76 AA)

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGK QLEDGRTLSDYNIQKESTLHLV LRLRGG

localization of modified AA sites
determination of polyubiquitin crosslinks

• K

heterogeneity of modified forms

The most studied polyubiquitin chains - lysine48linked - target proteins for destruction

Strategy of ubiquitinated site analysis

N.J. Denis, Proteomics 2007, 7, 868-874

False-positive identification or K(91) is really ubiquitinated ???

BBAP monoubiquitylates histone **H4 at lysine 91** and selectively modulates the DNA damage response." Yan Q., Dutt S., Xu R., Graves K., Juszczynski P., Manis J.P., Shipp M.A. Mol. Cell 36:110-120 (2009)

Histone H4 (trypsin)

1	SGRGKGGKGL	GKGGAKR HR K	VLRDNIQGIT	KPAIRR LARR	GGVK RISGLI
51	YEETRGVLKV	FLENVIRDAV	TYTEHAKRKT	VTAMDVVYAL	KRQGRTLYGF
101	GG				

Mascot

79–100 658.6059 2630.3944 2630.4003 -2.23 0 **45** 0.0013 1 R.KTVTAMDVVYALKRQGRTLYGF.G + UBI_dT (K)

All matches to this query

Score	Mr(calc)	Delta	Sequence	
	2630.4003	-0.0059		
	2630.4003	-0.0059		
0.3	2630.3792	0.0152	KSAPAPKKGSKKAVTKAQKKD	

False-positive identification or K(91) is really ubiquitinated ???

K(1) is not ubiquitinated

#	b	b++	b*	b*++	b ⁰	b ⁰⁺⁺	Seq.	у	y++	y*	y*++	y ⁰	y0++	#
1	129.1022	65.0548	112.0757	56.5415			K							22
2	230.1499	115.5786	213.1234	107.0653	212.1394	106.5733	T	2503.3126	1252.1599	2486.2860	1243.6467	2485.3020	1243.1547	21
3	329.2183	165.1128	312.1918	156.5995	311.2078	156.1075	V	2402.2649	1201.6361	2385.2384	1193.1228	2384.2543	1192.6308	20
4	430.2660	215.6366	413.2395	207.1234	412.2554	206.6314	T	2303.1965	1152.1019	2286.1700	1143.5886	2285.1859	1143.0966	19
5	501.3031	251.1552	484.2766	242.6419	483.2926	242.1499	A	2202.1488	1101.5780	2185.1223	1093.0648	2184.1383	1092.5728	18
6	632.3436	316.6754	615.3171	308.1622	614.3330	307.6702	M	2131.1117	1066.0595	2114.0852	1057.5462	2113.1011	1057.0542	17
7	747.3706	374.1889	730.3440	365.6756	729.3600	365.1836	D	2000.0712	1000.5392	1983.0447	992.0260	1982.0607	991.5340	16
8	846.4390	423.7231	829.4124	415.2098	828.4284	414.7178	V	1885.0443	943.0258	1868.0177	934.5125	1867.0337	934.0205	15
9	945.5074	473.2573	928.4808	464.7441	927.4968	464.2520	V	1785.9759	893.4916	1768.9493	884.9783	1767.9653	884.4863	14
10	1108.5707	554.7890	1091.5442	546.2757	1090.5601	545.7837	Y	1686.9075	843.9574	1669.8809	835.4441	1668.8969	834.9521	13
11	1179.6078	590.3075	1162.5813	581.7943	1161.5973	581.3023	A	1523.8441	762.4257	1506.8176	753.9124	1505.8336	753.4204	12
12	1292.6919	646.8496	1275.6653	638.3363	1274.6813	637.8443	L	1452.8070	726.9071	1435.7805	718.3939	1434.7964	717.9019	11
13	1534.8298	767.9185	1517.8032	759.4053	1516.8192	758.9132	K	1339.7229	670.3651	1322.6964	661.8518	1321.7124	661.3598	10
14	1690.9309	845.9691	1673.9043	837.4558	1672.9203	836.9638	R	1097.5851	549.2962	1080.5585	540.7829	1079.5745	540.2909	9
15	1818.9895	909.9984	1801.9629	901.4851	1800.9789	900.9931	Q	941.4839	471.2456	924.4574	462.7323	923.4734	462.2403	8
16	1876.0109	938.5091	1858.9844	929.9958	1858.0004	929.5038	G	813.4254	407.2163	796.3988	398.7030	795.4148	398.2110	7
17	2032.1120	1016.5597	2015.0855	1008.0464	2014.1015	1007.5544	R	756.4039	378.7056	739.3774	370.1923	738.3933	369.7003	6
18	2133.1597	1067.0835	2116.1332	1058.5702	2115.1492	1058.0782	Τ	600.3028	300.6550			582.2922	291.6498	5
19	2246.2438	1123.6255	2229.2172	1115.1123	2228.2332	1114.6202	L	499.2551	250.1312					4
20	2409.3071	1205.1572	2392.2806	1196.6439	2391.2965	1196.1519	Y	386.1710	193.5892					3
21	2466.3286	1233.6679	2449.3020	1225.1547	2448.3180	1224.6626	G	223.1077	112.0575					2
22							F	166.0863	83.5468					1

based on hte MS/MS data is not possible to decide K(91)ubi or C-terminal GG

Characterization of ubiquitinations using immunoprecipitation Scheme of experiment

C7250

Ubiquitination

Semiquantitative assessment of site occupancy

site occupancy of individual Ubi sites sample vs control

site occupancy within polyubiquitin chains sample vs control

de Groot R. E.A. et al., Sci. Signal., 7 (317), ra26 (2014)

Characterization of ubiquitinations using immunoprecipitation II UbiSite antibody C7250

Nat. Struct. Mol. Biol., 25 (July), 631-640, (2018)

Characterization of ubiquitinations using immunoprecipitation II UbiSite antibody

Numbers of ubiquitination sites and ubiquitinated proteins identified in the two cell lines (*n* = 3 independent biological replicates). Numbers on the top of bars indicate identified ubiquitination sites; numbers within bars indicate identified proteins.

Overlap of ubiquitination sites and ubiquitinated proteins between Hep2 and Jurkat cells.

Numbers indicate the number of identified ubiquitination sites (left) or proteins (right).

Nat. Struct. Mol. Biol., 25 (July), 631-640, (2018)

Ubiquitin-like proteins

Table 1. Ubl's and Their E1 and E2 in Human and Budding Yeast

	proteins in H. sapiens	proteins in S. cerevisiae				
family	Ubl	E1	E2	Ubl	E1	E2
SUMO	SUMO1, SUMO2, SUMO3, SUMO4 ^a	UBA2/SAE1	UBC9	Smt3	Uba2/Aos1	Ubc9
NEDD8	NEDD8	UBA3/NAE1	UBC12, UBE2F	Rub1	Uba3/Ula1	Ubc12
ATG8	LC3A, LC3B, LC3B2, LC3C, GABARAP, GABARAPL1, GATE-16 ^a	ATG7	ATG3	Atg8	Atg7	Atg3
ATG12	Atg12	ATG7	ATG10	Atg12	Atg7	Atg10
URM1	URM1	UBA4	-	Urm1	Uba4	-
UFM1	UFM1	UBA5	UFC1	-	_	-
FAT10	FAT10	UBA6	$UBE2Z^{b}$	-	-	_
ISG15	ISG15	UBA7	UBCH8 ^b	-	_	_

^aSUMO5 and GABARAPL3 were not included in this table as they are likely pseudogenes. ^bUBE2Z and UBCH8 can also work with ubiquitin.

890

DOI: 10.1021/acs.chemrev.6b00737 Chem. Rev. 2018, 118, 889–918

Glycosylation

one of the most common post-translational modifications of proteins in eukaryotic cells.

involved in a wide range of biological functions such as receptor binding, cell signaling, immune recognition, inflammation, and pathogenicity.

basic types of glycans:

N-linkedO-linked

- GPI anchors
- C-linked
- glykace

Variation in the degrees of saturation at available glycosylation sites results in heterogeneity in the mass and charge of glycoproteins

Signal Supression

N X S/T

N - linked

S/T

N-linked glycosylations

glycans are attached to the protein backbone via an amide bond to an asparagine during protein synthesis

N-X-S(T) X not to stand for P

subtypes:

- High-mannose
- Hybrid
- Complex

C7250

N-linked:High-mannose subtype

N-linked: Hybrid subtype

Gal β-D-Galactose

NeuNAc

 α -*N*-Acetylneuraminic acid (Sialic Acid)

N-linked: Complex subtype

O-linked glycosylations

glycans are linked via the hydroxyl group of serine or threonine

examples:

β-D-N-Acetylgalactosamine

GPI (glycosylphosphatidylinositol) anchors anchors are linked via C-terminus, membrane bound

Characterization of glycoproteins

specific detection of glycosylated proteins
protein identification
site localization
determination of glycan structure

Specific detection of glycosylated proteins

Pro-Q Emerald 300 - glyco only

alternative detection techniques: colorimetric detection fluorescence detection

specific enrichment: *affinity chromatography (lectins, m-Aminophenylboronic Acid)*

C7250

Sypro Ruby - all

Deglycosylation

chemical:

Hydrazinolysis

Hydrazine hydrolysis has been found to be effective in the complete release of unreduced O- and N-linked oligosaccharides.

Alkaline β -Elimination -

Trifluoromethanesulfonic Acid -

only O-linked (some exceptions) glycan destruction

enzymatic:

Site assigment, glycan structure elucidation

- glycosylation "only" at S or T (O-linked) NXS(T) (N-linked)
 prediction of potential glyco site
- combination of MS and MS/MS techniques
- separation of glycoproteins or glycopeptides
- deglycosylation strategies
- glycan derivatisation

MALDI-MS spectrum of glycosylated and non-glycosylated protein size of glycan part

C7250

1D GE of protein before and after deglycosylation

confirmation of glycosylation

MALDI-MS spectrum of deglycosylated protein confirmation of glycosylation

MALDI-MS of intact protein

C7250

MALDI-MS of tryptic digests

Detail of spectra of protein digest before and after deglycosylation

C7250

Detail of spectra of protein digest before and after deglycosylation

Summary

tryptic peptide - 2796 Da ...PHIF<u>DYS</u>GS..., N is transformed to D during deglycosylation by PNGase A

original sequence is

....PHIF<u>NYS</u>GS... (mass 2795 Da)

Peptide was also confirmed by LC-MS/MS analysis (original one was not found in sample before deglycosylation)

Glycan mass 1170 Da corresponds to already reported glycan xylose+fucose+3*mannose+2*N-acetylglukosamin

So glycan structure was not confirmed by MS/MS.

...missing parts have potential N-glycosylation sites...

MLRNVCPVLILLIIGATA LVMGVPR CELFLSG AYCDMETDGGGWTVFQRRGQFGNPVYYFYKKWA DYAHGFGDPAKEYWLGNNVLHALTSDKAMSLRIE K<u>NHS</u> ETTAEYSYKVASEEEYFKINVGGYIGSK GSDAFSTANGS AWYTSCHGSNLNGLNLNGEHPSYADGIEWSAR GGSTGLYYYSYPNVEMKVRDAHFISRVADGRAS

from lecture of Petr Man

C7250

... glycopeptide...

MS/MS from 1202.2 - - glycopeptide, type of glycan identified

C7250

C7250

MLRNVCPVLILLIIGATA LVMGVPRDCGELFLSGQNHSGVVNIYPYKDSLLPVS AYCDMETDGGGWTVFQRRGQFGNPVYYFYKKWA DYAHGFGDPAKEYWLGNNVLHALTSDKAMSLRIE K<u>NHSLETLTAEYSVFK</u>VASEEEYFKINVGGYIGSK GSDAFSIANGSMFTASDQDHDTYTNCAVEFKG AWYTSCHGSNLNGLNLNGEHPSYADGIEWSAR GGSTGLYYYSYPNVEMKVRDAHFISRVADGRAS

from lecture of Petr Man

MALDI-MS spectrum of ribonuclease B

Fig. 2. Positive ion linear MALDI mass spectrum of a mixture of ribonuclease A (unglycosylated) and B (glycosylated) recorded from 4-HCCA with a Micromass TofSpec 2E mass spectrometer. The structures of the five high-mannose glycans attached to the protein to form ribonuclease B are shown. Key to symbols: (\blacksquare) GlcNAc, (\bigcirc) mannose.

D.J. Harvey/International Journal of Mass Spectrometry 226 (2003) 1-35

MSn of ribonuclease B glycans (AP-MALDI-IT MS) C7250

Figure 6. MS⁴ analysis of ribonuclease-B glycans from a HABA matrix. (a) MS spectrum of underivatised glycan solution (500 pmol); (b) MS/MS spectrum of $(Man)_5(GlcNAc)_2 (m/z 1257.5)$; (c) MS³ spectrum of $(Man)_5GlcNAc (m/z 1036.3)$; and (d) MS⁴ spectrum of $(Man)_4GlcNAc (m/z 874.2)$.

C. S. Creaser, J. C. Reynolds and D. J. Harvey Rapid Commun. Mass Spectrom. 2002; 16: 176–184

C7250

Combination of deglycosylation enzymes

Sequential deglycosylation by different enzymes (MALDI-MS) C7250

Fig. 2. MALDI-MS analysis of fraction T9 (A), after the digestion of fraction T9 with sialidase S (B), followed by β 1-4 galactosidase (C) and then by β 1-2-*N*-acetylglucosaminidase digestion (D). MALDI-MS analysis of fraction T9 after treatment with α 1-6-fucosidase and α -mannosidase (E).

L.P. Kotra et al. | Bioorganic Chemistry 30 (2002) 356-370

Glycan profiling and structural analysis of glycans

Lattová E. et al., J. Proteome Res., 15 (8), 2777-2786 (2016)

NSCLC - Bronchoalveolar Carcinoma

Large Cell Carcinoma

MALDI-TOF-MS spectra of N-glycans after desialylation

● Man; ○ Gal; ■ GlcNAc; ▼ Fuc

And this is the end

 \mathbb{C}